1
|
Rubio-Tomás T, Soler-Botija C, Martínez-Estrada O, Villena JA. Transcriptional control of cardiac energy metabolism in health and disease: Lessons from animal models. Biochem Pharmacol 2024; 224:116185. [PMID: 38561091 DOI: 10.1016/j.bcp.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Cardiac ATP production is tightly regulated in order to satisfy the evolving energetic requirements imposed by different cues during health and pathological conditions. In order to sustain high ATP production rates, cardiac cells are endowed with a vast mitochondrial network that is essentially acquired during the perinatal period. Nevertheless, adult cardiac cells also adapt their mitochondrial mass and oxidative function to changes in energy demand and substrate availability by fine-tuning the pathways and mitochondrial machinery involved in energy production. The reliance of cardiac cells on mitochondrial metabolism makes them particularly sensitive to alterations in proper mitochondrial function, so that deficiency in energy production underlies or precipitates the development of heart diseases. Mitochondrial biogenesis is a complex process fundamentally controlled at the transcriptional level by a network of transcription factors and co-regulators, sometimes with partially redundant functions, that ensure adequate energy supply to the working heart. Novel uncovered regulators, such as RIP140, PERM1, MED1 or BRD4 have been recently shown to modulate or facilitate the transcriptional activity of the PGC-1s/ERRs/PPARs regulatory axis, allowing cardiomyocytes to adapt to a variety of physiological or pathological situations requiring different energy provision. In this review, we summarize the current knowledge on the mechanisms that regulate cardiac mitochondrial biogenesis, highlighting the recent discoveries of new transcriptional regulators and describing the experimental models that have provided solid evidence of the relevant contribution of these factors to cardiac function in health and disease.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion GR-70013, Crete, Greece
| | - Carolina Soler-Botija
- ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBER on Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
2
|
Nourmohammadi K, Bayrami A, Naderi R, Shirpoor A, Soraya H. Moderate exercise mitigates cardiac dysfunction and injury induced by cyclosporine A through activation of the PGI 2 / PPAR-γ signaling pathway. Res Pharm Sci 2023; 18:696-707. [PMID: 39005570 PMCID: PMC11246107 DOI: 10.4103/1735-5362.389958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose The present study investigated the role of the prostaglandin I2/peroxisome proliferator activator receptor (PGI2/PPAR) signaling pathway in cardiac cell proliferation, apoptosis, and systemic hemodynamic variables under cyclosporine A (CsA) exposure alone or combined with moderate exercises. Experimental approach Twenty-four male Wistar rats were classified into three groups, namely, control, CsA, and CsA + exercise. Findings/Results After 42 days of treatment, the findings showed a significant enhancement in the expression of the β-MHC gene, enhancement in protein expression of Bax and caspase-3, and a significant decline in the protein expression of Bcl-2 expression, as well as increased proliferation intensity in the heart tissue of the CsA group compared to the control group. Systolic pressure, pulse pressure, mean arterial pressure (MAP), QT and QRS duration, and T wave amplitude, as well as QTc amount in the CsA group, showed a significant increase compared to the control group. PPAR-γ and PGI2 showed no significant changes compared to the control group. Moderate exercise along with CsA significantly enhanced the protein expression of PPAR-γ and PGI2 and declined protein expression of Bax, and caspase-3 compared to those in the CsA group. In the CsA + exercise group, systolic pressure, MAP, and Twave showed a significant decrease compared to the CsA group. Moderate exercises along CsA improved heart cell proliferation intensity and significantly reduced β- MHC gene expression compared to the CsA group. Conclusions and implications The results showed moderate exercise alleviated CsA-induced heart tissue apoptosis and proliferation with the corresponding activation of the PGI2/PPAR-γ pathway.
Collapse
Affiliation(s)
- Khatereh Nourmohammadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Roya Naderi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Shirpoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Wu LF, Wang DP, Shen J, Gao LJ, Zhou Y, Liu QH, Cao JM. Global profiling of protein lysine malonylation in mouse cardiac hypertrophy. J Proteomics 2022; 266:104667. [PMID: 35788409 DOI: 10.1016/j.jprot.2022.104667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/06/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Lysine malonylation, a novel identified protein posttranslational modification (PTM), is conservative and present in both eukaryotic and prokaryotic cells. Previous studies have reported that malonylation plays an important role in inflammation, angiogenesis, and diabetes. However, its potential role in cardiac remodeling remains unknown. Here, we observed a reduced lysine malonylation in hypertrophic mice hearts created by transverse aortic constriction (TAC) for 8 weeks. We also detected a decreased lysine malonylation in hypertrophic H9C2 cardiomyocytes induced by angiotensin II for 48 h. Using a proteomic method based on affinity purification and LC-MS/MS, we identified total 679 malonylated sites in 330 proteins in the hearts of sham mice and TAC mice. Bioinformatic analysis of the proteomic data revealed enrichment of malonylated proteins involved in cardiac structure and contraction, cGMP-PKG pathway, and metabolism. Specifically, we detected a decreased lysine malonylation in myocardial isocitrate dehydrogenase 2 (IDH2) by immunoprecipitation coupled with Western blotting both in vivo and in vitro. Together, our work suggests an important role and implication of protein lysine malonylation in cardiac hypertrophy, especially the IDH2. SIGNIFICANCE: Heart failure is the terminal stage of cardiac hypertrophy, which imposes an enormous clinical and economic burden worldwide. Despite our knowledge on the pathophysiology of the disease, current therapeutic approaches are still largely limited. Cardiac hypertrophy can be regulated at post-translational modifications (PTMs), and several PTMs have been reported in cardiac hypertrrophy and heart failure. In our study, we first reported a novel PTMs, lysine malonylation, in cardiac hypertophy. we found a reduced lysine malonylation in hypertrophic mice hearts in vivo and H9C2 cardiomyocytes after stimulating with angiotensinII for 48 h in vitro. Using affinity purification and LC-MS/MS, we identified 679 malonylated sites in 330 proteins in the hearts of sham and TAC mice. Compared to the sham group, 5 sites in 2 proteins were quantified as downregulated targets using a 2-fold threshold (downregulation <0.5-fold, P < 0.05). Functional analysis showed a significant enrichment in cardiac structure and contraction, cGMP-PKG pathway and metabolism. Notably, we identified a decreased Kmal level in isocitrate dehydrogenase 2 (IDH2), but the protein level of IDH2 has no changed in cardiac hypertrophy, These results highlight that lysine malonylation is associated with cardiac hypertrophy, and may be a new therapeutic target of the disease.
