1
|
Jenner LP, Crack JC, Kurth JM, Soldánová Z, Brandt L, Sokol KP, Reisner E, Bradley JM, Dahl C, Cheesman MR, Butt JN. Reaction of Thiosulfate Dehydrogenase with a Substrate Mimic Induces Dissociation of the Cysteine Heme Ligand Giving Insights into the Mechanism of Oxidative Catalysis. J Am Chem Soc 2022; 144:18296-18304. [PMID: 36173876 PMCID: PMC9562282 DOI: 10.1021/jacs.2c06062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/29/2022]
Abstract
Thiosulfate dehydrogenases are bacterial cytochromes that contribute to the oxidation of inorganic sulfur. The active sites of these enzymes contain low-spin c-type heme with Cys-/His axial ligation. However, the reduction potentials of these hemes are several hundred mV more negative than that of the thiosulfate/tetrathionate couple (Em, +198 mV), making it difficult to rationalize the thiosulfate oxidizing capability. Here, we describe the reaction of Campylobacter jejuni thiosulfate dehydrogenase (TsdA) with sulfite, an analogue of thiosulfate. The reaction leads to stoichiometric conversion of the active site Cys to cysteinyl sulfonate (Cα-CH2-S-SO3-) such that the protein exists in a form closely resembling a proposed intermediate in the pathway for thiosulfate oxidation that carries a cysteinyl thiosulfate (Cα-CH2-S-SSO3-). The active site heme in the stable sulfonated protein displays an Em approximately 200 mV more positive than the Cys-/His-ligated state. This can explain the thiosulfate oxidizing activity of the enzyme and allows us to propose a catalytic mechanism for thiosulfate oxidation. Substrate-driven release of the Cys heme ligand allows that side chain to provide the site of substrate binding and redox transformation; the neighboring heme then simply provides a site for electron relay to an appropriate partner. This chemistry is distinct from that displayed by the Cys-ligated hemes found in gas-sensing hemoproteins and in enzymes such as the cytochromes P450. Thus, a further class of thiolate-ligated hemes is proposed, as exemplified by the TsdA centers that have evolved to catalyze the controlled redox transformations of inorganic oxo anions of sulfur.
Collapse
Affiliation(s)
- Leon P. Jenner
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Julia M. Kurth
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Zuzana Soldánová
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Linda Brandt
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Katarzyna P. Sokol
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Justin M. Bradley
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Christiane Dahl
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Myles R. Cheesman
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Julea N. Butt
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| |
Collapse
|
2
|
Heterologous expression and biochemical comparison of two homologous SoxX proteins of endosymbiontic Candidatus Vesicomyosocius okutanii and free-living Hydrogenovibrio crunogenus from deep-sea vent environments. Protein Expr Purif 2022; 200:106157. [PMID: 35987324 DOI: 10.1016/j.pep.2022.106157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Candidatus Vesicomyosocius okutanii is a currently uncultured endosymbiotic bacterium of the clam Pheragena okutanii, which lives in deep-sea vent environments. The genome of Ca. V. okutanii encodes a sulfur-oxidizing (Sox) enzyme complex, presumably generating biological energy for the host from inorganic sulfur compounds. Here, Ca. V. okutanii SoxX (VoSoxX), a mono-heme cytochrome c component of the Sox complex, was shown to be phylogenetically related to its homologous counterpart (HcSoxX) from a free-living deep-sea vent bacterium, Hydrogenovibrio crunogenus. Both proteins were heterologously expressed in Escherichia coli cells with co-expressing cytochrome c maturation genes. Biochemical analysis using the recombinant proteins showed that VoSoxX had a significantly lower thermal stability than HcSoxX, possibly due to structural differences. For example, the Asn-60 residue in VoSoxX may be hydrophobically disadvantageous compared with the spatially corresponding Val-73 residue in HcSoxX. This study represents the first successful case of heterologous expression of genes from Ca. V. okutanii, suggesting that the endosymbiotic VoSoxX protein does not require stabilization, unlike the free-living HcSoxX protein.
