1
|
Seo J, Oh DB. Mannose-6-phosphate glycan for lysosomal targeting: various applications from enzyme replacement therapy to lysosome-targeting chimeras. Anim Cells Syst (Seoul) 2022; 26:84-91. [PMID: 35784393 PMCID: PMC9246025 DOI: 10.1080/19768354.2022.2079719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Jinho Seo
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Doo-Byoung Oh
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
2
|
Guan Y, Zhang M, Gaikwad M, Voss H, Fazel R, Ansari S, Shen H, Wang J, Schlüter H. An Integrated Strategy Reveals Complex Glycosylation of Erythropoietin Using Mass Spectrometry. J Proteome Res 2021; 20:3654-3663. [PMID: 34110173 PMCID: PMC9472269 DOI: 10.1021/acs.jproteome.1c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The characterization of therapeutic glycoproteins is challenging
due to the structural heterogeneity of the therapeutic protein glycosylation.
This study presents an in-depth analytical strategy for glycosylation
of first-generation erythropoietin (epoetin beta), including a developed
mass spectrometric workflow for N-glycan analysis, bottom-up mass
spectrometric methods for site-specific N-glycosylation, and a LC-MS
approach for O-glycan identification. Permethylated N-glycans, peptides,
and enriched glycopeptides of erythropoietin were analyzed by nanoLC-MS/MS,
and de-N-glycosylated erythropoietin was measured by LC-MS, enabling
the qualitative and quantitative analysis of glycosylation and different
glycan modifications (e.g., phosphorylation and O-acetylation). The
newly developed Python scripts enabled the identification of 140 N-glycan
compositions (237 N-glycan structures) from erythropoietin, especially
including 8 phosphorylated N-glycan species. The site-specificity
of N-glycans was revealed at the glycopeptide level by pGlyco software
using different proteases. In total, 114 N-glycan compositions were
identified from glycopeptide analysis. Moreover, LC-MS analysis of
de-N-glycosylated erythropoietin species identified two O-glycan compositions
based on the mass shifts between non-O-glycosylated and O-glycosylated
species. Finally, this integrated strategy was proved to realize the
in-depth glycosylation analysis of a therapeutic glycoprotein to understand
its pharmacological properties and improving the manufacturing processes.
Collapse
Affiliation(s)
- Yudong Guan
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Zhang
- Section Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Manasi Gaikwad
- Section Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hannah Voss
- Section Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ramin Fazel
- Reasearch and Innovation Center, Livogen Pharmed Co., Tehran 1417755358, Iran
| | - Samira Ansari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj 3165933155, Iran
| | - Huali Shen
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jigang Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
3
|
Miller JJ, Bohnsack RN, Olson LJ, Ishihara M, Aoki K, Tiemeyer M, Dahms NM. Tissue plasminogen activator is a ligand of cation-independent mannose 6-phosphate receptor and consists of glycoforms that contain mannose 6-phosphate. Sci Rep 2021; 11:8213. [PMID: 33859256 PMCID: PMC8050316 DOI: 10.1038/s41598-021-87579-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Plasmin is the key enzyme in fibrinolysis. Upon interaction with plasminogen activators, the zymogen plasminogen is converted to active plasmin. Some studies indicate plasminogen activation is regulated by cation-independent mannose 6-phosphate receptor (CI-MPR), a protein that facilitates lysosomal enzyme trafficking and insulin-like growth factor 2 downregulation. Plasminogen regulation may be accomplished by CI-MPR binding to plasminogen or urokinase plasminogen activator receptor. We asked whether other members of the plasminogen activation system, such as tissue plasminogen activator (tPA), also interact with CI-MPR. Because tPA is a glycoprotein with three N-linked glycosylation sites, we hypothesized that tPA contains mannose 6-phosphate (M6P) and binds CI-MPR in a M6P-dependent manner. Using surface plasmon resonance, we found that two sources of tPA bound the extracellular region of human and bovine CI-MPR with low-mid nanomolar affinities. Binding was partially inhibited with phosphatase treatment or M6P. Subsequent studies revealed that the five N-terminal domains of CI-MPR were sufficient for tPA binding, and this interaction was also partially mediated by M6P. The three glycosylation sites of tPA were analyzed by mass spectrometry, and glycoforms containing M6P and M6P-N-acetylglucosamine were identified at position N448 of tPA. In summary, we found that tPA contains M6P and is a CI-MPR ligand.