Collapse
Affiliation(s)
- Li-Fei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China; Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jing Shen
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Li-Juan Gao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ying Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Qing-Hua Liu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China; Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 2021; 18:809-823. [PMID: 34127848 DOI: 10.1038/s41569-021-00569-6] [Citation(s) in RCA: 495] [Impact Index Per Article: 123.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking, and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby increasing insulin sensitivity and glucose metabolism. PPARs also exert antiatherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates reduce insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- David Montaigne
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
5
|
Late Health Effects of Partial Body Irradiation Injury in a Minipig Model Are Associated with Changes in Systemic and Cardiac IGF-1 Signaling. Int J Mol Sci 2021; 22:ijms22063286. [PMID: 33807089 PMCID: PMC8005067 DOI: 10.3390/ijms22063286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Clinical, epidemiological, and experimental evidence demonstrate non-cancer, cardiovascular, and endocrine effects of ionizing radiation exposure including growth hormone deficiency, obesity, metabolic syndrome, diabetes, and hyperinsulinemia. Insulin-like growth factor-1 (IGF-1) signaling perturbations are implicated in development of cardiovascular disease and metabolic syndrome. The minipig is an emerging model for studying radiation effects given its high analogy to human anatomy and physiology. Here we use a minipig model to study late health effects of radiation by exposing male Göttingen minipigs to 1.9–2.0 Gy X-rays (lower limb tibias spared). Animals were monitored for 120 days following irradiation and blood counts, body weight, heart rate, clinical chemistry parameters, and circulating biomarkers were assessed longitudinally. Collagen deposition, histolopathology, IGF-1 signaling, and mRNA sequencing were evaluated in tissues. Our findings indicate a single exposure induced histopathological changes, attenuated circulating IGF-1, and disrupted cardiac IGF-1 signaling. Electrolytes, lipid profiles, liver and kidney markers, and heart rate and rhythm were also affected. In the heart, collagen deposition was significantly increased and transforming growth factor beta-1 (TGF-beta-1) was induced following irradiation; collagen deposition and fibrosis were also observed in the kidney of irradiated animals. Our findings show Göttingen minipigs are a suitable large animal model to study long-term effects of radiation exposure and radiation-induced inhibition of IGF-1 signaling may play a role in development of late organ injuries.
Collapse
|
6
|
Zhang S, Yin Z, Dai F, Wang H, Zhou M, Yang M, Zhang S, Fu Z, Mei Y, Zang M, Xue L. miR‐29a attenuates cardiac hypertrophy through inhibition of PPARδ expression. J Cell Physiol 2018; 234:13252-13262. [PMID: 30580435 DOI: 10.1002/jcp.27997] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Si Zhang
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
- Department of Clinical Laboratory The Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Zhongnan Yin
- Biobank, Peking University Third Hospital Beijing Peoples's Republic of China
| | - Fei‐Fei Dai
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Hao Wang
- Medical Research Center Peking University Third Hospital Beijing Peoples's Republic of China
| | - Meng‐Jiao Zhou
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Ming‐Hui Yang
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Shu‐Feng Zhang
- Department of Pediatrics, The People's Hospital of Henan Province Zhengzhou Henan Peoples's Republic of China
| | - Zhi‐Feng Fu
- Statistics and Actuarial Science Department, Faculty of Science The University of Hong Kong Pok Fu Lam Hong Kong SAR Peoples's Republic of China
| | - Ying‐Wu Mei
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Ming‐Xi Zang
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Lixiang Xue
- Biobank, Peking University Third Hospital Beijing Peoples's Republic of China
- Medical Research Center Peking University Third Hospital Beijing Peoples's Republic of China
| |
Collapse
|
7
|
Subramanian V, Borchard S, Azimzadeh O, Sievert W, Merl-Pham J, Mancuso M, Pasquali E, Multhoff G, Popper B, Zischka H, Atkinson MJ, Tapio S. PPARα Is Necessary for Radiation-Induced Activation of Noncanonical TGFβ Signaling in the Heart. J Proteome Res 2018; 17:1677-1689. [PMID: 29560722 DOI: 10.1021/acs.jproteome.8b00001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-dose ionizing radiation is known to induce adverse effects such as inflammation and fibrosis in the heart. Transcriptional regulators PPARα and TGFβ are known to be involved in this radiation response. PPARα, an anti-inflammatory transcription factor controlling cardiac energy metabolism, is inactivated by irradiation. The pro-inflammatory and pro-fibrotic TGFβ is activated by irradiation via SMAD-dependent and SMAD-independent pathways. The goal of this study was to investigate how altering the level of PPARα influences the radiation response of these signaling pathways. For this purpose, we used genetically modified C57Bl/6 mice with wild type (+/+), heterozygous (+/-) or homozygous (-/-) PPARα genotype. Mice were locally irradiated to the heart using doses of 8 or 16 Gy; the controls were sham-irradiated. The heart tissue was investigated using label-free proteomics 20 weeks after the irradiation and the predicted pathways were validated using immunoblotting, ELISA, and immunohistochemistry. The heterozygous PPARα mice showed most radiation-induced changes in the cardiac proteome, whereas the homozygous PPARα mice showed the least changes. Irradiation induced SMAD-dependent TGFβ signaling independently of the PPARα status, but the presence of PPARα was necessary for the activation of the SMAD-independent pathway. These data indicate a central role of PPARα in cardiac response to ionizing radiation.
