1
|
Wollweber F, Xu J, Ponce-Toledo RI, Marxer F, Rodrigues-Oliveira T, Pössnecker A, Luo ZH, Malit JJL, Kokhanovska A, Wieczorek M, Schleper C, Pilhofer M. Microtubules in Asgard archaea. Cell 2025; 188:2451-2464.e26. [PMID: 40120574 DOI: 10.1016/j.cell.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Microtubules are a hallmark of eukaryotes. Archaeal and bacterial homologs of tubulins typically form homopolymers and non-tubular superstructures. The origin of heterodimeric tubulins assembling into microtubules remains unclear. Here, we report the discovery of microtubule-forming tubulins in Asgard archaea, the closest known relatives of eukaryotes. These Asgard tubulins (AtubA/B) are closely related to eukaryotic α/β-tubulins and the enigmatic bacterial tubulins BtubA/B. Proteomics of Candidatus Lokiarchaeum ossiferum showed that AtubA/B were highly expressed. Cryoelectron microscopy structures demonstrate that AtubA/B form eukaryote-like heterodimers, which assembled into 5-protofilament bona fide microtubules in vitro. The additional paralog AtubB2 lacks a nucleotide-binding site and competitively displaced AtubB. These AtubA/B2 heterodimers polymerized into 7-protofilament non-canonical microtubules. In a sub-population of Ca. Lokiarchaeum ossiferum cells, cryo-tomography revealed tubular structures, while expansion microscopy identified AtubA/B cytoskeletal assemblies. Our findings suggest a pre-eukaryotic origin of microtubules and provide a framework for understanding the fundamental principles of microtubule assembly.
Collapse
Affiliation(s)
- Florian Wollweber
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Jingwei Xu
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Rafael I Ponce-Toledo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Florina Marxer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Thiago Rodrigues-Oliveira
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Anja Pössnecker
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Zhen-Hao Luo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jessie James Limlingan Malit
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Anastasiia Kokhanovska
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Michal Wieczorek
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland.
| |
Collapse
|
2
|
Forterre P. The Last Universal Common Ancestor of Ribosome-Encoding Organisms: Portrait of LUCA. J Mol Evol 2024; 92:550-583. [PMID: 39158619 DOI: 10.1007/s00239-024-10186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024]
Abstract
The existence of LUCA in the distant past is the logical consequence of the binary mechanism of cell division. The biosphere in which LUCA and contemporaries were living was the product of a long cellular evolution from the origin of life to the second age of the RNA world. A parsimonious scenario suggests that the molecular fabric of LUCA was much simpler than those of modern organisms, explaining why the evolutionary tempo was faster at the time of LUCA than it was during the diversification of the three domains. Although LUCA was possibly equipped with a RNA genome and most likely lacked an ATP synthase, it was already able to perform basic metabolic functions and to produce efficient proteins. However, the proteome of LUCA and its inferred metabolism remains to be correctly explored by in-depth phylogenomic analyses and updated datasets. LUCA was probably a mesophile or a moderate thermophile since phylogenetic analyses indicate that it lacked reverse gyrase, an enzyme systematically present in all hyperthermophiles. The debate about the position of Eukarya in the tree of life, either sister group to Archaea or descendants of Archaea, has important implications to draw the portrait of LUCA. In the second alternative, one can a priori exclude the presence of specific eukaryotic features in LUCA. In contrast, if Archaea and Eukarya are sister group, some eukaryotic features, such as the spliceosome, might have been present in LUCA and later lost in Archaea and Bacteria. The nature of the LUCA virome is another matter of debate. I suggest here that DNA viruses only originated during the diversification of the three domains from an RNA-based LUCA to explain the odd distribution pattern of DNA viruses in the tree of life.