Collapse
Affiliation(s)
- James J Miller
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Richard N Bohnsack
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Linda J Olson
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA.
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Cho S, Jeong G, Han N, Kim C, Park JS, Jeong Y, Baek K, Yoon J. Efficient production process of bioactive recombinant human leukemia inhibitory factor in Chinese hamster ovary cells. Protein Expr Purif 2020; 176:105744. [PMID: 32890706 DOI: 10.1016/j.pep.2020.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
The rhLIF is widely used as an essential factor in stem cell cultures for cell therapies. However, all the recombinant LIFs commercially available are expensive, and no commercially available rhLIF meet the standards recommended by USP for use in cell therapies. The current study reports the efficient production of N-glycosylated and bioactive rhLIF in CHO cells. The production rate of established rhLIF-expressing rCHO cells was approximately 0.85 g/l in 12-day fed-batch cultures using a 7.5 l bioreactor. The rhLIF protein was purified via a four-step purification procedure with approximately 57% recovery rate and greater than 99% purity. The purified rhLIF was N-glycosylated and biologically active with an EC50 of 0.167 ng/ml and a specific activity of 0.86 × 103 IU/mg. The purification procedure controlled the levels of process-related impurities below critical levels recommended by USP for cytokines used in cell therapies. The current work is the first production process of N-glycosylated and bioactive rhLIF, which can be applied to large-scale manufacture of GMP-grade rhLIF for use as an ancillary material in cell therapy.
Collapse
Affiliation(s)
- Sujin Cho
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Gookjoo Jeong
- PanGen Biotech Inc., Suwon, 16675, Republic of Korea
| | - Nara Han
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Changin Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | | | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Kwanghee Baek
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 17104, Republic of Korea; PanGen Biotech Inc., Suwon, 16675, Republic of Korea
| | - Jaeseung Yoon
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 17104, Republic of Korea; PanGen Biotech Inc., Suwon, 16675, Republic of Korea.
| |
Collapse
|
5
|
Chow HM, Garnett EO, Li H, Etchell A, Sepulcre J, Drayna D, Chugani D, Chang SE. Linking Lysosomal Enzyme Targeting Genes and Energy Metabolism with Altered Gray Matter Volume in Children with Persistent Stuttering. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:365-380. [PMID: 34041495 PMCID: PMC8138901 DOI: 10.1162/nol_a_00017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/13/2020] [Indexed: 04/12/2023]
Abstract
Developmental stuttering is a childhood onset neurodevelopmental disorder with an unclear etiology. Subtle changes in brain structure and function are present in both children and adults who stutter. It is a highly heritable disorder, and 12-20% of stuttering cases may carry a mutation in one of four genes involved in intracellular trafficking. To better understand the relationship between genetics and neuroanatomical changes, we used gene expression data from the Allen Institute for Brain Science and voxel-based morphometry to investigate the spatial correspondence between gene expression patterns and differences in gray matter volume between children with persistent stuttering (n = 26, and 87 scans) and their fluent peers (n = 44, and 139 scans). We found that the expression patterns of two stuttering-related genes (GNPTG and NAGPA) from the Allen Institute data exhibited a strong positive spatial correlation with the magnitude of between-group gray matter volume differences. Additional gene set enrichment analyses revealed that genes whose expression was highly correlated with the gray matter volume differences were enriched for glycolysis and oxidative metabolism in mitochondria. Because our current study did not examine the participants' genomes, these results cannot establish the direct association between genetic mutations and gray matter volume differences in stuttering. However, our results support further study of the involvement of lysosomal enzyme targeting genes, as well as energy metabolism in stuttering. Future studies assessing variations of these genes in the participants' genomes may lead to increased understanding of the biological mechanisms of the observed spatial relationship between gene expression and gray matter volume.