Collapse
|
3
|
Esch R, Merkl R. Conserved genomic neighborhood is a strong but no perfect indicator for a direct interaction of microbial gene products. BMC Bioinformatics 2020; 21:5. [PMID: 31900122 PMCID: PMC6941341 DOI: 10.1186/s12859-019-3200-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The order of genes in bacterial genomes is not random; for example, the products of genes belonging to an operon work together in the same pathway. The cotranslational assembly of protein complexes is deemed to conserve genomic neighborhoods even stronger than a common function. This is why a conserved genomic neighborhood can be utilized to predict, whether gene products form protein complexes. RESULTS We were interested to assess the performance of a neighborhood-based classifier that analyzes a large number of genomes. Thus, we determined for the genes encoding the subunits of 494 experimentally verified hetero-dimers their local genomic context. In order to generate phylogenetically comprehensive genomic neighborhoods, we utilized the tools offered by the Enzyme Function Initiative. For each subunit, a sequence similarity network was generated and the corresponding genome neighborhood network was analyzed to deduce the most frequent gene product. This was predicted as interaction partner, if its abundance exceeded a threshold, which was the frequency giving rise to the maximal Matthews correlation coefficient. For the threshold of 16%, the true positive rate was 45%, the false positive rate 0.06%, and the precision 55%. For approximately 20% of the subunits, the interaction partner was not found in a neighborhood of ± 10 genes. CONCLUSIONS Our phylogenetically comprehensive analysis confirmed that complex formation is a strong evolutionary factor that conserves genome neighborhoods. On the other hand, for 55% of the cases analyzed here, classification failed. Either, the interaction partner was not present in a ± 10 gene window or was not the most frequent gene product.
Collapse
Affiliation(s)
- Robert Esch
- Faculty of Mathematics and Computer Science, University of Hagen, D-58084, Hagen, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040, Regensburg, Germany.
| |
Collapse
|
4
|
Jenner LP, Kurth JM, van Helmont S, Sokol KP, Reisner E, Dahl C, Bradley JM, Butt JN, Cheesman MR. Heme ligation and redox chemistry in two bacterial thiosulfate dehydrogenase (TsdA) enzymes. J Biol Chem 2019; 294:18002-18014. [PMID: 31467084 PMCID: PMC6879331 DOI: 10.1074/jbc.ra119.010084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Indexed: 01/04/2023] Open
Abstract
Thiosulfate dehydrogenases (TsdAs) are bidirectional bacterial di-heme enzymes that catalyze the interconversion of tetrathionate and thiosulfate at measurable rates in both directions. In contrast to our knowledge of TsdA activities, information on the redox properties in the absence of substrates is rather scant. To address this deficit, we combined magnetic CD (MCD) spectroscopy and protein film electrochemistry (PFE) in a study to resolve heme ligation and redox chemistry in two representative TsdAs. We examined the TsdAs from Campylobacter jejuni, a microaerobic human pathogen, and from the purple sulfur bacterium Allochromatium vinosum. In these organisms, the enzyme functions as a tetrathionate reductase and a thiosulfate oxidase, respectively. The active site Heme 1 in both enzymes has His/Cys ligation in the ferric and ferrous states and the midpoint potentials (Em) of the corresponding redox transformations are similar, −185 mV versus standard hydrogen electrode (SHE). However, fundamental differences are observed in the properties of the second, electron transferring, Heme 2. In C. jejuni, TsdA Heme 2 has His/Met ligation and an Em of +172 mV. In A. vinosum TsdA, Heme 2 reduction triggers a switch from His/Lys ligation (Em, −129 mV) to His/Met (Em, +266 mV), but the rates of interconversion are such that His/Lys ligation would be retained during turnover. In summary, our findings have unambiguously assigned Em values to defined axial ligand sets in TsdAs, specified the rates of Heme 2 ligand exchange in the A. vinosum enzyme, and provided information relevant to describing their catalytic mechanism(s).