Collapse
Affiliation(s)
| | | | | | - Wolfgang Sievert
- Center for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group , Campus Klinikum rechts der Isar, Technical University of Munich , Munich 81675 , Germany
| | | | - Mariateresa Mancuso
- Laboratory of Radiation Biology and Biomedicine , Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA) , Rome 00196 , Italy
| | - Emanuela Pasquali
- Laboratory of Radiation Biology and Biomedicine , Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA) , Rome 00196 , Italy
| | - Gabriele Multhoff
- Center for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group , Campus Klinikum rechts der Isar, Technical University of Munich , Munich 81675 , Germany
| | - Bastian Popper
- Department of Cell Biology and Core Facility Animal Models (CAM), Biomedical Center , Ludwig-Maximilians University Munich , Planegg 80539 , Germany
| | | | | | | |
Collapse
|
8
|
Abushouk AI, El-Husseny MWA, Bahbah EI, Elmaraezy A, Ali AA, Ashraf A, Abdel-Daim MM. Peroxisome proliferator-activated receptors as therapeutic targets for heart failure. Biomed Pharmacother 2017; 95:692-700. [PMID: 28886529 DOI: 10.1016/j.biopha.2017.08.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/05/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023] Open
Abstract
Heart failure (HF) is a common clinical syndrome that affects more than 23 million individuals worldwide. Despite the marked advances in its management, the mortality rates in HF patients have remained unacceptably high. Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription regulators, involved in the regulation of fatty acid and glucose metabolism. PPAR agonists are currently used for the treatment of type II diabetes mellitus and hyperlipidemia; however, their role as therapeutic agents for HF remains under investigation. Preclinical studies have shown that pharmacological modulation of PPARs can upregulate the expression of fatty acid oxidation genes in cardiomyocytes. Moreover, PPAR agonists were proven able to improve ventricular contractility and reduce cardiac remodelling in animal models through their anti-inflammatory, anti-oxidant, anti-fibrotic, and anti-apoptotic activities. Whether these effects can be replicated in humans is yet to be proven. This article reviews the interactions of PPARs with the pathophysiological mechanisms of HF and how the pharmacological modulation of these receptors can be of benefit for HF patients.
Collapse
Affiliation(s)
| | | | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Ahmed Elmaraezy
- NovaMed Medical Research Association, Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Aya Ashraf Ali
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Asmaa Ashraf
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
9
|
Neuhaus W, Krämer T, Neuhoff A, Gölz C, Thal SC, Förster CY. Multifaceted Mechanisms of WY-14643 to Stabilize the Blood-Brain Barrier in a Model of Traumatic Brain Injury. Front Mol Neurosci 2017; 10:149. [PMID: 28603485 PMCID: PMC5445138 DOI: 10.3389/fnmol.2017.00149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022] Open
Abstract
The blood-brain barrier (BBB) is damaged during ischemic insults such as traumatic brain injury or stroke. This contributes to vasogenic edema formation and deteriorate disease outcomes. Enormous efforts are pursued to understand underlying mechanisms of ischemic insults and develop novel therapeutic strategies. In the present study the effects of PPARα agonist WY-14643 were investigated to prevent BBB breakdown and reduce edema formation. WY-14643 inhibited barrier damage in a mouse BBB in vitro model of traumatic brain injury based on oxygen/glucose deprivation in a concentration dependent manner. This was linked to changes of the localization of tight junction proteins. Furthermore, WY-14643 altered phosphorylation of kinases ERK1/2, p38, and SAPK/JNK and was able to inhibit proteosomal activity. Moreover, addition of WY-14643 upregulated PAI-1 leading to decreased t-PA activity. Mouse in vivo experiments showed significantly decreased edema formation in a controlled cortical impact model of traumatic brain injury after WY-14643 application, which was not found in PAI-1 knockout mice. Generally, data suggested that WY-14643 induced cellular responses which were dependent as well as independent from PPARα mediated transcription. In conclusion, novel mechanisms of a PPARα agonist were elucidated to attenuate BBB breakdown during traumatic brain injury in vitro.
