1
|
Zhou DH, Jeon J, Farheen N, Friedman LJ, Kondev J, Buratowski S, Gelles J. Mechanisms of synergistic Mediator recruitment in RNA polymerase II transcription activation revealed by single-molecule fluorescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627625. [PMID: 39713438 PMCID: PMC11661148 DOI: 10.1101/2024.12.10.627625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Transcription activators trigger transcript production by RNA Polymerase II (RNApII) via the Mediator coactivator complex. Here the dynamics of activator, Mediator, and RNApII binding at promoter DNA were analyzed using multi-wavelength single-molecule microscopy of fluorescently labeled proteins in budding yeast nuclear extract. Binding of Mediator and RNApII to the template required activator and an upstream activator sequence (UAS), but not a core promoter. While Mediator and RNApII sometimes bind as a pre-formed complex, more commonly Mediator binds first and subsequently recruits RNApII to form a preinitiation complex precursor (pre-PIC) tethered to activators on the UAS. Interestingly, Mediator occupancy has a highly non-linear response to activator concentration, and fluorescence intensity measurements show Mediator preferentially associates with templates having at least two activators bound. Statistical mechanical modeling suggests this "synergy" is not due to cooperative binding between activators, but instead occurs when multiple DNA-bound activator molecules simultaneously interact with a single Mediator.
Collapse
Affiliation(s)
- Daniel H. Zhou
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | - Jongcheol Jeon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Nida Farheen
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | | | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02453
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| |
Collapse
|
2
|
Gorbea Colón JJ, Palao L, Chen SF, Kim HJ, Snyder L, Chang YW, Tsai KL, Murakami K. Structural basis of a transcription pre-initiation complex on a divergent promoter. Mol Cell 2023; 83:574-588.e11. [PMID: 36731470 PMCID: PMC10162435 DOI: 10.1016/j.molcel.2023.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with ∼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.
Collapse
Affiliation(s)
- Jose J Gorbea Colón
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Snyder
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
MED15 prion-like domain forms a coiled-coil responsible for its amyloid conversion and propagation. Commun Biol 2021; 4:414. [PMID: 33772081 PMCID: PMC7997880 DOI: 10.1038/s42003-021-01930-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
A disordered to β-sheet transition was thought to drive the functional switch of Q/N-rich prions, similar to pathogenic amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) regions within yeast prion domains in amyloid formation. We show that many human prion-like domains (PrLDs) contain CC regions that overlap with polyQ tracts. Most of the proteins bearing these domains are transcriptional coactivators, including the Mediator complex subunit 15 (MED15) involved in bridging enhancers and promoters. We demonstrate that the human MED15-PrLD forms homodimers in solution sustained by CC interactions and that it is this CC fold that mediates the transition towards a β-sheet amyloid state, its chemical or genetic disruption abolishing aggregation. As in functional yeast prions, a GFP globular domain adjacent to MED15-PrLD retains its structural integrity in the amyloid state. Expression of MED15-PrLD in human cells promotes the formation of cytoplasmic and perinuclear inclusions, kidnapping endogenous full-length MED15 to these aggregates in a prion-like manner. The prion-like properties of MED15 are conserved, suggesting novel mechanisms for the function and malfunction of this transcription coactivator.