Collapse
Affiliation(s)
- Leon P Jenner
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Julia M Kurth
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms Universität Bonn, D-53115 Bonn, Germany
| | - Sebastian van Helmont
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms Universität Bonn, D-53115 Bonn, Germany
| | - Katarzyna P Sokol
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms Universität Bonn, D-53115 Bonn, Germany
| | - Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Julea N Butt
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
5
|
Chen JH, Yu LJ, Boussac A, Wang-Otomo ZY, Kuang T, Shen JR. Properties and structure of a low-potential, penta-heme cytochrome c 552 from a thermophilic purple sulfur photosynthetic bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2019; 139:281-293. [PMID: 29691716 DOI: 10.1007/s11120-018-0507-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
The thermophilic purple sulfur bacterium Thermochromatium tepidum possesses four main water-soluble redox proteins involved in the electron transfer behavior. Crystal structures have been reported for three of them: a high potential iron-sulfur protein, cytochrome c', and one of two low-potential cytochrome c552 (which is a flavocytochrome c) have been determined. In this study, we purified another low-potential cytochrome c552 (LPC), determined its N-terminal amino acid sequence and the whole gene sequence, characterized it with absorption and electron paramagnetic spectroscopy, and solved its high-resolution crystal structure. This novel cytochrome was found to contain five c-type hemes. The overall fold of LPC consists of two distinct domains, one is the five heme-containing domain and the other one is an Ig-like domain. This provides a representative example for the structures of multiheme cytochromes containing an odd number of hemes, although the structures of multiheme cytochromes with an even number of hemes are frequently seen in the PDB database. Comparison of the sequence and structure of LPC with other proteins in the databases revealed several characteristic features which may be important for its functioning. Based on the results obtained, we discuss the possible intracellular function of this LPC in Tch. tepidum.
Collapse
Affiliation(s)
- Jing-Hua Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Long-Jiang Yu
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Alain Boussac
- I2BC, SB2SM, CNRS UMR 9198, CEA Saclay, 91191, Gif-sur-Yvette, France
| | | | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
6
|
Lau NS, Sam KK, Amirul AAA. Genome features of moderately halophilic polyhydroxyalkanoate-producing Yangia sp. CCB-MM3. Stand Genomic Sci 2017; 12:12. [PMID: 28138356 PMCID: PMC5259889 DOI: 10.1186/s40793-017-0232-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/08/2017] [Indexed: 11/16/2022] Open
Abstract
Yangia sp. CCB-MM3 was one of several halophilic bacteria isolated from soil sediment in the estuarine Matang Mangrove, Malaysia. So far, no member from the genus Yangia, a member of the Rhodobacteraceae family, has been reported sequenced. In the current study, we present the first complete genome sequence of Yangia sp. strain CCB-MM3. The genome includes two chromosomes and five plasmids with a total length of 5,522,061 bp and an average GC content of 65%. Since a different strain of Yangia sp. (ND199) was reported to produce a polyhydroxyalkanoate copolymer, the ability for this production was tested in vitro and confirmed for strain CCB-MM3. Analysis of its genome sequence confirmed presence of a pathway for production of propionyl-CoA and gene cluster for PHA production in the sequenced strain. The genome sequence described will be a useful resource for understanding the physiology and metabolic potential of Yangia as well as for comparative genomic analysis with other Rhodobacteraceae.