Collapse
Affiliation(s)
- Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Competence Center Health and Bioresources, AIT Austrian Institute of Technology (AIT) GmbHVienna, Austria
| | - Tobias Krämer
- Department of Anesthesiology, Medical Center of Johannes Gutenberg University of MainzMainz, Germany
| | - Anja Neuhoff
- Department of Anesthesia and Critical Care, Center of Operative Medicine, University Hospital WürzburgWürzburg, Germany
| | - Christina Gölz
- Department of Anesthesiology, Medical Center of Johannes Gutenberg University of MainzMainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, Medical Center of Johannes Gutenberg University of MainzMainz, Germany
| | - Carola Y Förster
- Department of Anesthesia and Critical Care, Center of Operative Medicine, University Hospital WürzburgWürzburg, Germany
| |
Collapse
|
10
|
Chen Y, Chen H, Birnbaum Y, Nanhwan MK, Bajaj M, Ye Y, Qian J. Aleglitazar, a dual peroxisome proliferator-activated receptor-α and -γ agonist, protects cardiomyocytes against the adverse effects of hyperglycaemia. Diab Vasc Dis Res 2017; 14:152-162. [PMID: 28111985 PMCID: PMC5305042 DOI: 10.1177/1479164116679081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To assess the effects of Aleglitazar on hyperglycaemia-induced apoptosis. METHODS We incubated human cardiomyocytes, cardiomyocytes from cardiac-specific peroxisome proliferator-activated receptor-γ knockout or wild-type mice in normoglycaemic or hyperglycaemic conditions (glucose 25 mM). Cells were treated with different concentrations of Aleglitazar for 48 h. We measured viability, apoptosis, caspase-3 activity, cytochrome-C release, total antioxidant capacity and reactive oxygen species formation in the treated cardiomyocytes. Human cardiomyocytes were transfected with short interfering RNA against peroxisome proliferator-activated receptor-α or peroxisome proliferator-activated receptor-γ. RESULTS Aleglitazar attenuated hyperglycaemia-induced apoptosis, caspase-3 activity and cytochrome-C release and increased viability in human cardiomyocyte, cardiomyocytes from cardiac-specific peroxisome proliferator-activated receptor-γ knockout and wild-type mice. Hyperglycaemia reduced the antioxidant capacity and Aleglitazar significantly blunted this effect. Hyperglycaemia-induced reactive oxygen species production was attenuated by Aleglitazar in both human cardiomyocyte and wild-type mice cardiomyocytes. Aleglitazar improved cell viability in cells exposed to hyperglycaemia. The protective effect was partially blocked by short interfering RNA against peroxisome proliferator-activated receptor-α alone and short interfering RNA against peroxisome proliferator-activated receptor-γ alone and completely blocked by short interfering RNA to both peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor-γ. CONCLUSION Aleglitazar protects cardiomyocytes against hyperglycaemia-induced apoptosis by combined activation of both peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor-γ in a short-term vitro model.
Collapse
Affiliation(s)
- Yan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongmei Chen
- Department of Anesthesiology, Kunming Tongren Hospital, Kunming, China
| | - Yochai Birnbaum
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Manjyot K Nanhwan
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Mandeep Bajaj
- Section of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yumei Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jinqiao Qian
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Jinqiao Qian, Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, #295 Xichang Road, Kunming 650032, Yunnan Province, China.
| |
Collapse
|
11
|
Sawaya MR, Verma M, Balendiran V, Rath NP, Cascio D, Balendiran GK. Characterization of WY 14,643 and its Complex with Aldose Reductase. Sci Rep 2016; 6:34394. [PMID: 27721416 PMCID: PMC5056380 DOI: 10.1038/srep34394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/08/2016] [Indexed: 12/03/2022] Open
Abstract
The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such as WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR.
Collapse
Affiliation(s)
- Michael R. Sawaya
- UCLA-DOE, 611 Charles E. Young Drive East, 220 Boyer Hall, Los Angeles, CA 90095, USA
| | - Malkhey Verma
- Manchester Interdisciplinary Biocentre, 131 Princess Street, The University of Manchester, Manchester, M1 7DN, UK
| | - Vaishnavi Balendiran
- Department of Chemistry, WBSH 6017, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
| | - Nigam P. Rath
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - Duilio Cascio
- UCLA-DOE, 611 Charles E. Young Drive East, 220 Boyer Hall, Los Angeles, CA 90095, USA
| | - Ganesaratnam K. Balendiran
- Department of Chemistry, WBSH 6017, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
| |
Collapse
|
12
|
Iosef Husted C, Valencik M. Insulin-like growth factors and their potential role in cardiac epigenetics. J Cell Mol Med 2016; 20:1589-602. [PMID: 27061217 PMCID: PMC4956935 DOI: 10.1111/jcmm.12845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/24/2016] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) constitutes a major public health threat worldwide, accounting for 17.3 million deaths annually. Heart disease and stroke account for the majority of healthcare costs in the developed world. While much has been accomplished in understanding the pathophysiology, molecular biology and genetics underlying the diagnosis and treatment of CVD, we know less about the role of epigenetics and their molecular determinants. The impact of environmental changes and epigenetics in CVD is now emerging as critically important in understanding the origin of disease and the development of new therapeutic approaches to prevention and treatment. This review focuses on the emerging role of epigenetics mediated by insulin like-growth factors-I and -II in major CVDs such as heart failure, cardiac hypertrophy and diabetes.
