1
|
Kukovetz K, Cartolano M, Gebhardt M, Schumann LE, Kast SM, Moroni A, Thiel G, Rauh O. Yeast complementation assays provide limited information on functional features of K + channels. BIOPHYSICAL REPORTS 2025; 5:100206. [PMID: 40086750 PMCID: PMC11985088 DOI: 10.1016/j.bpr.2025.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
We investigate to what extent yeast complementation assays, which in principle can provide large amounts of training data for machine-learning models, yield quantitative correlations between growth rescue and single-channel recordings. If this were the case, yeast complementation results could be used as surrogate data for machine-learning-based channel design. Therefore, we mutated position L94 at the cavity entry of the model K+ channel KcvPBCV1 to all proteinogenic amino acids. The function of the wild-type channel and its mutants was investigated by reconstituting them in planar lipid bilayers and by their ability to rescue the growth of a yeast strain deficient in K+ uptake. The single-channel data show a distinct effect of mutations in this critical position on unitary conductance and open probability, with no apparent causal relationship between the two functional parameters. We also found that even conservative amino acid replacements can alter the unitary conductance and/or open probability and that most functional changes show no systematic relationship with the physicochemical nature of the amino acids. This emphasizes that the functional influence of an amino acid on channel function cannot be reduced to a single chemical property. Mutual comparison of single-channel data and yeast complementation results exhibit only a partial correlation between their electrical parameters and their potency of rescuing growth. Hence, complementation data alone are not sufficient for enabling functional channel design; they need to be complemented by additional parameters such as the number of channels in the plasma membrane.
Collapse
Affiliation(s)
| | | | | | - Lars E Schumann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Stefan M Kast
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Gerhard Thiel
- Department of Biology, TU Darmstadt, Darmstadt, Germany; Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Oliver Rauh
- Department of Biology, TU Darmstadt, Darmstadt, Germany; Institute for Functional Gene Analytics, Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany.
| |
Collapse
|
2
|
Asrani P, Seebohm G, Stoll R. Potassium viroporins as model systems for understanding eukaryotic ion channel behaviour. Virus Res 2022; 320:198903. [PMID: 36037849 DOI: 10.1016/j.virusres.2022.198903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
Ion channels are membrane proteins essential for a plethora of cellular functions including maintaining cell shape, ion homeostasis, cardiac rhythm and action potential in neurons. The complexity and often extensive structure of eukaryotic membrane proteins makes it difficult to understand their basic biological regulation. Therefore, this article suggests, viroporins - the miniature versions of eukaryotic protein homologs from viruses - might serve as model systems to provide insights into behaviour of eukaryotic ion channels in general. The structural requirements for correct assembly of the channel along with the basic functional properties of a K+ channel exist in the minimal design of the viral K+ channels from two viruses, Chlorella virus (Kcv) and Ectocarpus siliculosus virus (Kesv). These small viral proteins readily assemble into tetramers and they sort in cells to distinct target membranes. When these viruses-encoded channels are expressed into the mammalian cells, they utilise their protein machinery and hence can serve as excellent tools to study the cells protein sorting machinery. This combination of small size and robust function makes viral K+ channels a valuable model system for detection of basic structure-function correlations. It is believed that molecular and physiochemical analyses of these viroporins may serve as basis for the development of inhibitors or modulators to ion channel activity for targeting ion channel diseases - so called channelopathies. Therefore, it may provide a potential different scope for molecular pharmacology studies aiming at novel and innovative therapeutics associated with channel related diseases. This article reviews the structural and functional properties of Kcv and Kesv upon expression in mammalian cells and Xenopus oocytes. The mechanisms behind differential protein sorting in Kcv and Kesv are also thoroughly discussed.