Collapse
|
3
|
Yuan W, Yu J, Li Z. Rapid functional activation of horizontally transferred eukaryotic intron-containing genes in the bacterial recipient. Nucleic Acids Res 2024; 52:8344-8355. [PMID: 39011898 DOI: 10.1093/nar/gkae628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Horizontal gene transfer has occurred across all domains of life and contributed substantially to the evolution of both prokaryotes and eukaryotes. Previous studies suggest that many horizontally transferred eukaryotic genes conferred selective advantages to bacterial recipients, but how these eukaryotic genes evolved into functional bacterial genes remained unclear, particularly how bacteria overcome the expressional barrier posed by eukaryotic introns. Here, we first confirmed that the presence of intron would inactivate the horizontally transferred gene in Escherichia coli even if this gene could be efficiently transcribed. Subsequent large-scale genetic screens for activation of gene function revealed that activation events could rapidly occur within several days of selective cultivation. Molecular analysis of activation events uncovered two distinct mechanisms how bacteria overcome the intron barrier: (i) intron was partially deleted and the resulting stop codon-removed mutation led to one intact foreign protein or (ii) intron was intactly retained but it mediated the translation initiation and the interaction of two split small proteins (derived from coding sequences up- and downstream of intron, respectively) to restore gene function. Our findings underscore the likelihood that horizontally transferred eukaryotic intron-containing genes could rapidly acquire functionality if they confer a selective advantage to the prokaryotic recipient.
Collapse
Affiliation(s)
- Wen Yuan
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jing Yu
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhichao Li
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
4
|
Unnikrishnan M, Wang Y, Gruebele M, Murphy CJ. Nanoparticle-assisted tubulin assembly is environment dependent. Proc Natl Acad Sci U S A 2024; 121:e2403034121. [PMID: 38954547 PMCID: PMC11252952 DOI: 10.1073/pnas.2403034121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Nanomaterials acquire a biomolecular corona upon introduction to biological media, leading to biological transformations such as changes in protein function, unmasking of epitopes, and protein fibrilization. Ex vivo studies to investigate the effect of nanoparticles on protein-protein interactions are typically performed in buffer and are rarely measured quantitatively in live cells. Here, we measure the differential effect of silica nanoparticles on protein association in vitro vs. in mammalian cells. BtubA and BtubB are a pair of bacterial tubulin proteins identified in Prosthecobacter strains that self-assemble like eukaryotic tubulin, first into dimers and then into microtubules in vitro or in vivo. Förster resonance energy transfer labeling of each of the Btub monomers with a donor (mEGFP) and acceptor (mRuby3) fluorescent protein provides a quantitative tool to measure their binding interactions in the presence of unfunctionalized silica nanoparticles in buffer and in cells using fluorescence spectroscopy and microscopy. We show that silica nanoparticles enhance BtubAB dimerization in buffer due to protein corona formation. However, these nanoparticles have little effect on bacterial tubulin self-assembly in the complex mammalian cellular environment. Thus, the effect of nanomaterials on protein-protein interactions may not be readily translated from the test tube to the cell in the absence of particle surface functionalization that can enable targeted protein-nanoparticle interactions to withstand competitive binding in the nanoparticle corona from other biomolecules.
Collapse
Affiliation(s)
- Mahima Unnikrishnan
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
5
|
Wang Y, Unnikrishnan M, Ramsey B, El Andlosy D, Keeley AT, Murphy CJ, Gruebele M. In-Cell Association of a Bioorthogonal Tubulin. Biomacromolecules 2024; 25:1282-1290. [PMID: 38251876 DOI: 10.1021/acs.biomac.3c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Studies of proteins from one organism in another organism's cells have shown that such exogenous proteins stick more, pointing toward coevolution of the cytoplasm and protein surface to minimize stickiness. Here we flip this question around by asking whether exogenous proteins can assemble efficiently into their target complexes in a non-native cytoplasm. We use as our model system the assembly of BtubA and BtubB from Prosthecobacter hosted in human U-2 OS cells. BtubA and B evolved from eukaryotic tubulins after horizontal gene transfer, but they have low surface sequence identity with the homologous human tubulins and do not respond to tubulin drugs such as nocodazole. In U-2 OS cells, BtubA and B assemble efficiently into dimers compared to in vitro, and the wild-type BtubA and B proteins subsequently are able to form microtubules as well. We find that generic crowding effects (Ficoll 70 in vitro) contribute significantly to efficient dimer assembly when compared to sticking interactions (U-2 OS cell lysate in vitro), consistent with the notion that a generic mechanism such as crowding can be effective at driving assembly of exogenous proteins, even when protein-cytoplasm quinary structure and sticking have been modified in a non-native cytoplasm. A simple Monte Carlo model of in vitro and in-cell interactions, treating BtubA and B as sticky dipoles in a matrix of sticky or nonsticky crowders, rationalizes all the experimental trends with two adjustable parameters and reveals nucleation as the likely mechanism for the time-scale separation between dimer- and tubule formation in-cell and in vitro.