Collapse
Affiliation(s)
- Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900 Penang Malaysia
| | - Ka-Kei Sam
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900 Penang Malaysia
| | - Abdullah Al-Ashraf Amirul
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900 Penang Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, Minden, 11800 Penang Malaysia
| |
Collapse
|
7
|
Kurth JM, Brito JA, Reuter J, Flegler A, Koch T, Franke T, Klein EM, Rowe SF, Butt JN, Denkmann K, Pereira IAC, Archer M, Dahl C. Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase. J Biol Chem 2016; 291:24804-24818. [PMID: 27694441 DOI: 10.1074/jbc.m116.753863] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/22/2016] [Indexed: 11/06/2022] Open
Abstract
The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas intermedia and Sideroxydans lithotrophicus, the tsdA gene is immediately preceded by tsdB encoding for another diheme cytochrome. Spectrophotometric experiments in combination with enzymatic assays in solution showed that TsdB acts as an effective electron acceptor of TsdA in vitro when TsdA and TsdB originate from the same source organism. Although TsdA covers a range from -300 to +150 mV, TsdB is redox active between -100 and +300 mV, thus enabling electron transfer between these hemoproteins. The three-dimensional structure of the TsdB-TsdA fusion protein from the purple sulfur bacterium Marichromatium purpuratum was solved by X-ray crystallography to 2.75 Å resolution providing insights into internal electron transfer. In the oxidized state, this tetraheme cytochrome c contains three hemes with axial His/Met ligation, whereas heme 3 exhibits the His/Cys coordination typical for TsdA active sites. Interestingly, thiosulfate is covalently bound to Cys330 on heme 3. In several bacteria, including Allochromatium vinosum, TsdB is not present, precluding a general and essential role for electron flow. Both AvTsdA and the MpTsdBA fusion react efficiently in vitro with high potential iron-sulfur protein from A. vinosum (Em +350 mV). High potential iron-sulfur protein not only acts as direct electron donor to the reaction center in anoxygenic phototrophs but can also be involved in aerobic respiratory chains.
Collapse
Affiliation(s)
- Julia M Kurth
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - José A Brito
- the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), 2780-157 Oeiras, Portugal, and
| | - Jula Reuter
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Alexander Flegler
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Tobias Koch
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Thomas Franke
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Eva-Maria Klein
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Sam F Rowe
- the Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Julea N Butt
- the Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Kevin Denkmann
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Inês A C Pereira
- the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), 2780-157 Oeiras, Portugal, and
| | - Margarida Archer
- the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), 2780-157 Oeiras, Portugal, and
| | - Christiane Dahl
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany,
| |
Collapse
|
8
|
Complete genome sequence of the haloalkaliphilic, obligately chemolithoautotrophic thiosulfate and sulfide-oxidizing γ-proteobacterium Thioalkalimicrobium cyclicum type strain ALM 1 (DSM 14477(T)). Stand Genomic Sci 2016; 11:38. [PMID: 27274784 PMCID: PMC4891895 DOI: 10.1186/s40793-016-0162-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/24/2016] [Indexed: 02/01/2023] Open
Abstract
Thioalkalimicrobium cyclicum Sorokin et al. 2002 is a member of the family Piscirickettsiaceae in the order Thiotrichales. The γ-proteobacterium belongs to the colourless sulfur-oxidizing bacteria isolated from saline soda lakes with stable alkaline pH, such as Lake Mono (California) and Soap Lake (Washington State). Strain ALM 1T is characterized by its adaptation to life in the oxic/anoxic interface towards the less saline aerobic waters (mixolimnion) of the stable stratified alkaline salt lakes. Strain ALM 1T is the first representative of the genus Thioalkalimicrobium whose genome sequence has been deciphered and the fourth genome sequence of a type strain of the Piscirickettsiaceae to be published. The 1,932,455 bp long chromosome with its 1,684 protein-coding and 50 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.