Collapse
Affiliation(s)
- Purva Asrani
- Biomolecular Spectroscopy and RUBiospec|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster D-48149, Germany
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospec|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany.
| |
Collapse
|
3
|
Schmidt M, Schroeder I, Bauer D, Thiel G, Hamacher K. Inferring functional units in ion channel pores via relative entropy. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:37-57. [PMID: 33523249 PMCID: PMC7872957 DOI: 10.1007/s00249-020-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/11/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022]
Abstract
Coarse-grained protein models approximate the first-principle physical potentials. Among those modeling approaches, the relative entropy framework yields promising and physically sound results, in which a mapping from the target protein structure and dynamics to a model is defined and subsequently adjusted by an entropy minimization of the model parameters. Minimization of the relative entropy is equivalent to maximization of the likelihood of reproduction of (configurational ensemble) observations by the model. In this study, we extend the relative entropy minimization procedure beyond parameter fitting by a second optimization level, which identifies the optimal mapping to a (dimension-reduced) topology. We consider anisotropic network models of a diverse set of ion channels and assess our findings by comparison to experimental results.
Collapse
Affiliation(s)
- Michael Schmidt
- Department of Physics, TU Darmstadt, Karolinenpl. 5, 64289 Darmstadt, Germany
| | - Indra Schroeder
- Department of Biology, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Daniel Bauer
- Department of Biology, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Gerhard Thiel
- Department of Biology, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Kay Hamacher
- Department of Physics, Department of Biology, Department of Computer Science, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Varadarajan V, Desikan R, Ayappa KG. Assessing the extent of the structural and dynamic modulation of membrane lipids due to pore forming toxins: insights from molecular dynamics simulations. SOFT MATTER 2020; 16:4840-4857. [PMID: 32421131 DOI: 10.1039/d0sm00086h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infections caused by many virulent bacterial strains are triggered by the release of pore forming toxins (PFTs), which form oligomeric transmembrane pore complexes on the target plasma membrane. The spatial extent of the perturbation to the surrounding lipids during pore formation is relatively unexplored. Using all-atom molecular dynamics simulations, we investigate the changes in the structure and dynamics of lipids in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer in the presence of contrasting PFTs. Cytolysin A (ClyA), an α toxin with its inserted wedge shaped bundle of inserted α helices, induces significant asymmetry across the membrane leaflets in comparison with α hemolysin (AHL), a β toxin. Despite the differences in hydrophobic mismatch and uniquely different topologies of the two oligomers, perturbations to lipid order as reflected in the tilt angle and order parameters and membrane thinning are short ranged, lying within ∼2.5 nm from the periphery of either pore complex, and commensurate with distances typically associated with van der Waals forces. In contrast, the spatial extent of perturbations to the lipid dynamics extends outward to at least 4 nm for both proteins, and the continuous survival probabilities reveal the presence of a tightly bound shell of lipids in this region. Displacement probability distributions show long tails and the distinctly non-Gaussian features reflect the induced dynamic heterogeneity. A detailed profiling of the protein-lipid contacts with tyrosine, tryptophan, lysine and arginine residues shows increased non-polar contacts in the cytoplasmic leaflet for both PFTs, with a higher number of atomic contacts in the case of AHL in the extracellular leaflet due to the mushroom-like topology of the pore complex. The short ranged nature of the perturbations observed in this simple one component membrane suggests inherent plasticity of membrane lipids enabling the recovery of the structure and membrane fluidity even in the presence of these large oligomeric transmembrane protein assemblies. This observation has implications in membrane repair processes such as budding or vesicle fusion events used to mitigate PFT virulence, where the underlying lipid dynamics and fluidity in the vicinity of the pore complex are expected to play an important role.