Collapse
Affiliation(s)
- Cristiana Iosef Husted
- Department of Pharmacology, University of Nevada, Reno School of Medicine (UNSOM), Reno, NV, USA
| | - Maria Valencik
- Department of Pharmacology, University of Nevada, Reno School of Medicine (UNSOM), Reno, NV, USA
| |
Collapse
|
13
|
Lasheras J, Vilà M, Zamora M, Riu E, Pardo R, Poncelas M, Cases I, Ruiz-Meana M, Hernández C, Feliu JE, Simó R, García-Dorado D, Villena JA. Gene expression profiling in hearts of diabetic mice uncovers a potential role of estrogen-related receptor γ in diabetic cardiomyopathy. Mol Cell Endocrinol 2016; 430:77-88. [PMID: 27062900 DOI: 10.1016/j.mce.2016.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/29/2022]
Abstract
Diabetic cardiomyopathy is characterized by an abnormal oxidative metabolism, but the underlying mechanisms remain to be defined. To uncover potential mechanisms involved in the pathophysiology of diabetic cardiomyopathy, we performed a gene expression profiling study in hearts of diabetic db/db mice. Diabetic hearts showed a gene expression pattern characterized by the up-regulation of genes involved in lipid oxidation, together with an abnormal expression of genes related to the cardiac contractile function. A screening for potential regulators of the genes differentially expressed in diabetic mice found that estrogen-related receptor γ (ERRγ) was increased in heart of db/db mice. Overexpression of ERRγ in cultured cardiomyocytes was sufficient to promote the expression of genes involved in lipid oxidation, increase palmitate oxidation and induce cardiomyocyte hypertrophy. Our findings strongly support a role for ERRγ in the metabolic alterations that underlie the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jaime Lasheras
- Laboratory of Metabolism and Obesity, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Vilà
- Laboratory of Metabolism and Obesity, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mònica Zamora
- Cell Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Efrén Riu
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - Rosario Pardo
- Laboratory of Metabolism and Obesity, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marcos Poncelas
- Laboratory of Experimental Cardiology, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ildefonso Cases
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona, Spain
| | - Marisol Ruiz-Meana
- Laboratory of Experimental Cardiology, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Hernández
- CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain; Group of Diabetes and Metabolism, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan E Feliu
- Laboratory of Metabolism and Obesity, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Simó
- CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain; Group of Diabetes and Metabolism, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David García-Dorado
- Laboratory of Experimental Cardiology, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
14
|
Barlaka E, Galatou E, Mellidis K, Ravingerova T, Lazou A. Role of Pleiotropic Properties of Peroxisome Proliferator-Activated Receptors in the Heart: Focus on the Nonmetabolic Effects in Cardiac Protection. Cardiovasc Ther 2016; 34:37-48. [DOI: 10.1111/1755-5922.12166] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Eleftheria Barlaka
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Eleftheria Galatou
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Kyriakos Mellidis
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Tanya Ravingerova
- Institute for Heart Research; Slovak Academy of Sciences; Bratislava Slovak Republic
| | - Antigone Lazou
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
15
|
PPARs: Protectors or Opponents of Myocardial Function? PPAR Res 2015; 2015:835985. [PMID: 26713088 PMCID: PMC4680114 DOI: 10.1155/2015/835985] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPARα, PPARγ, and PPARδ. They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology on myocardial function.
Collapse
|
16
|
Azimzadeh O, Sievert W, Sarioglu H, Merl-Pham J, Yentrapalli R, Bakshi MV, Janik D, Ueffing M, Atkinson MJ, Multhoff G, Tapio S. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res 2015; 14:1203-19. [PMID: 25590149 DOI: 10.1021/pr501141b] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Epidemiological data from radiotherapy patients show the damaging effect of ionizing radiation on heart and vasculature. The endothelium is the main target of radiation damage and contributes essentially to the development of cardiac injury. However, the molecular mechanisms behind the radiation-induced endothelial dysfunction are not fully understood. In the present study, 10-week-old C57Bl/6 mice received local X-ray heart doses of 8 or 16 Gy and were sacrificed after 16 weeks; the controls were sham-irradiated. The cardiac microvascular endothelial cells were isolated from the heart tissue using streptavidin-CD31-coated microbeads. The cells were lysed and proteins were labeled with duplex isotope-coded protein label methodology for quantification. All samples were analyzed by LC-ESI-MS/MS and Proteome Discoverer software. The proteomics data were further studied by bioinformatics tools and validated by targeted transcriptomics, immunoblotting, immunohistochemistry, and serum profiling. Radiation-induced endothelial dysfunction was characterized by impaired energy metabolism and perturbation of the insulin/IGF-PI3K-Akt signaling pathway. The data also strongly suggested premature endothelial senescence, increased oxidative stress, decreased NO availability, and enhanced inflammation as main causes of radiation-induced long-term vascular dysfunction. Detailed data on molecular mechanisms of radiation-induced vascular injury as compiled here are essential in developing radiotherapy strategies that minimize cardiovascular complications.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Helmholtz Zentrum München - German Research Centre for Environmental Health, Institute of Radiation Biology , Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ursolic Acid-Regulated Energy Metabolism-Reliever or Propeller of Ultraviolet-Induced Oxidative Stress and DNA Damage? Proteomes 2014; 2:399-425. [PMID: 28250388 PMCID: PMC5302752 DOI: 10.3390/proteomes2030399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/12/2014] [Accepted: 07/29/2014] [Indexed: 01/27/2023] Open