Collapse
Affiliation(s)
- Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mahima Unnikrishnan
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brooke Ramsey
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Driss El Andlosy
- Computer Science and Technologies Department, Parkland Community College, Champaign, Illinois 61821, United States
| | - Alex T Keeley
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Ortmann S, Marx J, Lampe C, Handrick V, Ehnert TM, Zinecker S, Reimers M, Bonas U, Erickson JL. A conserved microtubule-binding region in Xanthomonas XopL is indispensable for induced plant cell death reactions. PLoS Pathog 2023; 19:e1011263. [PMID: 37578981 PMCID: PMC10449215 DOI: 10.1371/journal.ppat.1011263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Pathogenic Xanthomonas bacteria cause disease on more than 400 plant species. These Gram-negative bacteria utilize the type III secretion system to inject type III effector proteins (T3Es) directly into the plant cell cytosol where they can manipulate plant pathways to promote virulence. The host range of a given Xanthomonas species is limited, and T3E repertoires are specialized during interactions with specific plant species. Some effectors, however, are retained across most strains, such as Xanthomonas Outer Protein L (XopL). As an 'ancestral' effector, XopL contributes to the virulence of multiple xanthomonads, infecting diverse plant species. XopL homologs harbor a combination of a leucine-rich-repeat (LRR) domain and an XL-box which has E3 ligase activity. Despite similar domain structure there is evidence to suggest that XopL function has diverged, exemplified by the finding that XopLs expressed in plants often display bacterial species-dependent differences in their sub-cellular localization and plant cell death reactions. We found that XopL from X. euvesicatoria (XopLXe) directly associates with plant microtubules (MTs) and causes strong cell death in agroinfection assays in N. benthamiana. Localization of XopLXe homologs from three additional Xanthomonas species, of diverse infection strategy and plant host, revealed that the distantly related X. campestris pv. campestris harbors a XopL (XopLXcc) that fails to localize to MTs and to cause plant cell death. Comparative sequence analyses of MT-binding XopLs and XopLXcc identified a proline-rich-region (PRR)/α-helical region important for MT localization. Functional analyses of XopLXe truncations and amino acid exchanges within the PRR suggest that MT-localized XopL activity is required for plant cell death reactions. This study exemplifies how the study of a T3E within the context of a genus rather than a single species can shed light on how effector localization is linked to biochemical activity.
Collapse
Affiliation(s)
- Simon Ortmann
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Jolina Marx
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Christina Lampe
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Vinzenz Handrick
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Tim-Martin Ehnert
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Sarah Zinecker
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Matthias Reimers
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ulla Bonas
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica Lee Erickson
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| |
Collapse
|
7
|
Da Cunha V, Gaïa M, Forterre P. The expanding Asgard archaea and their elusive relationships with Eukarya. MLIFE 2022; 1:3-12. [PMID: 38818326 PMCID: PMC10989751 DOI: 10.1002/mlf2.12012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 06/01/2024]
Abstract
The discovery of Asgard archaea and the exploration of their diversity over the last 6 years have deeply impacted the scientific community working on eukaryogenesis, rejuvenating an intense debate on the topology of the universal tree of life (uTol). Here, we discuss how this debate is impacted by two recent publications that expand the number of Asgard lineages and eukaryotic signature proteins (ESPs). We discuss some of the main difficulties that can impair the phylogenetic reconstructions of the uTol and suggest that the debate about its topology is not settled. We notably hypothesize the existence of horizontal gene transfers between ancestral Asgards and proto-eukaryotes that could result in the observed abnormal behaviors of some Asgard ESPs and universal marker proteins. This hypothesis is relevant regardless of the scenario considered regarding eukaryogenesis. It implies that the Asgards were already diversified before the last eukaryotic common ancestor and shared the same biotopes with proto-eukaryotes. We suggest that some Asgards might be still living in symbiosis today with modern Eukarya.