Collapse
|
9
|
Kilmartin JR, Bernhardt PV, Dhouib R, Hanson GR, Riley MJ, Kappler U. Effects of mutations in active site heme ligands on the spectroscopic and catalytic properties of SoxAX cytochromes. J Inorg Biochem 2016; 162:309-318. [PMID: 27112898 DOI: 10.1016/j.jinorgbio.2016.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
By attaching a sulfur substrate to a conserved cysteine of the SoxYZ carrier protein SoxAX cytochromes initiate the reaction cycle of the Sox (sulfur oxidation) multienzyme complex, which is the major pathway for microbial reoxidation of sulfur compounds in the environment. Despite their important role in this process, the reaction mechanism of the SoxAX cytochromes has not been fully elucidated. Here we report the effects of several active site mutations on the spectroscopic and enzymatic properties of the type II SoxAX protein from Starkeya novella, which in addition to two heme groups also contains a Cu redox centre. All substituted proteins contained these redox centres except for His231Ala which was unable to bind Cu(II). Substitution of the SoxA active site heme cysteine ligand with histidine resulted in increased microheterogeneity around the SoxA heme as determined by CW-EPR, while a SnSoxAXC236A substituted protein revealed a completely new, nitrogenous SoxA heme ligand. The same novel ligand was present in SnSoxAXH231A CW-EPR spectra, the first time that a ligand switch of the SoxA heme involving a nearby amino acid has been demonstrated. Kinetically, SnSoxAXC236A and SnSoxAXC236H showed reduced turnover, and in assays containing SoxYZ these mutants retained only ~25% of the wildtype activity. Together, these data indicate that the Cu redox centre can mediate a low level of activity, and that a possible ligand switch can occur during catalysis. It also appears that the SoxA heme cysteine ligand (and possibly the low redox potential) is important for an efficient reaction with SnSoxYZ/thiosulfate.
Collapse
Affiliation(s)
- James R Kilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Rabeb Dhouib
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Graeme R Hanson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Mark J Riley
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
10
|
Pintscher S, Kuleta P, Cieluch E, Borek A, Sarewicz M, Osyczka A. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer. J Biol Chem 2016; 291:6872-81. [PMID: 26858251 PMCID: PMC4807273 DOI: 10.1074/jbc.m115.712307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 11/22/2022] Open
Abstract
In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemes b. The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on heme b ligand mutants of cytochrome bc1 in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functional in vivo. This reveals that cytochrome bc1 can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemes b in this cytochrome and in other membranous cytochromes b act as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential.
Collapse
Affiliation(s)
- Sebastian Pintscher
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Patryk Kuleta
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ewelina Cieluch
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Marcin Sarewicz
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
11
|
Grabarczyk DB, Chappell PE, Eisel B, Johnson S, Lea SM, Berks BC. Mechanism of thiosulfate oxidation in the SoxA family of cysteine-ligated cytochromes. J Biol Chem 2015; 290:9209-21. [PMID: 25673696 PMCID: PMC4423706 DOI: 10.1074/jbc.m114.618025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Indexed: 11/23/2022] Open
Abstract
Thiosulfate dehydrogenase (TsdA) catalyzes the oxidation of two thiosulfate molecules to form tetrathionate and is predicted to use an unusual cysteine-ligated heme as the catalytic cofactor. We have determined the structure of Allochromatium vinosum TsdA to a resolution of 1.3 Å. This structure confirms the active site heme ligation, identifies a thiosulfate binding site within the active site cavity, and reveals an electron transfer route from the catalytic heme, through a second heme group to the external electron acceptor. We provide multiple lines of evidence that the catalytic reaction proceeds through the intermediate formation of a S-thiosulfonate derivative of the heme cysteine ligand: the cysteine is reactive and is accessible to electrophilic attack; cysteine S-thiosulfonate is formed by the addition of thiosulfate or following the reverse reaction with tetrathionate; the S-thiosulfonate modification is removed through catalysis; and alkylating the cysteine blocks activity. Active site amino acid residues required for catalysis were identified by mutagenesis and are inferred to also play a role in stabilizing the S-thiosulfonate intermediate. The enzyme SoxAX, which catalyzes the first step in the bacterial Sox thiosulfate oxidation pathway, is homologous to TsdA and can be inferred to use a related catalytic mechanism.