Collapse
Affiliation(s)
- Ho Ming Chow
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE
- Katzin Diagnostic & Research PET/MRI Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
- * Corresponding Author:
| | | | - Hua Li
- Katzin Diagnostic & Research PET/MRI Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Andrew Etchell
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Dennis Drayna
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD
| | - Diane Chugani
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
- Cognitive Imaging Research Center, Department of Radiology, Michigan State University, East Lansing, MI
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI
| |
Collapse
|
6
|
Barnes JW, Aarnio-Peterson M, Norris J, Haskins M, Flanagan-Steet H, Steet R. Upregulation of Sortilin, a Lysosomal Sorting Receptor, Corresponds with Reduced Bioavailability of Latent TGFβ in Mucolipidosis II Cells. Biomolecules 2020; 10:biom10050670. [PMID: 32357547 PMCID: PMC7277838 DOI: 10.3390/biom10050670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Mucolipidosis II (ML-II) is a lysosomal disease caused by defects in the carbohydrate-dependent sorting of soluble hydrolases to lysosomes. Altered growth factor signaling has been identified as a contributor to the phenotypes associated with ML-II and other lysosomal disorders but an understanding of how these signaling pathways are affected is still emerging. Here, we investigated transforming growth factor beta 1 (TGFβ1) signaling in the context of ML-II patient fibroblasts, observing decreased TGFβ1 signaling that was accompanied by impaired TGFβ1-dependent wound closure. We found increased intracellular latent TGFβ1 complexes, caused by reduced secretion and stable localization in detergent-resistant lysosomes. Sortilin, a sorting receptor for hydrolases and TGFβ-related cytokines, was upregulated in ML-II fibroblasts as well as GNPTAB-null HeLa cells, suggesting a mechanism for inappropriate lysosomal targeting of TGFβ. Co-expression of sortilin and TGFβ in HeLa cells resulted in reduced TGFβ1 secretion. Elevated sortilin levels correlated with normal levels of cathepsin D in ML-II cells, consistent with a compensatory role for this receptor in lysosomal hydrolase targeting. Collectively, these data support a model whereby sortilin upregulation in cells with lysosomal storage maintains hydrolase sorting but suppresses TGFβ1 secretion through increased lysosomal delivery. These findings highlight an unexpected link between impaired lysosomal sorting and altered growth factor bioavailability.
Collapse
Affiliation(s)
- Jarrod W Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Joy Norris
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Mark Haskins
- Emeritus Professor, Pathology and Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6051, USA
| | | | | |
Collapse
|
7
|
Huang J, Dong J, Shi X, Chen Z, Cui Y, Liu X, Ye M, Li L. Dual-Functional Titanium(IV) Immobilized Metal Affinity Chromatography Approach for Enabling Large-Scale Profiling of Protein Mannose-6-Phosphate Glycosylation and Revealing Its Predominant Substrates. Anal Chem 2019; 91:11589-11597. [PMID: 31398006 PMCID: PMC7293878 DOI: 10.1021/acs.analchem.9b01698] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mannose-6-phosphate (M6P) glycosylation is an important post-translational modification (PTM) and plays a crucial role in transferring lysosomal hydrolases to lysosome, and is involved in several other biological processes. Aberrant M6P modifications have been implicated in lysosomal storage diseases and numerous other disorders including Alzheimer's disease and cancer. Research on profiling of intact M6P glycopeptides remains challenging due to its extremely low stoichiometry. Here we propose a dual-mode affinity approach to enrich M6P glycopeptides by dual-functional titanium(IV) immobilized metal affinity chromatography [Ti(IV)-IMAC] materials. In combination with state-of-the-art mass spectrometry and database search engine, we profiled 237 intact M6P glycopeptides corresponding to 81 M6P glycoproteins in five types of tissues in mouse, representing the first large-scale profiling of M6P glycosylation in mouse samples. The analysis of M6P glycoforms revealed the predominant glycan substrates of this PTM. Gene ontology analysis showed that overrepresented M6P glycoproteins were lysosomal-associated proteins. However, there were still substantial M6P glycoproteins that possessed different subcellular locations and molecular functions. Deep mining of their roles implicated in lysosomal and nonlysosomal function can provide new insights into functional roles of this important yet poorly studied modification.