Abstract
Ultraviolet (UV) light is a leading cause of diseases, such as skin cancers and cataracts. A main process mediating UV-induced pathogenesis is the production of reactive oxygen species (ROS). Excessive ROS levels induce the formation of DNA adducts (e.g., pyrimidine dimers) and result in stalled DNA replication forks. In addition, ROS promotes phosphorylation of tyrosine kinase-coupled hormone receptors and alters downstream energy metabolism. With respect to the risk of UV-induced photocarcinogenesis and photodamage, the antitumoral and antioxidant functions of natural compounds become important for reducing UV-induced adverse effects. One important question in the field is what determines the differential sensitivity of various types of cells to UV light and how exogenous molecules, such as phytochemicals, protect normal cells from UV-inflicted damage while potentiating tumor cell death, presumably via interaction with intracellular target molecules and signaling pathways. Several endogenous molecules have emerged as possible players mediating UV-triggered DNA damage responses. Specifically, UV activates the PIKK (phosphatidylinositol 3-kinase-related kinase) family members, which include DNA-PKcs, ATM (ataxia telangiectasia mutated) and mTOR (mammalian target of rapamycin), whose signaling can be affected by energy metabolism; however, it remains unclear to what extent the activation of hormone receptors regulates PIKKs and whether this crosstalk occurs in all types of cells in response to UV. This review focuses on proteomic descriptions of the relationships between cellular photosensitivity and the phenotypic expression of the insulin/insulin-like growth receptor. It covers the cAMP-dependent pathways, which have recently been shown to regulate the DNA repair machinery through interactions with the PIKK family members. Finally, this review provides a strategic illustration of how UV-induced mitogenic activity is modulated by the insulin sensitizer, ursolic acid (UA), which results in the metabolic adaptation of normal cells against UV-induced ROS, and the metabolic switch of tumor cells subject to UV-induced damage. The multifaceted natural compound, UA, specifically inhibits photo-oxidative DNA damage in retinal pigment epithelial cells while enhancing that in skin melanoma. Considering the UA-mediated differential effects on cell bioenergetics, this article reviews the disparities in glucose metabolism between tumor and normal cells, along with (peroxisome proliferator-activated receptor-γ coactivator 1α)-dependent mitochondrial metabolism and redox (reduction-oxidation) control to demonstrate UA-induced synthetic lethality in tumor cells.
Collapse
|
18
|
Vasti C, Hertig CM. Neuregulin-1/erbB activities with focus on the susceptibility of the heart to anthracyclines. World J Cardiol 2014; 6:653-662. [PMID: 25068025 PMCID: PMC4110613 DOI: 10.4330/wjc.v6.i7.653] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/11/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Neuregulin-1 (NRG1) signaling through the tyrosine kinase receptors erbB2 and erbB4 is required for cardiac morphogenesis, and it plays an essential role in maintaining the myocardial architecture during adulthood. The tyrosine kinase receptor erbB2 was first linked to the amplification and overexpression of erbb2 gene in a subtype of breast tumor cells, which is indicative of highly proliferative cells and likely a poor prognosis following conventional chemotherapy. The development of targeted therapies to block the survival of erbB2-positive cancer cells revealed that impaired NRG1 signaling through erbB2/erbB4 heterodimers combined with anthracycline chemotherapy may lead to dilated cardiomyopathy in a subpopulation of treated patients. The ventricular-specific deletion of either erbb2 or erbb4 manifested dilated cardiomyopathy, which is aggravated by the administration of doxorubicin. Based on the exacerbated toxicity displayed by the combined treatment, it is expected that the relevant pathways would be affected in a synergistic manner. This review examines the NRG1 activities that were monitored in different model systems, focusing on the emerging pathways and molecular targets, which may aid in understanding the acquired dilated cardiomyopathy that occurs under the conditions of NRG1-deficient signaling.
Collapse
|
19
|
The peroxisome proliferator-activated receptor (PPAR) α agonist fenofibrate suppresses chemically induced lung alveolar proliferative lesions in male obese hyperlipidemic mice. Int J Mol Sci 2014; 15:9160-72. [PMID: 24857924 PMCID: PMC4057781 DOI: 10.3390/ijms15059160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 12/11/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR) α disrupts growth-related activities in a variety of human cancers. This study was designed to determine whether fenofibrate, a PPARα agonist, can suppress 4-nitroquinoline 1-oxide (4-NQO)-induced proliferative lesions in the lung of obese hyperlipidemic mice. Male Tsumura Suzuki Obese Diabetic mice were subcutaneously injected with 4-NQO to induce lung proliferative lesions, including adenocarcinomas. They were then fed a diet containing 0.01% or 0.05% fenofibrate for 29 weeks, starting 1 week after 4-NQO administration. At week 30, the incidence and multiplicity (number of lesions/mouse) of pulmonary proliferative lesions were lower in mice treated with 4-NQO and both doses of fenofibrate compared with those in mice treated with 4-NQO alone. The incidence and multiplicity of lesions were significantly lower in mice treated with 4-NQO and 0.05% fenofibrate compared with those in mice treated with 4-NQO alone (p<0.05). Both doses of fenofibrate significantly reduced the proliferative activity of the lesions in 4-NQO-treated mice (p<0.05). Fenofibrate also significantly reduced the serum insulin and insulin-like growth factor (IGF)-1 levels, and decreased the immunohistochemical expression of IGF-1 receptor (IGF-1R), phosphorylated Akt, and phosphorylated Erk1/2 in lung adenocarcinomas. Our results indicate that fenofibrate can prevent the development of 4-NQO-induced proliferative lesions in the lung by modulating the insulin-IGF axis.