Collapse
Affiliation(s)
- Vadhana Varadarajan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore-560012, India.
| | | | | |
Collapse
|
5
|
Role of an Aromatic-Aromatic Interaction in the Assembly and Trafficking of the Zebrafish Panx1a Membrane Channel. Biomolecules 2020; 10:biom10020272. [PMID: 32053881 PMCID: PMC7072349 DOI: 10.3390/biom10020272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/28/2022] Open
Abstract
Pannexin 1 (Panx1) is a ubiquitously expressed hexameric integral membrane protein known to function as an adenosine triphosphate (ATP) release channel. Panx1 proteins exist in unglycosylated core form (Gly0). They undergo critical post-translational modifications forming the high mannose glycosylation state (Gly1) in the endoplasmic reticulum (ER) and the complex glycosylation state (Gly2) in the Golgi apparatus. The regulation of transition from the ER to the cell membrane is not fully understood. Using site-specific mutagenesis, dye uptake assays, and interaction testing, we identified two conserved aromatic residues, Trp123 and Tyr205, in the transmembrane domains 2 and 3 of the zebrafish panx1a protein. Results suggest that both residues primarily govern the assembly of panx1a subunits into channels, with mutant proteins failing to interact. The results provide insight into a mechanism enabling regulation of Panx1 oligomerization, glycosylation, and trafficking.
Collapse
|
6
|
Genes for Membrane Transport Proteins: Not So Rare in Viruses. Viruses 2018; 10:v10090456. [PMID: 30149667 PMCID: PMC6163359 DOI: 10.3390/v10090456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
Some viruses have genes encoding proteins with membrane transport functions. It is unknown if these types of proteins are rare or are common in viruses. In particular, the evolutionary origin of some of the viral genes is obscure, where other viral proteins have homologs in prokaryotic and eukaryotic organisms. We searched virus genomes in databases looking for transmembrane proteins with possible transport function. This effort led to the detection of 18 different types of putative membrane transport proteins indicating that they are not a rarity in viral genomes. The most abundant proteins are K+ channels. Their predicted structures vary between different viruses. With a few exceptions, the viral proteins differed significantly from homologs in their current hosts. In some cases the data provide evidence for a recent gene transfer between host and virus, but in other cases the evidence indicates a more complex evolutionary history.
Collapse
|
7
|
Hadden JA, Perilla JR. All-atom virus simulations. Curr Opin Virol 2018; 31:82-91. [PMID: 30181049 PMCID: PMC6456034 DOI: 10.1016/j.coviro.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The constant threat of viral disease can be combated by the development of novel vaccines and therapeutics designed to disrupt key features of virus structure or infection cycle processes. Such development relies on high-resolution characterization of viruses and their dynamical behaviors, which are often challenging to obtain solely by experiment. In response, all-atom molecular dynamics simulations are widely leveraged to study the structural components of viruses, leading to some of the largest simulation endeavors undertaken to date. The present work reviews exemplary all-atom simulation work on viruses, as well as progress toward simulating entire virions.
Collapse
Affiliation(s)
- Jodi A Hadden
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
8
|
Andersson AEV, Kasimova MA, Delemotte L. Exploring the Viral Channel Kcv PBCV-1 Function via Computation. J Membr Biol 2018; 251:419-430. [PMID: 29476260 PMCID: PMC6028866 DOI: 10.1007/s00232-018-0022-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/15/2018] [Indexed: 11/30/2022]
Abstract
Viral potassium channels (Kcv) are homologous to the pore module of complex \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {K}^+$$\end{document}K+-selective ion channels of cellular organisms. Due to their relative simplicity, they have attracted interest towards understanding the principles of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {K}^+$$\end{document}K+ conduction and channel gating. In this work, we construct a homology model of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hbox {Kcv}}_{\text{PBCV-1}}$$\end{document}KcvPBCV-1 open state, which we validate by studying the binding of known blockers and by monitoring ion conduction through the channel. Molecular dynamics simulations of this model reveal that the re-orientation of selectivity filter carbonyl groups coincides with the transport of potassium ions, suggesting a possible mechanism for fast gating. In addition, we show that the voltage sensitivity of this mechanism can originate from the relocation of potassium ions inside the selectivity filter. We also explore the interaction of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hbox {Kcv}}_{\text{PBCV-1}}$$\end{document}KcvPBCV-1 with the surrounding bilayer and observe the binding of lipids in the area between two adjacent subunits. The model is available to the scientific community to further explore the structure/function relationship of Kcv channels.