Collapse
Affiliation(s)
- Violette Da Cunha
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Morgan Gaïa
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRSUniv. Evry, Université Paris‐SaclayEvryFrance
| | - Patrick Forterre
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
- Département de Microbiologie, Institut PasteurParisFrance
| |
Collapse
|
8
|
Abstract
The rebuttal of the prokaryote-eukaryote dichotomy and the elaboration of the three domains concept by Carl Woese and colleagues has been a breakthrough in biology. With the methodologies available at this time, they have shown that a single molecule, the 16S ribosomal RNA, could reveal the global organization of the living world. Later on, mining archaeal genomes led to major discoveries in archaeal molecular biology, providing a third model for comparative molecular biology. These analyses revealed the strong eukaryal flavor of the basic molecular fabric of Archaea and support rooting the universal tree between Bacteria and Arcarya (the clade grouping Archaea and Eukarya). However, in contradiction with this conclusion, it remains to understand why the archaeal and bacterial mobilomes are so similar and so different from the eukaryal one. These last years, the number of recognized archaea lineages (phyla?) has exploded. The archaeal nomenclature is now in turmoil and debates about the nature of the last universal common ancestor, the last archaeal common ancestor, and the topology of the tree of life are still going on. Interestingly, the expansion of the archaeal eukaryome, especially in the Asgard archaea, has provided new opportunities to study eukaryogenesis. In recent years, the application to Archaea of the new methodologies described in the various chapters of this book have opened exciting avenues to study the molecular biology and the physiology of these fascinating microorganisms.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France.
- Institute for Integrative biology of the Cell. université Paris-Saclay, Gif sur Yvette, France.
| |
Collapse
|
9
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
10
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
11
|
Chaaban S, Brouhard GJ. A microtubule bestiary: structural diversity in tubulin polymers. Mol Biol Cell 2018; 28:2924-2931. [PMID: 29084910 PMCID: PMC5662251 DOI: 10.1091/mbc.e16-05-0271] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 11/11/2022] Open
Abstract
Microtubules are long, slender polymers of αβ-tubulin found in all eukaryotic cells. Tubulins associate longitudinally to form protofilaments, and adjacent protofilaments associate laterally to form the microtubule. In the textbook view, microtubules are 1) composed of 13 protofilaments, 2) arranged in a radial array by the centrosome, and 3) built into the 9+2 axoneme. Although these canonical structures predominate in eukaryotes, microtubules with divergent protofilament numbers and higher-order microtubule assemblies have been discovered throughout the last century. Here we survey these noncanonical structures, from the 4-protofilament microtubules of Prosthecobacter to the 40-protofilament accessory microtubules of mantidfly sperm. We review the variety of protofilament numbers observed in different species, in different cells within the same species, and in different stages within the same cell. We describe the determinants of protofilament number, namely nucleation factors, tubulin isoforms, and posttranslational modifications. Finally, we speculate on the functional significance of these diverse polymers. Equipped with novel tubulin-purification tools, the field is now prepared to tackle the long-standing question of the evolutionary basis of microtubule structure.
Collapse
Affiliation(s)
- Sami Chaaban
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Gary J Brouhard
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
12
|
Bacterial Tubulins: A Eukaryotic-Like Microtubule Cytoskeleton. Trends Microbiol 2017; 25:782-784. [PMID: 28869086 DOI: 10.1016/j.tim.2017.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/22/2022]
Abstract
Ever since their discovery, bacterial tubulins, found in several Prosthecobacter species, have raised curiosity as they are closely related to eukaryotic tubulin. Deng and colleagues now present new evidence for the functional homology of the two cytoskeletal systems where in vitro reconstituted Btub-microtubules display eukaryote-like biochemical and dynamic properties.