Collapse
|
20
|
Dong X, Chang G, Ji XF, Tao DB, Wang YX. The relationship between serum insulin-like growth factor I levels and ischemic stroke risk. PLoS One 2014; 9:e94845. [PMID: 24728374 PMCID: PMC3984250 DOI: 10.1371/journal.pone.0094845] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/20/2014] [Indexed: 12/17/2022] Open
Abstract
Objective The aim of the study was to assess the relationship between insulin-like growth factor I (IGF-I) serum levels and acute ischemic stroke (AIS) in a Chinese population. Methods All consecutive patients with first-ever AIS from August 1, 2011 to July 31, 2013 were recruited to participate in the study. The control group comprised 200 subjects matched for age, gender, and conventional vascular risk factors. IGF-I serum levels were determined by chemiluminescence immunoassay. The National Institutes of Health Stroke Scale (NIHSS) score was assessed on admission blinded to serum IGF-I levels. Results The median serum IGF-1 levels were significantly (P = 0.011) lower in AIS patients (129; IQR, 109–153 ng/mL) compared with control cases (140; IQR, 125–159 ng/mL). We found that an increased risk of AIS was associated with IGF-I levels ≤135 ng/mL (unadjusted OR: 4.17; 95% CI: 2.52–6.89; P = 0.000). This relationship was confirmed in the dose-response model. In multivariate analysis, there was still an increased risk of AIS associated with IGF-I levels ≤135 ng/mL (OR: 2.16; 95% CI:1.33–3.52; P = 0.002) after adjusting for possible confounders. Conclusion Lower IGF-I levels are significantly related to risk of stroke, independent from other traditional and emerging risk factors, suggesting that they may play a role in the pathogenesis of AIS. Thus, strokes were more likely to occur in patients with low serum IGF-I levels in the Chinese population; further, post-ischemic IGF-I therapy may be beneficial for stroke.
Collapse
Affiliation(s)
- Xiang Dong
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, P.R. China
- * E-mail:
| | - Geng Chang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, P.R. China
| | - Xiao-Fei Ji
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, P.R. China
| | - Ding-Bo Tao
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, P.R. China
| | - Ying-Xin Wang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, P.R. China
| |
Collapse
|
21
|
Hashmi SK, Baranov E, Gonzalez A, Olthoff K, Shaked A. Genomics of liver transplant injury and regeneration. Transplant Rev (Orlando) 2014; 29:23-32. [PMID: 24746681 DOI: 10.1016/j.trre.2014.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/19/2014] [Indexed: 12/21/2022]
Abstract
While improved surgical techniques, post-operative care, and immunosuppression regimens have reduced morbidity and mortality associated with orthotopic liver transplantation (OLT), further improvement of outcomes requires personalized treatment and a better understanding of genomic mechanisms involved. Gene expression profiles of ischemia/reperfusion (I/R) injury, regeneration, and rejection, may suggest mechanisms for development of better predictive tools and treatments. The liver is unique in its regenerative potential, recovering lost mass and function after injury from ischemia, resection, and rejection. I/R injury, an inevitable consequence of perfusion cessation, cold storage, and reperfusion, is regulated by the interaction of the immune system, inflammatory cytokines, and reduced microcirculatory blood flow in the liver. Rejection, a common post-operative complication, is mediated by the recipient's immune system through T-cell-dependent responses activating proinflammatory and apoptotic pathways. Characterizing distinctive gene expression signatures for these events can identify therapies to reduce injury, promote regeneration, and improve outcomes. While certain markers of liver injury and regeneration have been observed in animals, many of these are unverified in human studies. Further investigation of these genomic signatures and mechanisms through new technology offers promise, but continues to pose a significant challenge. An overview of the current fund of knowledge in this area is reviewed.
Collapse
Affiliation(s)
- Sohaib Khalid Hashmi
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Esther Baranov
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Gonzalez
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kim Olthoff
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Abraham Shaked
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Sertad1 encodes a novel transcriptional co-activator of SMAD1 in mouse embryonic hearts. Biochem Biophys Res Commun 2013; 441:751-6. [PMID: 24211589 DOI: 10.1016/j.bbrc.2013.10.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 02/06/2023]
Abstract
Despite considerable advances in surgical repairing procedures, congenital heart diseases (CHDs) remain the leading noninfectious cause of infant morbidity and mortality. Understanding the molecular/genetic mechanisms underlying normal cardiogenesis will provide essential information for the development of novel diagnostic and therapeutic strategies against CHDs. BMP signaling plays complex roles in multiple cardiogenic processes in mammals. SMAD1 is a canonical nuclear mediator of BMP signaling, the activity of which is critically regulated through its interaction partners. We screened a mouse embryonic heart yeast two-hybrid library using Smad1 as bait and identified SERTAD1 as a novel interaction partner of SMAD1. SERTAD1 contains multiple potential functional domains, including two partially overlapping transactivation domains at the C terminus. The SERTAD1-SMAD1 interaction in vitro and in mammalian cells was further confirmed through biochemical assays. The expression of Sertad1 in developing hearts was demonstrated using RT-PCR, western blotting and in situ hybridization analyses. We also showed that SERTAD1 was localized in both the cytoplasm and nucleus of immortalized cardiomyocytes and primary embryonic cardiomyocyte cultures. The overexpression of SERTAD1 in cardiomyocytes not only enhanced the activity of two BMP reporters in a dose-dependent manner but also increased the expression of several known BMP/SMAD regulatory targets. Therefore, these data suggest that SERTAD1 acts as a SMAD1 transcriptional co-activator to promote the expression of BMP target genes during mouse cardiogenesis.