Collapse
Affiliation(s)
- Junfeng Huang
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Jing Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Xudong Shi
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA
| | - Xiaoyan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Ravidà A, Aldridge AM, Driessen NN, Heus FAH, Hokke CH, O’Neill SM. Fasciola hepatica Surface Coat Glycoproteins Contain Mannosylated and Phosphorylated N-glycans and Exhibit Immune Modulatory Properties Independent of the Mannose Receptor. PLoS Negl Trop Dis 2016; 10:e0004601. [PMID: 27104959 PMCID: PMC4841591 DOI: 10.1371/journal.pntd.0004601] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/11/2016] [Indexed: 11/19/2022] Open
Abstract
Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. Like other helminths, F. hepatica employs mechanisms of immune suppression in order to evade its host immune system. In this study the N-glycosylation of F. hepatica’s tegumental coat (FhTeg) and its carbohydrate-dependent interactions with bone marrow derived dendritic cells (BMDCs) were investigated. Mass spectrometric analysis demonstrated that FhTeg N-glycans comprised mainly of oligomannose and to a lesser extent truncated and complex type glycans, including a phosphorylated subset. The interaction of FhTeg with the mannose receptor (MR) was investigated. Binding of FhTeg to MR-transfected CHO cells and BMDCs was blocked when pre-incubated with mannan. We further elucidated the role played by MR in the immunomodulatory mechanism of FhTeg and demonstrated that while FhTeg’s binding was significantly reduced in BMDCs generated from MR knockout mice, the absence of MR did not alter FhTeg’s ability to induce SOCS3 or suppress cytokine secretion from LPS activated BMDCs. A panel of negatively charged monosaccharides (i.e. GlcNAc-4P, Man-6P and GalNAc-4S) were used in an attempt to inhibit the immunoregulatory properties of phosphorylated oligosaccharides. Notably, GalNAc-4S, a known inhibitor of the Cys-domain of MR, efficiently suppressed FhTeg binding to BMDCs and inhibited the expression of suppressor of cytokine signalling (SOCS) 3, a negative regulator the TLR and STAT3 pathway. We conclude that F. hepatica contains high levels of mannose residues and phosphorylated glycoproteins that are crucial in modulating its host’s immune system, however the role played by MR appears to be limited to the initial binding event suggesting that other C-type lectin receptors are involved in the immunomodulatory mechanism of FhTeg. Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. These worms infect the liver and can survive for many years in its animal or human host because they supress the host’s immune system that is important in clearing worm infection. Worms are similar to humans in that they are made of proteins, fats and sugars, and while there are many studies on worm proteins, few studies have examined the sugars. We are interested in the sugars because we believe that they help the parasite survive for many years within its host. To examine this, we have used a technique called mass spectrometric analysis to characterise the sugars present in F. hepatica. We also have developed systems in the laboratory to test if these sugars can suppress the host’s immune system. We conclude that F. hepatica sugars are crucial in suppressing its host’s immune system; however, the exact way the sugars can do this requires further studies. These studies are important for the development of worm vaccines or therapies.
Collapse
Affiliation(s)
- Alessandra Ravidà
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - Allison M. Aldridge
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - Nicole N. Driessen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry A. H. Heus
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra M. O’Neill
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
9
|
Defaus S, Gupta P, Andreu D, Gutiérrez-Gallego R. Mammalian protein glycosylation--structure versus function. Analyst 2015; 139:2944-67. [PMID: 24779027 DOI: 10.1039/c3an02245e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbohydrates fulfil many common as well as extremely important functions in nature. They show a variety of molecular displays--e.g., free mono-, oligo-, and polysaccharides, glycolipids, proteoglycans, glycoproteins, etc.--with particular roles and localizations in living organisms. Structure-specific peculiarities are so many and diverse that it becomes virtually impossible to cover them all from an analytical perspective. Hence this manuscript, focused on mammalian glycosylation, rather than a complete list of analytical descriptors or recognized functions for carbohydrate structures, comprehensively reviews three central issues in current glycoscience, namely (i) structural analysis of glycoprotein glycans, covering both classical and novel approaches for teasing out the structural puzzle as well as potential pitfalls of these processes; (ii) an overview of functions attributed to carbohydrates, covering from monosaccharide to complex, well-defined epitopes and full glycans, including post-glycosylational modifications, and (iii) recent technical advances allowing structural identification of glycoprotein glycans with simultaneous assignation of biological functions.