Collapse
|
4
|
Rabuck-Gibbons JN, Lodge JM, Mapp AK, Ruotolo BT. Collision-Induced Unfolding Reveals Unique Fingerprints for Remote Protein Interaction Sites in the KIX Regulation Domain. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:94-102. [PMID: 30136215 PMCID: PMC6320266 DOI: 10.1007/s13361-018-2043-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
The kinase-inducible domain (KIX) of the transcriptional coactivator CBP binds multiple transcriptional regulators through two allosterically connected sites. Establishing a method for observing activator-specific KIX conformations would facilitate the discovery of drug-like molecules that capture specific conformations and further elucidate how distinct activator-KIX complexes produce differential transcriptional effects. However, the transient and low to moderate affinity interactions between activators and KIX are difficult to capture using traditional biophysical assays. Here, we describe a collision-induced unfolding-based approach that produces unique fingerprints for peptides bound to each of the two available sites within KIX, as well as a third fingerprint for ternary KIX complexes. Furthermore, we evaluate the analytical utility of unfolding fingerprints for KIX complexes using CIUSuite, and conclude by speculating as to the structural origins of the conformational families created from KIX:peptide complexes following collisional activation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jessica N Rabuck-Gibbons
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI, 48109, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Jean M Lodge
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI, 48109, USA
- Life Science Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
- University of Wisconsin, Genome Center, 425 Henry Mall, Madison, WI, 53706, USA
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI, 48109, USA
- Life Science Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Henderson AR, Henley MJ, Foster NJ, Peiffer AL, Beyersdorf MS, Stanford KD, Sturlis SM, Linhares BM, Hill ZB, Wells JA, Cierpicki T, Brooks CL, Fierke CA, Mapp AK. Conservation of coactivator engagement mechanism enables small-molecule allosteric modulators. Proc Natl Acad Sci U S A 2018; 115:8960-8965. [PMID: 30127017 PMCID: PMC6130367 DOI: 10.1073/pnas.1806202115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcriptional coactivators are a molecular recognition marvel because a single domain within these proteins, the activator binding domain or ABD, interacts with multiple compositionally diverse transcriptional activators. Also remarkable is the structural diversity among ABDs, which range from conformationally dynamic helical motifs to those with a stable core such as a β-barrel. A significant objective is to define conserved properties of ABDs that allow them to interact with disparate activator sequences. The ABD of the coactivator Med25 (activator interaction domain or AcID) is unique in that it contains secondary structural elements that are on both ends of the spectrum: helices and loops that display significant conformational mobility and a seven-stranded β-barrel core that is structurally rigid. Using biophysical approaches, we build a mechanistic model of how AcID forms binary and ternary complexes with three distinct activators; despite its static core, Med25 forms short-lived, conformationally mobile, and structurally distinct complexes with each of the cognate partners. Further, ternary complex formation is facilitated by allosteric communication between binding surfaces on opposing faces of the β-barrel. The model emerging suggests that the conformational shifts and cooperative binding is mediated by a flexible substructure comprised of two dynamic helices and flanking loops, indicating a conserved mechanistic model of activator engagement across ABDs. Targeting a region of this substructure with a small-molecule covalent cochaperone modulates ternary complex formation. Our data support a general strategy for the identification of allosteric small-molecule modulators of ABDs, which are key targets for mechanistic studies as well as therapeutic applications.
Collapse
Affiliation(s)
- Andrew R Henderson
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Nicholas J Foster
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Amanda L Peiffer
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Matthew S Beyersdorf
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Kevon D Stanford
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Steven M Sturlis
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Brian M Linhares
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Zachary B Hill
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Tomasz Cierpicki
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Charles L Brooks
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Carol A Fierke
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109;
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Dugan A, Majmudar CY, Pricer R, Niessen S, Lancia JK, Fung HYH, Cravatt BF, Mapp AK. Discovery of Enzymatic Targets of Transcriptional Activators via in Vivo Covalent Chemical Capture. J Am Chem Soc 2016; 138:12629-35. [PMID: 27611834 PMCID: PMC5217703 DOI: 10.1021/jacs.6b07680] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The network of activator protein-protein interactions (PPIs) that underpin transcription initiation is poorly defined, particularly in the cellular context. The transient nature of these contacts and the often low abundance of the participants present significant experimental hurdles. Through the coupling of in vivo covalent chemical capture and shotgun LC-MS/MS (MuDPIT) analysis, we can trap the PPIs of transcriptional activators in a cellular setting and identify the binding partners in an unbiased fashion. Using this approach, we discover that the prototypical activators Gal4 and VP16 target the Snf1 (AMPK) kinase complex via direct interactions with both the core enzymatic subunit Snf1 and the exchangeable subunit Gal83. Further, we use a tandem reversible formaldehyde and irreversible covalent chemical capture approach (TRIC) to capture the Gal4-Snf1 interaction at the Gal1 promoter in live yeast. Together, these data support a critical role for activator PPIs in both the recruitment and positioning of important enzymatic complexes at a gene promoter and represent a technical advancement in the discovery of new cellular binding targets of transcriptional activators.