Collapse
Affiliation(s)
- Alma E V Andersson
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Box 1031, SE-171 21, Solna, Sweden
| | - Marina A Kasimova
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Box 1031, SE-171 21, Solna, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Box 1031, SE-171 21, Solna, Sweden.
| |
Collapse
|
9
|
Baumeister D, Hertel B, Schroeder I, Gazzarrini S, Kast SM, Van Etten JL, Moroni A, Thiel G. Conversion of an instantaneous activating K + channel into a slow activating inward rectifier. FEBS Lett 2016; 591:295-303. [PMID: 27995608 DOI: 10.1002/1873-3468.12536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022]
Abstract
The miniature channel, Kcv, is a structural equivalent of the pore of all K+ channels. Here, we follow up on a previous observation that a largely voltage-insensitive channel can be converted into a slow activating inward rectifier after extending the outer transmembrane domain by one Ala. This gain of rectification can be rationalized by dynamic salt bridges at the cytosolic entrance to the channel; opening is favored by voltage-sensitive formation of salt bridges and counteracted by their disruption. Such latent voltage sensitivity in the pore could be relevant for the understanding of voltage gating in complex Kv channels.
Collapse
Affiliation(s)
- Dirk Baumeister
- Plant Membrane Biophysics, Technical University Darmstadt, Germany
| | - Brigitte Hertel
- Plant Membrane Biophysics, Technical University Darmstadt, Germany
| | - Indra Schroeder
- Plant Membrane Biophysics, Technical University Darmstadt, Germany
| | - Sabrina Gazzarrini
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Italy
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universität Dortmund, Germany
| | - James L Van Etten
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska Lincoln, NE, USA
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Italy
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technical University Darmstadt, Germany
| |
Collapse
|
10
|
Hoffgaard F, Kast S, Moroni A, Thiel G, Hamacher K. Tectonics of a K+ channel: The importance of the N-terminus for channel gating. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3197-204. [DOI: 10.1016/j.bbamem.2015.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/09/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022]
|
11
|
Siotto F, Martin C, Rauh O, Van Etten JL, Schroeder I, Moroni A, Thiel G. Viruses infecting marine picoplancton encode functional potassium ion channels. Virology 2014; 466-467:103-11. [PMID: 25441713 DOI: 10.1016/j.virol.2014.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 01/19/2023]
Abstract
Phycodnaviruses are dsDNA viruses, which infect algae. Their large genomes encode many gene products, like small K(+) channels, with homologs in prokaryotes and eukaryotes. Screening for K(+) channels revealed their abundance in viruses from fresh-water habitats. Recent sequencing of viruses from marine algae or from salt water in Antarctica revealed sequences with the predicted characteristics of K(+) channels but with some unexpected features. Two genes encode either 78 or 79 amino acid proteins, which are the smallest known K(+) channels. Also of interest is an unusual sequence in the canonical α-helixes in K(+) channels. Structural prediction algorithms indicate that the new channels have the conserved α-helix folds but the algorithms failed to identify the expected transmembrane domains flanking the K(+) channel pores. In spite of these unexpected properties electophysiological studies confirmed that the new proteins are functional K(+) channels.
Collapse
Affiliation(s)
- Fenja Siotto
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - Corinna Martin
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - Oliver Rauh
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - Indra Schroeder
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - Anna Moroni
- Dipartimento di Biologia Università degli Studi di Milano e Istituto di Biofisica, CNR, Milano, Italy
| | - Gerhard Thiel
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany.