Collapse
Affiliation(s)
- S Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | | | | | | |
Collapse
|
10
|
Ahn YH, Kim JY, Yoo JS. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods. MASS SPECTROMETRY REVIEWS 2015; 34:148-65. [PMID: 24889823 PMCID: PMC4340049 DOI: 10.1002/mas.21428] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/20/2013] [Indexed: 05/12/2023]
Abstract
Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies.
Collapse
Affiliation(s)
- Yeong Hee Ahn
- Division of Mass Spectrometry, Korea Basic Science InstituteCheongwon-Gun, 363-883, Republic of Korea
| | - Jin Young Kim
- Division of Mass Spectrometry, Korea Basic Science InstituteCheongwon-Gun, 363-883, Republic of Korea
| | - Jong Shin Yoo
- Division of Mass Spectrometry, Korea Basic Science InstituteCheongwon-Gun, 363-883, Republic of Korea
| |
Collapse
|
11
|
Olson LJ, Castonguay AC, Lasanajak Y, Peterson FC, Cummings RD, Smith DF, Dahms NM. Identification of a fourth mannose 6-phosphate binding site in the cation-independent mannose 6-phosphate receptor. Glycobiology 2015; 25:591-606. [PMID: 25573276 DOI: 10.1093/glycob/cwv001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/05/2015] [Indexed: 11/12/2022] Open
Abstract
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays an essential role in lysosome biogenesis by targeting ∼ 60 different phosphomannosyl-containing acid hydrolases to the lysosome. This type I membrane glycoprotein has a large extracellular region comprised of 15 homologous domains. Two mannose 6-phosphate (M6P) binding sites have been mapped to domains 3 and 9, whereas domain 5 binds preferentially to the phosphodiester, M6P-N-acetylglucosamine (GlcNAc). A structure-based sequence alignment predicts that the C-terminal domain 15 contains three out of the four conserved residues identified as essential for carbohydrate recognition by domains 3, 5 and 9 of the CI-MPR, but lacks two cysteine residues that are predicted to form a disulfide bond. To determine whether domain 15 of the CI-MPR has lectin activity and to probe its carbohydrate-binding specificity, truncated forms of the CI-MPR were tested for binding to acid hydrolases with defined N-glycans in surface plasmon resonance analyses, and used to interrogate a phosphorylated glycan microarray. The results show that a construct encoding domains 14-15 binds both M6P and M6P-GlcNAc with similar affinity (Kd = 13 and 17 μM, respectively). Site-directed mutagenesis studies demonstrate the essential role of the conserved Tyr residue in domain 15 for phosphomannosyl binding. A structural model of domain 15 was generated that predicted an Arg residue to be in the binding pocket and mutagenesis studies confirmed its important role in carbohydrate binding. Together, these results show that the CI-MPR contains a fourth carbohydrate-recognition site capable of binding both phosphomonoesters and phosphodiesters.