Collapse
Affiliation(s)
- Amanda Dugan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chinmay Y. Majmudar
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel Pricer
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sherry Niessen
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jody K. Lancia
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hugo Yik-Hong Fung
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Anna K. Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Zheng X, Bi C, Li Z, Podariu M, Hage DS. Analytical methods for kinetic studies of biological interactions: A review. J Pharm Biomed Anal 2015; 113:163-80. [PMID: 25700721 PMCID: PMC4516701 DOI: 10.1016/j.jpba.2015.01.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 01/13/2023]
Abstract
The rates at which biological interactions occur can provide important information concerning the mechanism and behavior of these processes in living systems. This review discusses several analytical methods that can be used to examine the kinetics of biological interactions. These techniques include common or traditional methods such as stopped-flow analysis and surface plasmon resonance spectroscopy, as well as alternative methods based on affinity chromatography and capillary electrophoresis. The general principles and theory behind these approaches are examined, and it is shown how each technique can be utilized to provide information on the kinetics of biological interactions. Examples of applications are also given for each method. In addition, a discussion is provided on the relative advantages or potential limitations of each technique regarding its use in kinetic studies.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Maria Podariu
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
8
|
Dissecting allosteric effects of activator-coactivator complexes using a covalent small molecule ligand. Proc Natl Acad Sci U S A 2014; 111:12061-6. [PMID: 25049401 DOI: 10.1073/pnas.1406033111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Allosteric binding events play a critical role in the formation and stability of transcriptional activator-coactivator complexes, perhaps in part due to the often intrinsically disordered nature of one or more of the constituent partners. The kinase-inducible domain interacting (KIX) domain of the master coactivator CREB binding protein/p300 is a conformationally dynamic domain that complexes with transcriptional activators at two discrete binding sites in allosteric communication. The complexation of KIX with the transcriptional activation domain of mixed-lineage leukemia protein leads to an enhancement of binding by the activation domain of CREB (phosphorylated kinase-inducible domain of CREB) to the second site. A transient kinetic analysis of the ternary complex formation aided by small molecule ligands that induce positive or negative cooperative binding reveals that positive cooperativity is largely governed by stabilization of the bound complex as indicated by a decrease in koff. Thus, this suggests the increased binding affinity for the second ligand is not due to an allosteric creation of a more favorable binding interface by the first ligand. This is consistent with data from us and from others indicating that the on rates of conformationally dynamic proteins approach the limits of diffusion. In contrast, negative cooperativity is manifested by alterations in both kon and koff, suggesting stabilization of the binary complex.
Collapse
|
9
|
Ovchinnikov DA, Wan Y, Coman WB, Pandit P, Cooper-White JJ, Herman JG, Punyadeera C. DNA Methylation at the Novel CpG Sites in the Promoter of MED15/PCQAP Gene as a Biomarker for Head and Neck Cancers. Biomark Insights 2014; 9:53-60. [PMID: 25057238 PMCID: PMC4085102 DOI: 10.4137/bmi.s16199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 01/07/2023] Open
Abstract
Head and neck cancers (HNCs) represent a significant and ever-growing burden to the modern society, mainly due to the lack of early diagnostic methods. A significant number of HNCs is often associated with drinking, smoking, chewing beetle nut, and human papilloma virus (HPV) infections. We have analyzed DNA methylation patterns in tumor and normal tissue samples collected from head and neck squamous cell carcinoma (HNSCC) patients who were smokers. We have identified novel methylation sites in the promoter of the mediator complex subunit 15 (MED15/PCQAP) gene (encoing a co-factor important for regulation of transcription initiation for promoters of many genes), hypermethylated specifically in tumor cells. Two clusters of CpG dinucleotides methylated in tumors, but not in normal tissue from the same patients, were identified. These CpG methylation events in saliva samples were further validated in a separate cohort of HNSCC patients (who developed cancer due to smoking or HPV infections) and healthy controls using methylation-specific PCR (MSP). We used saliva as a biological medium because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option for large-scale screening studies. The methylation levels for the two identified CpG clusters were significantly different between the saliva samples collected from healthy controls and HNSCC individuals (Welch’s t-test returning P < 0.05 and Mann–Whitney test P < 0.01 for both). The developed MSP assays also provided a good discriminative ability with AUC values of 0.70 (P < 0.01) and 0.63 (P < 0.05). The identified novel CpG methylation sites may serve as potential non-invasive biomarkers for detecting HNSCC.