| |
Collapse
|
12
|
von Charpuis C, Meckel T, Moroni A, Thiel G. The sorting of a small potassium channel in mammalian cells can be shifted between mitochondria and plasma membrane. Cell Calcium 2014; 58:114-21. [PMID: 25449299 DOI: 10.1016/j.ceca.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
The two small and similar viral K(+) channels Kcv and Kesv are sorted in mammalian cells and yeast to different destinations. Analysis of the sorting pathways shows that Kcv is trafficking via the secretory pathway to the plasma membrane, while Kesv is inserted via the TIM/TOM complex to the inner membrane of mitochondria. Studies with Kesv mutants show that an N-terminal mitochondrial targeting sequence in this channel is neither necessary nor sufficient for sorting of Kesv the mitochondria. Instead the sorting of Kesv can be redirected from the mitochondria to the plasma membrane by an insertion of ≥2 amino acids in a position sensitive manner into the C-terminal transmembrane domain (TMD2) of this channel. The available data advocate the presence of a C-terminal sorting signal in TMD2 of Kesv channel, which is presumably not determined by the length of this domain.
Collapse
Affiliation(s)
- Charlotte von Charpuis
- Plant Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Tobias Meckel
- Plant Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Anna Moroni
- Department of Biology and CNR IBF-Mi, and Istituto Nazionale di Fisica della Materia, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Gerhard Thiel
- Plant Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany.
| |
Collapse
|
13
|
Bagriantsev SN, Chatelain FC, Clark KA, Alagem N, Reuveny E, Minor DL. Tethered protein display identifies a novel Kir3.2 (GIRK2) regulator from protein scaffold libraries. ACS Chem Neurosci 2014; 5:812-22. [PMID: 25028803 PMCID: PMC4176385 DOI: 10.1021/cn5000698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
Use of randomized peptide libraries
to evolve molecules with new
functions provides a means for developing novel regulators of protein
activity. Despite the demonstrated power of such approaches for soluble
targets, application of this strategy to membrane systems, such as
ion channels, remains challenging. Here, we have combined libraries
of a tethered protein scaffold with functional selection in yeast
to develop a novel activator of the G-protein-coupled mammalian inwardly
rectifying potassium channel Kir3.2 (GIRK2). We show that the novel
regulator, denoted N5, increases Kir3.2 (GIRK2) basal activity by
inhibiting clearance of the channel from the cellular surface rather
than affecting the core biophysical properties of the channel. These
studies establish the tethered protein display strategy as a means
to create new channel modulators and highlight the power of approaches
that couple randomized libraries with direct selections for functional
effects. Our results further underscore the possibility for the development
of modulators that influence channel function by altering cell surface
expression densities rather than by direct action on channel biophysical
parameters. The use of tethered library selection strategies coupled
with functional selection bypasses the need for a purified target
and is likely to be applicable to a range of membrane protein systems.
Collapse
Affiliation(s)
| | | | | | - Noga Alagem
- Department
of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eitan Reuveny
- Department
of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel L. Minor
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
C-H…pi interactions in proteins: prevalence, pattern of occurrence, residue propensities, location, and contribution to protein stability. J Mol Model 2014; 20:2136. [DOI: 10.1007/s00894-014-2136-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/02/2014] [Indexed: 11/25/2022]
|
15
|
Schroeder I, Gazzarrini S, Ferrara G, Thiel G, Hansen UP, Moroni A. Creation of a reactive oxygen species-insensitive Kcv channel. Biochemistry 2013; 52:3130-7. [PMID: 23578303 DOI: 10.1021/bi3016197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The current of the minimal viral K(+) channel Kcv(PCBV-1) heterologously expressed in Xenopus oocytes is strongly inhibited by reactive oxygen species (ROS) like H(2)O(2). Possible targets for the ROS effect are two cysteines (C53 and C79) and four methionines (M1, M15, M23, and M26). The C53A/C79A and M23L/M26L double mutations maintained the same ROS sensitivity as the wild type. However, M15L as a single mutant or in combination with C53A/C79A and/or M23L/M26L caused a complete loss of sensitivity to H(2)O(2). These results indicate a prominent role of M15 at the cytosolic end of the outer transmembrane helix for gating of Kcv(PCBV-1). Furthermore, even though the channel lacks a canonical voltage sensor, it exhibits a weak voltage sensitivity, resulting in a slight activation in the millisecond range after a voltage step to negative potentials. The M15L mutation inverts this kinetics into an inactivation, underlining the critical role of this residue for gating. The negative slope of the I-V curves of M15L is the same as in the wild type, indicating that the selectivity filter is not involved.