Collapse
Affiliation(s)
- Linda J Olson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Alicia C Castonguay
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yi Lasanajak
- National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Richard D Cummings
- National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David F Smith
- National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
“Three sources and three component parts” of free oligosaccharides. UKRAINIAN BIOCHEMICAL JOURNAL 2014; 86:5-17. [DOI: 10.15407/ubj86.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
13
|
Alfano R, Youngblood BA, Zhang D, Huang N, MacDonald CC. Human leukemia inhibitory factor produced by the ExpressTec method from rice (Oryza sativa L.) is active in human neural stem cells and mouse induced pluripotent stem cells. Bioengineered 2014; 5:180-5. [PMID: 24776984 PMCID: PMC4101010 DOI: 10.4161/bioe.28996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stem cell-based therapy has the potential to treat an array of human diseases. However, to study the therapeutic potential and safety of these cells, a scalable cell culture medium is needed that is free of human or bovine-derived serum proteins. Thus, cost-effective recombinant serum proteins and cytokines are needed to produce such mediums. One such cytokine, leukemia inhibitory factor (LIF), has been shown to be a critical paracrine factor that maintains stem cell pluripotency in murine embryonic stem cells and human naïve stem cells while simultaneously inhibiting differentiation. We recently produced recombinant human LIF (rhLIF) in a rice-based protein expression system known as ExpressTec. (12) We described expression of rice-derived rhLIF and demonstrated its biological equivalency to E. coli-derived rhLIF in traditional and embryonic mouse stem cell systems. Here we describe the expression yield of rice-derived rhLIF and the scale up production capacity. We provide further evidence of the efficacy of rice-derived rhLIF in additional stem cell systems including human neural stem cells and mouse induced pluripotent stem (iPS) cells. The expression level, biological activity, and potential for production at commercial scale of rice-derived rhLIF provides a proof-of-principal for ExpressTec-derived proteins to produce regulatory-friendly, high performance, and dependable stem cell media.
Collapse
Affiliation(s)
| | - Bradford A Youngblood
- Department of Cell Biology & Biochemistry; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | | | - Ning Huang
- Ventria Bioscience Inc; Fort Collins, CO USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry; Texas Tech University Health Sciences Center; Lubbock, TX USA
| |
Collapse
|
14
|
Li R, Xie C, Zhang Y, Li B, Donelan W, Li S, Han S, Wang X, Cui T, Tang D. Expression of recombinant human IL-4 in Pichia pastoris and relationship between its glycosylation and biological activity. Protein Expr Purif 2014; 96:1-7. [PMID: 24468271 DOI: 10.1016/j.pep.2014.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/21/2013] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
Secretory human interleukin 4 (hIL4) is an N-glycosylated pleiotropic cytokine. It is unknown if these N-linked glycans are required and essential for hIL4 protein stability, expression, secretion, and activity in vivo, and hIL4 expressed from Pichia pastoris yeast has not been tested to date. In this study, we successfully expressed human hIL4 in P. pastoris, the methylotrophic yeast, with a yield of 15.0mg/L. Using the site-directed mutagenesis technique, we made two mutant hIL4 cDNA clones (N38A and N105L) and subsequently expressed them in P. pastoris to analyze the relevant function of each N-glycosylation site on hIL4. Our results demonstrate that the glycosylation only occurs at position Asn38, but not Asn105. The glycosylated form of hIL4 unexpectedly has lower biological activity and lower stability when compared to its non-glycosylated form. The implications of this are discussed.
Collapse
Affiliation(s)
- Rui Li
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan 250012, PR China; Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Chao Xie
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yuan Zhang
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan 250012, PR China; Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Bin Li
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan 250012, PR China; Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - William Donelan
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Shiwu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Shuhong Han
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Xingli Wang
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Taixing Cui
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, PR China; Department of Cell Biology and Anatomy, University of South Carolina of Medicine, Columbia, SC 29209, USA.
| | - Dongqi Tang
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan 250012, PR China; Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, PR China.
| |
Collapse
|
15
|
Rassouli H, Nemati S, Rezaeiani S, Sayadmanesh A, Gharaati MR, Hosseini Salekdeh G, Baharvand H, Gourabi H. Cloning, expression, and functional characterization of in-house prepared human leukemia inhibitory factor. CELL JOURNAL 2013; 15:190-197. [PMID: 23862122 PMCID: PMC3712781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/19/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Leukemia inhibitory factor (LIF) plays important roles in cellular proliferation, growth promotion and differentiation of various types of target cells. In addition, LIF influences bone metabolism, cachexia, neural development, embryogenesis and inflammation. Human LIF (hLIF) is an essential growth factor for the maintenance of mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in a pluripotent, undifferentiated state. MATERIALS AND METHODS In this experimental study, we cloned hLIF into the pENTR-D/ TOPO entry vector by a TOPO reaction. Next, hLIF was subcloned into the pDEST17 destination vector by the LR reaction, which resulted in the production of a construct that was transferred into E. coli strain Rosetta-gami™ 2(DE3) pLacI competent cells to produce the His6-hLIF fusion protein. RESULTS This straightforward method produced a biologically active recombinant hLIF protein in E. coli that has long-term storage ability. This procedure has provided rapid, cost effective purification of a soluble hLIF protein that is biologically active and functional as measured in mouse ESCs and iPSCs in vitro. CONCLUSION Our results showed no significant differences in function between laboratory produced and commercialized hLIF.