Collapse
Affiliation(s)
- Daniel B Grabarczyk
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom and
| | - Paul E Chappell
- the Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Bianca Eisel
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom and
| | - Steven Johnson
- the Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Susan M Lea
- the Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Ben C Berks
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom and
| |
Collapse
|
12
|
Brito JA, Denkmann K, Pereira IAC, Archer M, Dahl C. Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum: structural and functional insights into thiosulfate oxidation. J Biol Chem 2015; 290:9222-38. [PMID: 25673691 DOI: 10.1074/jbc.m114.623397] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
Although the oxidative condensation of two thiosulfate anions to tetrathionate constitutes a well documented and significant part of the natural sulfur cycle, little is known about the enzymes catalyzing this reaction. In the purple sulfur bacterium Allochromatium vinosum, the reaction is catalyzed by the periplasmic diheme c-type cytochrome thiosulfate dehydrogenase (TsdA). Here, we report the crystal structure of the "as isolated" form of A. vinosum TsdA to 1.98 Å resolution and those of several redox states of the enzyme to different resolutions. The protein contains two typical class I c-type cytochrome domains wrapped around two hemes axially coordinated by His(53)/Cys(96) and His(164)/Lys(208). These domains are very similar, suggesting a gene duplication event during evolution. A ligand switch from Lys(208) to Met(209) is observed upon reduction of the enzyme. Cys(96) is an essential residue for catalysis, with the specific activity of the enzyme being completely abolished in several TsdA-Cys(96) variants. TsdA-K208N, K208G, and M209G variants were catalytically active in thiosulfate oxidation as well as in tetrathionate reduction, pointing to heme 2 as the electron exit point. In this study, we provide spectroscopic and structural evidence that the TsdA reaction cycle involves the transient presence of heme 1 in the high-spin state caused by movement of the Sγ atom of Cys(96) out of the iron coordination sphere. Based on the presented data, we draw important conclusions about the enzyme and propose a possible reaction mechanism for TsdA.
Collapse
Affiliation(s)
- José A Brito
- From the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Avenida da República, 2780-157 Oeiras, Portugal and
| | - Kevin Denkmann
- the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany
| | - Inês A C Pereira
- From the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Avenida da República, 2780-157 Oeiras, Portugal and
| | - Margarida Archer
- From the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Avenida da República, 2780-157 Oeiras, Portugal and
| | - Christiane Dahl
- the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany
| |
Collapse
|
13
|
Kappler U, Maher MJ. The bacterial SoxAX cytochromes. Cell Mol Life Sci 2013; 70:977-92. [PMID: 22907414 PMCID: PMC11113948 DOI: 10.1007/s00018-012-1098-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX proteins have a wide phylogenetic distribution and form a family with at least three distinct types of SoxAX protein. The types of SoxAX cytochromes differ in terms of the number of heme groups present in the proteins (there are diheme and triheme versions) as well as in their subunit structure. While two of the SoxAX protein types are heterodimers, the third group contains an additional subunit, SoxK, that stabilizes the complex of the SoxA and SoxX proteins. Crystal structures are available for representatives of the two heterodimeric SoxAX protein types and both of these have shown that the cysteine ligand to the SoxA active site heme carries a modification to a cysteine persulfide that implicates this ligand in catalysis. EPR studies of SoxAX proteins have also revealed a high complexity of heme dependent signals associated with this active site heme; however, the exact mechanism of catalysis is still unclear at present, as is the exact number and types of redox centres involved in the reaction.