Collapse
Affiliation(s)
- Dmitry A Ovchinnikov
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Old Coopers Road, St Lucia, Queensland, Australia
| | - Yunxia Wan
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - William B Coman
- The School of Medicine, University of Queensland, Queensland, Australia
| | - Pratibala Pandit
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Justin J Cooper-White
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Old Coopers Road, St Lucia, Queensland, Australia. ; The School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - James G Herman
- The Sidney Kimmel Comprehensive Cancer Centre, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Chamindie Punyadeera
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Old Coopers Road, St Lucia, Queensland, Australia. ; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| |
Collapse
|
10
|
Balderas-Hernández VE, Alvarado-Rodríguez M, Fraire-Velázquez S. Conserved versatile master regulators in signalling pathways in response to stress in plants. AOB PLANTS 2013; 5:plt033. [PMID: 24147216 PMCID: PMC3800984 DOI: 10.1093/aobpla/plt033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/06/2013] [Indexed: 05/06/2023]
Abstract
From the first land plants to the complex gymnosperms and angiosperms of today, environmental conditions have forced plants to develop molecular strategies to surpass natural obstacles to growth and proliferation, and these genetic gains have been transmitted to the following generations. In this long natural process, novel and elaborate mechanisms have evolved to enable plants to cope with environmental limitations. Elements in many signalling cascades enable plants to sense different, multiple and simultaneous ambient cues. A group of versatile master regulators of gene expression control plant responses to stressing conditions. For crop breeding purposes, the task is to determine how to activate these key regulators to enable accurate and optimal reactions to common stresses. In this review, we discuss how plants sense biotic and abiotic stresses, how and which master regulators are implied in the responses to these stresses, their evolution in the life kingdoms, and the domains in these proteins that interact with other factors to lead to a proper and efficient plant response.
Collapse
Affiliation(s)
- Victor E. Balderas-Hernández
- Laboratorio de Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, CP 98066, Zacatecas, México
| | - Miguel Alvarado-Rodríguez
- Laboratorio de Cultivo de Tejidos Vegetales, Unidad de Agronomía, Universidad Autónoma de Zacatecas, Carr. Zacatecas-Jerez km 17, CP 98000, Zacatecas, México
| | - Saúl Fraire-Velázquez
- Laboratorio de Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, CP 98066, Zacatecas, México
| |
Collapse
|
11
|
Abstract
The human Mediator complex is a central integrator for transcription and represents a primary interface that allows DNA-binding transcription factors to communicate their regulatory signals to the RNA polymerase II enzyme. Because Mediator is dynamic both in terms of subunit composition and structure, it presents challenges as a target for small molecule probes. Moreover, little high-resolution structural information exists for Mediator. Its global requirement for transcription, as well as its distinct, transcription factor specific interaction surfaces, however, suggest that development of probes that bind specific Mediator subunits might enable gene- and pathway-specific modulation of transcription. Here we provide a brief overview of the Mediator complex, highlighting biological and structural features that make it an attractive target for molecular probes. We then outline several chemical strategies that might be effective for targeting the complex.
Collapse
Affiliation(s)
| | - Dylan J Taatjes
- Dept. of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303 USA
| |
Collapse
|
12
|
Bozza WP, Liang Q, Gong P, Zhuang Z. Transient kinetic analysis of USP2-catalyzed deubiquitination reveals a conformational rearrangement in the K48-linked diubiquitin substrate. Biochemistry 2012; 51:10075-86. [PMID: 23211065 DOI: 10.1021/bi3009104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deubiquitination has emerged as an essential regulatory mechanism of a number of cellular processes. An in-depth understanding of deubiquitinating enzyme (DUB) catalysis, particularly the mode of ubiquitin binding and the individual steps in the DUB catalytic turnover, is imperative for exploiting DUBs for therapeutic intervention. In this work, we present a transient kinetic study of USP2 in hydrolyzing a model substrate Ub-AMC and a physiological substrate K48-linked diubiquitin. We conducted stopped-flow fluorescence analyses of the binding of mono- and diubiquitin to an inactive USP2 mutant and unveiled interesting differences in the binding kinetics between the two substrates. While a simple one-step binding of monoubiquitin to USP2 was observed, a biphasic binding was evident for diubiquitin. We further followed the deubiquitination reaction of Ub-AMC and K48-linked IQF-diubiquitin by USP2 using stopped-flow florescence under a single-turnover condition. Global fitting of the reaction traces revealed differences in the microscopic rate constants between Ub-AMC and the physiological diubiquitin substrate. Our binding and single-turnover data support a conformational rearrangement of the diubiquitin substrate in USP2-catalyzed deubiquitination. This finding is significant given the recent finding that the K48-linked diubiquitin is dynamic in its conformation. Our results provide useful insights into the mechanism of how USP recognizes ubiquitin moieties in a chain structure, which is important for understanding USP catalysis and developing inhibitors against USPs.