Collapse
Affiliation(s)
- Hassan Rassouli
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Shiva Nemati
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell
Biology and Technology, ACECR, Tehran, Iran
| | - Siamak Rezaeiani
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell
Biology and Technology, ACECR, Tehran, Iran
| | - Ali Sayadmanesh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell
Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Reza Gharaati
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell
Biology and Technology, ACECR, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
- Department of Genomics, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell
Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine,
ACECR, Tehran, Iran
| |
Collapse
|
16
|
Muthana SM, Campbell CT, Gildersleeve JC. Modifications of glycans: biological significance and therapeutic opportunities. ACS Chem Biol 2012; 7:31-43. [PMID: 22195988 DOI: 10.1021/cb2004466] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbohydrates play a central role in a wide range of biological processes. As with nucleic acids and proteins, modifications of specific sites within the glycan chain can modulate a carbohydrate's overall biological function. For example, acylation, methylation, sulfation, epimerization, and phosphorylation can occur at various positions within a carbohydrate to modulate bioactivity. Therefore, there is significant interest in identifying discrete carbohydrate modifications and understanding their biological effects. Additionally, enzymes that catalyze those modifications and proteins that bind modified glycans provide numerous targets for therapeutic intervention. This review will focus on modifications of glycans that occur after the oligomer/polymer has been assembled, generally referred to as post-glycosylational modifications.
Collapse
Affiliation(s)
- Saddam M. Muthana
- Chemical Biology Laboratory, National Cancer Institute, NCI-Frederick, Frederick, Maryland 21702, United States
| | - Christopher T. Campbell
- Chemical Biology Laboratory, National Cancer Institute, NCI-Frederick, Frederick, Maryland 21702, United States
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory, National Cancer Institute, NCI-Frederick, Frederick, Maryland 21702, United States
| |
Collapse
|
17
|
Barnes J, Warejcka D, Simpliciano J, Twining S, Steet R. Latency-associated peptide of transforming growth factor-β1 is not subject to physiological mannose phosphorylation. J Biol Chem 2012; 287:7526-34. [PMID: 22262853 DOI: 10.1074/jbc.m111.308825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Latent TGF-β1 was one of the first non-lysosomal glycoproteins reported to bear mannose 6-phosphate (Man-6-P) residues on its N-glycans. Prior studies have suggested that this sugar modification regulates the activation of latent TGF-β1 by allowing it to bind cell surface-localized Man-6-P receptors. Man-6-P has also been proposed as an anti-scarring therapy based on its ability to directly block the activation of latent TGF-β1. A complete understanding of the physiological relevance of latent TGF-β1 mannose phosphorylation, however, is still lacking. Here we investigate the degree of mannose phosphorylation on secreted latent TGF-β1 and examine its Man-6-P-dependent activation in primary human corneal stromal fibroblasts. Contrary to earlier reports, minimal to no Man-6-P modification was found on secreted and cell-associated latent TGF-β1 produced from multiple primary and transformed cell types. Results showed that the inability to detect Man-6-P residues was not due to masking by the latent TGF-β1-binding protein (LTBP). Moreover, the efficient processing of glycans on latent TGF-β1 to complex type structures was consistent with the lack of mannose phosphorylation during biosynthesis. We further demonstrated that the conversion of corneal stromal fibroblast to myofibroblasts, a well known TGF-β1-dependent process, was not altered by Man-6-P addition when latent forms of this growth factor were present. Collectively, these findings indicate that Man-6-P-dependent effects on latent TGF-β1 activation are not mediated by direct modification of its latency-associated peptide.
Collapse
Affiliation(s)
- Jarrod Barnes
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|