Collapse
Affiliation(s)
- Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | | |
Collapse
|
14
|
Evidence for niche partitioning revealed by the distribution of sulfur oxidation genes collected from areas of a terrestrial sulfidic spring with differing geochemical conditions. Appl Environ Microbiol 2012; 79:1171-82. [PMID: 23220955 DOI: 10.1128/aem.02812-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The diversity and phylogenetic significance of bacterial genes in the environment has been well studied, but comparatively little attention has been devoted to understanding the functional significance of different variations of the same metabolic gene that occur in the same environment. We analyzed the geographic distribution of 16S rRNA pyrosequences and soxB genes along a geochemical gradient in a terrestrial sulfidic spring to identify how different taxonomic variations of the soxB gene were naturally distributed within the spring outflow channel and to identify possible evidence for altered SoxB enzyme function in nature. Distinct compositional differences between bacteria that utilize their SoxB enzyme in the Paracoccus sulfide oxidation pathway (e.g., Bradyrhizobium, Paracoccus, and Rhodovulum) and bacteria that utilize their SoxB enzyme in the branched pathway (e.g., Chlorobium, Thiothrix, Thiobacillus, Halothiobacillus, and Thiomonas) were identified. Different variations of the soxB genes were present at different locations within the spring outflow channel in a manner that significantly corresponded to geochemical conditions. The distribution of the different soxB gene sequence variations suggests that the enzymes encoded by these genes are functionally different and could be optimized to specific geochemical conditions that define niche space for bacteria capable of oxidizing reduced sulfur compounds.
Collapse
|
15
|
Bradley JM, Marritt SJ, Kihlken MA, Haynes K, Hemmings AM, Berks BC, Cheesman MR, Butt JN. Redox and chemical activities of the hemes in the sulfur oxidation pathway enzyme SoxAX. J Biol Chem 2012; 287:40350-9. [PMID: 23060437 DOI: 10.1074/jbc.m112.396192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND SoxAX enzymes initiate microbial oxidation of reduced inorganic sulfur compounds. Their catalytic mechanism is unknown. RESULTS Cyanide displaces the CysS(-) ligand to the active site heme following reduction by S(2)O(4)(2-) but not Eu(II). CONCLUSION An active site heme ligand becomes labile on exposure to substrate analogs. SIGNIFICANCE Elucidation of SoxAX mechanism is necessary to understand a widespread pathway for sulfur compound oxidation. SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (E(m)) at pH 7.0 of approximately +210, -340, and -400 mV for the His/Met, His/Cys(-), and active site His/CysS(-)-ligated heme, respectively. Exposing SoxAX to S(2)O(4)(2-), a substrate analog with E(m) ~-450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (E(m) ~-1140 mV), allows cyanide to displace the cysteine persulfide (CysS(-)) ligand to the active site heme. This provides the first evidence for the dissociation of CysS(-) that has been proposed as a key event in SoxAX catalysis.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Grein F, Ramos AR, Venceslau SS, Pereira IAC. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:145-60. [PMID: 22982583 DOI: 10.1016/j.bbabio.2012.09.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
Behind the versatile nature of prokaryotic energy metabolism is a set of redox proteins having a highly modular character. It has become increasingly recognized that a limited number of redox modules or building blocks appear grouped in different arrangements, giving rise to different proteins and functionalities. This modularity most likely reveals a common and ancient origin for these redox modules, and is obviously reflected in similar energy conservation mechanisms. The dissimilation of sulfur compounds was probably one of the earliest biological strategies used by primitive organisms to obtain energy. Here, we review some of the redox proteins involved in dissimilatory sulfur metabolism, focusing on sulfate reducing organisms, and highlight links between these proteins and others involved in different processes of anaerobic respiration. Noteworthy are links to the complex iron-sulfur molybdoenzyme family, and heterodisulfide reductases of methanogenic archaea. We discuss how chemiosmotic and electron bifurcation/confurcation may be involved in energy conservation during sulfate reduction, and how introduction of an additional module, multiheme cytochromes c, opens an alternative bioenergetic strategy that seems to increase metabolic versatility. Finally, we highlight new families of heterodisulfide reductase-related proteins from non-methanogenic organisms, which indicate a widespread distribution for these protein modules and may indicate a more general involvement of thiol/disulfide conversions in energy metabolism. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Fabian Grein
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | |
Collapse
|
17
|
Denkmann K, Grein F, Zigann R, Siemen A, Bergmann J, van Helmont S, Nicolai A, Pereira IAC, Dahl C. Thiosulfate dehydrogenase: a widespread unusual acidophilicc-type cytochrome. Environ Microbiol 2012; 14:2673-88. [DOI: 10.1111/j.1462-2920.2012.02820.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|