Collapse
Affiliation(s)
- William P Bozza
- Department of Chemistry and Biochemistry, 214A Drake Hall, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
13
|
Majmudar CY, Højfeldt JW, Arevang CJ, Pomerantz WC, Gagnon JK, Schultz PJ, Cesa LC, Doss CH, Rowe SP, Vásquez V, Tamayo-Castillo G, Cierpicki T, Brooks CL, Sherman DH, Mapp AK. Sekikaic Acid and Lobaric Acid Target a Dynamic Interface of the Coactivator CBP/p300. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Majmudar CY, Højfeldt JW, Arevang CJ, Pomerantz WC, Gagnon JK, Schultz PJ, Cesa LC, Doss CH, Rowe SP, Vásquez V, Tamayo-Castillo G, Cierpicki T, Brooks CL, Sherman DH, Mapp AK. Sekikaic acid and lobaric acid target a dynamic interface of the coactivator CBP/p300. Angew Chem Int Ed Engl 2012; 51:11258-62. [PMID: 23042634 DOI: 10.1002/anie.201206815] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Indexed: 12/25/2022]
Abstract
Capturing a coactivator, naturally: the natural products sekikaic acid and lobaric acid, isolated after a high-throughput screen of a structurally diverse extract collection, effectively target the dynamic binding interfaces of the GACKIX domain of the coactivator CBP/p300. These molecules are the most effective inhibitors of the GACKIX domain yet described and are uniquely selective for this domain.
Collapse
|
15
|
Blomberg J, Aguilar X, Brännström K, Rautio L, Olofsson A, Wittung-Stafshede P, Björklund S. Interactions between DNA, transcriptional regulator Dreb2a and the Med25 mediator subunit from Arabidopsis thaliana involve conformational changes. Nucleic Acids Res 2012; 40:5938-50. [PMID: 22447446 PMCID: PMC3401450 DOI: 10.1093/nar/gks265] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 02/02/2023] Open
Abstract
Mediator is a multiprotein coregulatory complex that conveys signals from DNA-bound transcriptional regulators to the RNA polymerase II transcription machinery in eukaryotes. The molecular mechanisms for how these signals are transmitted are still elusive. By using purified transcription factor Dreb2a, mediator subunit Med25 from Arabidopsis thaliana, and a combination of biochemical and biophysical methods, we show that binding of Dreb2a to its canonical DNA sequence leads to an increase in secondary structure of the transcription factor. Similarly, interaction between the Dreb2a and Med25 in the absence of DNA results in conformational changes. However, the presence of the canonical Dreb2a DNA-binding site reduces the affinity between Dreb2a and Med25. We conclude that transcription regulation is facilitated by small but distinct changes in energetic and structural parameters of the involved proteins.
Collapse
Affiliation(s)
- Jeanette Blomberg
- Department of Medical Biochemistry and Biophysics and Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Ximena Aguilar
- Department of Medical Biochemistry and Biophysics and Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Kristoffer Brännström
- Department of Medical Biochemistry and Biophysics and Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Linn Rautio
- Department of Medical Biochemistry and Biophysics and Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics and Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Medical Biochemistry and Biophysics and Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics and Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
16
|
Krishnamurthy M, Dugan A, Nwokoye A, Fung YH, Lancia JK, Majmudar CY, Mapp AK. Caught in the act: covalent cross-linking captures activator-coactivator interactions in vivo. ACS Chem Biol 2011; 6:1321-6. [PMID: 21977905 DOI: 10.1021/cb200308e] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently there are few methods suitable for the discovery and characterization of transient, moderate affinity protein-protein interactions in their native environment, despite their prominent role in a host of cellular functions including protein folding, signal transduction, and transcriptional activation. Here we demonstrate that a genetically encoded photoactivatable amino acid, p-benzoyl-l-phenylalanine, can be used to capture transient and/or low affinity binding partners in an in vivo setting. In this study, we focused on ensnaring the coactivator binding partners of the transcriptional activator VP16 in S. cerevisiae. The interactions between transcriptional activators and coactivators in eukaryotes are moderate in affinity and short-lived, and due in part to these characteristics, identification of the direct binding partners of activators in vivo has met with only limited success. We find through in vivo photo-cross-linking that VP16 contacts the Swi/Snf chromatin-remodeling complex through the ATPase Snf2(BRG1/BRM) and the subunit Snf5 with two distinct regions of the activation domain. An analogous experiment with Gal4 reveals that Snf2 is also a target of this activator. These results suggest that Snf2 may be a valuable target for small molecule probe discovery given the prominent role the Swi/Snf complex family plays in development and in disease. More significantly, the successful implementation of the in vivo cross-linking methodology in this setting demonstrates that it can be applied to the discovery and characterization of a broad range of transient and/or modest affinity protein-protein interactions.
Collapse
Affiliation(s)
- Malathy Krishnamurthy
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda Dugan
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adaora Nwokoye
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yik-Hong Fung
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jody K. Lancia
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chinmay Y. Majmudar
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|