Collapse
Affiliation(s)
- Indra Schroeder
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Tan Q, Ritzo B, Tian K, Gu LQ. Tuning the tetraethylammonium sensitivity of potassium channel Kcv by subunit combination. ACTA ACUST UNITED AC 2012; 139:295-304. [PMID: 22450486 PMCID: PMC3315146 DOI: 10.1085/jgp.201110725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tetraethylammonium (TEA) is a potassium (K+) channel inhibitor that has been extensively used as a molecular probe to explore the structure of channels’ ion pathway. In this study, we identified that Leu70 of the virus-encoded potassium channel Kcv is a key amino acid that plays an important role in regulating the channel’s TEA sensitivity. Site-directed mutagenesis of Leu70 can change the TEA sensitivity by 1,000-fold from ∼100 µM to ∼100 mM. Because no compelling trends exist to explain this amino acid’s specific interaction with TEA, the role of Leu70 at the binding site is likely to ensure an optimal conformation of the extracellular mouth that confers high TEA affinity. We further assembled the subunits of mutant and wt-Kcv into a series of heterotetramers. The differences in these heterochannels suggest that all of the four subunits in a Kcv channel additively participate in the TEA binding, and each of the four residues at the binding site independently contributes an equal binding energy. We therefore can present a series of mutant/wild-type tetramer combinations that can probe TEA over three orders of magnitude in concentration. This study may give insight into the mechanism for the interaction between the potassium channel and its inhibitor.
Collapse
Affiliation(s)
- Qiulin Tan
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
17
|
Gebhardt M, Henkes LM, Tayefeh S, Hertel B, Greiner T, Van Etten JL, Baumeister D, Cosentino C, Moroni A, Kast SM, Thiel G. Relevance of lysine snorkeling in the outer transmembrane domain of small viral potassium ion channels. Biochemistry 2012; 51:5571-9. [PMID: 22734656 DOI: 10.1021/bi3006016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called "snorkeling" of a cationic amino acid, which is conserved in the outer TMD of small viral K(+) channels. Experimentally, snorkeling activity is not mandatory for Kcv(PBCV-1) because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, Kcv(ATCV-1) and Kcv(MT325), lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of Kcv(PBCV-1) and N-terminally truncated mutants; the truncated mutants mimic Kcv(ATCV-1) and Kcv(MT325). Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K(+) channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.
Collapse
Affiliation(s)
- Manuela Gebhardt
- Botany Institute, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Greiner T, Ramos J, Alvarez MC, Gurnon JR, Kang M, Van Etten JL, Moroni A, Thiel G. Functional HAK/KUP/KT-like potassium transporter encoded by chlorella viruses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:977-986. [PMID: 21848655 DOI: 10.1111/j.1365-313x.2011.04748.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chlorella viruses are a source of interesting membrane transport proteins. Here we examine a putative K(+) transporter encoded by virus FR483 and related chlorella viruses. The protein shares sequence and structural features with HAK/KUP/KT-like K(+) transporters from plants, bacteria and fungi. Yeast complementation assays and Rb(+) uptake experiments show that the viral protein, termed HAKCV (high-affinity K(+) transporter of chlorella virus), is functional, with transport characteristics that are similar to those of known K(+) transporters. Expression studies revealed that the protein is expressed as an early gene during viral replication, and proteomics data indicate that it is not packaged in the virion. The function of HAKCV is unclear, but the data refute the hypothesis that the transporter acts as a substitute for viral-encoded K(+) channels during virus infection.
Collapse
Affiliation(s)
- Timo Greiner
- Institute of Botany at the Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany
| | | | | | | | | | | | | | | |
Collapse
|