Collapse
|
23
|
Fang XL, Shu G, Zhang ZQ, Wang SB, Zhu XT, Gao P, Xi QY, Zhang YL, Jiang QY. Roles of α-linolenic acid on IGF-I secretion and GH/IGF system gene expression in porcine primary hepatocytes. Mol Biol Rep 2012; 39:10987-96. [DOI: 10.1007/s11033-012-2000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022]
|
24
|
Vasti C, Witt H, Said M, Sorroche P, García-Rivello H, Ruiz-Noppinger P, Hertig CM. Doxorubicin and NRG-1/erbB4-Deficiency Affect Gene Expression Profile: Involving Protein Homeostasis in Mouse. ISRN CARDIOLOGY 2012; 2012:745185. [PMID: 22970387 PMCID: PMC3437290 DOI: 10.5402/2012/745185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/01/2012] [Indexed: 12/17/2022]
Abstract
The accumulating evidence demonstrates the essential role of neuregulin-1 signaling in the adult heart, and, moreover, indicates that an impaired neuregulin signaling exacerbates the doxorubicin-mediated cardiac toxicity. Despite this strong data, the specific cardiomyocyte targets of the active erbB2/erbB4 heterodimer remain unknown. In this paper, we examined pathways involved in cardiomyocyte damage as a result of the cardiac sensitization to anthracycline toxicity in the ventricular muscle-specific erbB4 knockout mouse. We performed morphological analyses to evaluate the ventricular remodeling and employed a cDNA microarray to assess the characteristic gene expression profile, verified data by real-time RT-PCR, and then grouped into functional categories and pathways. We confirm the upregulation of genes related to the classical signature of a hypertrophic response, implicating an erbB2-dependent mechanism in doxorubicin-treated erbB4-KO hearts. Our results indicate the remarkable downregulation of IGF-I/PI-3′ kinase pathway and extends our current knowledge by uncovering an altered ubiquitin-proteasome system leading to cardiomyocyte autophagic vacuolization.
Collapse
Affiliation(s)
- Cecilia Vasti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-(INGEBI), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | | | | | | | | | | | | |
Collapse
|
25
|
Peroxisome proliferator-activated receptorα agonists differentially regulate inhibitor of DNA binding expression in rodents and human cells. PPAR Res 2012; 2012:483536. [PMID: 22701468 PMCID: PMC3373159 DOI: 10.1155/2012/483536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/18/2022] Open
Abstract
Inhibitor of DNA binding (Id2) is a helix-loop-helix (HLH) transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR) gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY). WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2). MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V), the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans.
Collapse
|
26
|
Castillero E, López-Menduiña M, Martín AI, Villanúa MÁ, López-Calderón A. Comparison of the effects of the n-3 polyunsaturated fatty acid eicosapentaenoic and fenofibrate on the inhibitory effect of arthritis on IGF1. J Endocrinol 2011; 210:361-8. [PMID: 21715432 DOI: 10.1530/joe-11-0170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Adjuvant-induced arthritis is a chronic inflammatory illness that induces muscle wasting and decreases circulating IGF1. Eicosapentaenoic acid (EPA) and fenofibrate, a peroxisome proliferator-activated receptors α agonist, have anti-inflammatory actions and ameliorate muscle wasting in arthritic rats. The aim of this work was to elucidate whether EPA and fenofibrate administration are able to prevent the effect of arthritis on the IGF1-IGFBP system. On day 4 after adjuvant injection control, arthritic rats were gavaged with EPA (1 g/kg) or fenofibrate (300 mg/kg) until day 15 when all rats were killed. Arthritis decreased body weight gain, serum IGF1, and liver Igf1 mRNA, whereas it increased gastrocnemius Igfbp3 mRNA. EPA, but not fenofibrate, administration prevented arthritis-induced decrease in serum IGF1 and liver Igf1 mRNA. In the rats treated with EPA arthritis increased Igfbp5 mRNA in the gastrocnemius. Fenofibrate treatment decreased IGF1 and Igf1 mRNA in the liver and gastrocnemius. In arthritic rats, fenofibrate increased body weight gain and decreased gastrocnemius Igfbp3 and Igfbp5 mRNA. These data suggest that the mechanisms through which EPA and fenofibrate act on the IGF1 system and ameliorate muscle wasting in arthritic rats are different. EPA administration increased circulating levels of IGF1, whereas fenofibrate decreased the Igfbp3 and Igfbp5 in the gastrocnemius muscle.
Collapse
Affiliation(s)
- Estíbaliz Castillero
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|