Collapse
|
13
|
Bacterial Tubulins A and B Exhibit Polarized Growth, Mixed-Polarity Bundling, and Destabilization by GTP Hydrolysis. J Bacteriol 2017; 199:JB.00211-17. [PMID: 28716960 DOI: 10.1128/jb.00211-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the genus Prosthecobacter express homologs of eukaryotic α- and β-tubulin, called BtubA and BtubB (BtubA/B), that have been observed to assemble into filaments in the presence of GTP. BtubA/B polymers are proposed to be composed in vitro by two to six protofilaments in contrast to that in vivo, where they have been reported to form 5-protofilament tubes named bacterial microtubules (bMTs). The btubAB genes likely entered the Prosthecobacter lineage via horizontal gene transfer and may be derived from an early ancestor of the modern eukaryotic microtubule (MT). Previous biochemical studies revealed that BtubA/B polymerization is reversible and that BtubA/B folding does not require chaperones. To better understand BtubA/B filament behavior and gain insight into the evolution of microtubule dynamics, we characterized in vitro BtubA/B assembly using a combination of polymerization kinetics assays and microscopy. Like eukaryotic microtubules, BtubA/B filaments exhibit polarized growth with different assembly rates at each end. GTP hydrolysis stimulated by BtubA/B polymerization drives a stochastic mechanism of filament disassembly that occurs via polymer breakage and/or fast continuous depolymerization. We also observed treadmilling (continuous addition and loss of subunits at opposite ends) of BtubA/B filament fragments. Unlike MTs, polymerization of BtubA/B requires KCl, which reduces the critical concentration for BtubA/B assembly and induces it to form stable mixed-orientation bundles in the absence of any additional BtubA/B-binding proteins. The complex dynamics that we observe in stabilized and unstabilized BtubA/B filaments may reflect common properties of an ancestral eukaryotic tubulin polymer.IMPORTANCE Microtubules are polymers within all eukaryotic cells that perform critical functions; they segregate chromosomes, organize intracellular transport, and support the flagella. These functions rely on the remarkable range of tunable dynamic behaviors of microtubules. Bacterial tubulin A and B (BtubA/B) are evolutionarily related proteins that form polymers. They are proposed to be evolved from the ancestral eukaryotic tubulin, a missing link in microtubule evolution. Using microscopy and biochemical approaches to characterize BtubA/B assembly in vitro, we observed that they exhibit complex and structurally polarized dynamic behavior like eukaryotic microtubules but differ in how they self-associate into bundles and how this bundling affects their stability. Our results demonstrate the diversity of mechanisms through which tubulin homologs promote filament dynamics and monomer turnover.
Collapse
|
14
|
Four-stranded mini microtubules formed by Prosthecobacter BtubAB show dynamic instability. Proc Natl Acad Sci U S A 2017; 114:E5950-E5958. [PMID: 28673988 DOI: 10.1073/pnas.1705062114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microtubules, the dynamic, yet stiff hollow tubes built from αβ-tubulin protein heterodimers, are thought to be present only in eukaryotic cells. Here, we report a 3.6-Å helical reconstruction electron cryomicroscopy structure of four-stranded mini microtubules formed by bacterial tubulin-like Prosthecobacter dejongeii BtubAB proteins. Despite their much smaller diameter, mini microtubules share many key structural features with eukaryotic microtubules, such as an M-loop, alternating subunits, and a seam that breaks overall helical symmetry. Using in vitro total internal reflection fluorescence microscopy, we show that bacterial mini microtubules treadmill and display dynamic instability, another hallmark of eukaryotic microtubules. The third protein in the btub gene cluster, BtubC, previously known as "bacterial kinesin light chain," binds along protofilaments every 8 nm, inhibits BtubAB mini microtubule catastrophe, and increases rescue. Our work reveals that some bacteria contain regulated and dynamic cytomotive microtubule systems that were once thought to be only useful in much larger and sophisticated eukaryotic cells.
Collapse
|
15
|
Bacterial kinesin light chain (Bklc) links the Btub cytoskeleton to membranes. Sci Rep 2017; 7:45668. [PMID: 28358387 PMCID: PMC5372463 DOI: 10.1038/srep45668] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/01/2017] [Indexed: 11/23/2022] Open
Abstract
Bacterial kinesin light chain is a TPR domain-containing protein encoded by the bklc gene, which co-localizes with the bacterial tubulin (btub) genes in a conserved operon in Prosthecobacter. Btub heterodimers show high structural homology with eukaryotic tubulin and assemble into head-to-tail protofilaments. Intriguingly, Bklc is homologous to the light chain of the microtubule motor kinesin and could thus represent an additional eukaryotic-like cytoskeletal element in bacteria. Using biochemical characterization as well as cryo-electron tomography we show here that Bklc interacts specifically with Btub protofilaments, as well as lipid vesicles and could thus play a role in anchoring the Btub filaments to the membrane protrusions in Prosthecobacter where they specifically localize in vivo. This work sheds new light into possible ways in which the microtubule cytoskeleton may have evolved linking precursors of microtubules to the membrane via the kinesin moiety that in today’s eukaryotic cytoskeleton links vesicle-packaged cargo to microtubules.
Collapse
|
16
|
McMurray MA. Coupling de novo protein folding with subunit exchange into pre-formed oligomeric protein complexes: the 'heritable template' hypothesis. Biomol Concepts 2017; 7:271-281. [PMID: 27875316 DOI: 10.1515/bmc-2016-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/11/2016] [Indexed: 11/15/2022] Open
Abstract
Despite remarkable advances in synthetic biology, the fact remains that it takes a living cell to make a new living cell. The information encoded in the genome is necessary to direct assembly of all cellular components, but it may not be sufficient. Some components (e.g. mitochondria) cannot be synthesized de novo, and instead require pre-existing templates, creating a fundamental continuity of life: if the template information is ever lost, the genomic code cannot suffice to ensure proper biogenesis. One type of information only incompletely encoded in the genome is the structures of macromolecular assemblies, which emerge from the conformations of the constituent molecules coupled with the ways in which these molecules interact. For many, if not most proteins, gene sequence is not the sole determinant of native conformation, particularly in the crowded cellular milieu. A partial solution to this problem lies in the functions of molecular chaperones, encoded by nearly all cellular genomes. Chaperones effectively restrict the ensemble of conformations sampled by polypeptides, promoting the acquisition of native, functional forms, but multiple proteins have evolved ways to achieve chaperone independence, perhaps by coupling folding with higher-order assembly. Here, I propose the existence of another solution: a novel mechanism of de novo folding in which the folding of specific proteins is templated by pre-folded molecules of a partner protein whose own folding also required similar templating. This hypothesis challenges prevailing paradigms by predicting that, in order to achieve a functional fold, some non-prion proteins require a seed passed down through generations.
Collapse
|
17
|
Staley JT, Fuerst JA. Ancient, highly conserved proteins from a LUCA with complex cell biology provide evidence in support of the nuclear compartment commonality (NuCom) hypothesis. Res Microbiol 2017; 168:395-412. [PMID: 28111289 DOI: 10.1016/j.resmic.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 12/23/2022]
Abstract
The nuclear compartment commonality (NuCom) hypothesis posits a complex last common ancestor (LUCA) with membranous compartments including a nuclear membrane. Such a LUCA then evolved to produce two nucleated lineages of the tree of life: the Planctomycetes-Verrucomicrobia-Chlamydia superphylum (PVC) within the Bacteria, and the Eukarya. We propose that a group of ancient essential protokaryotic signature proteins (PSPs) originating in LUCA were incorporated into ancestors of PVC Bacteria and Eukarya. Tubulins, ubiquitin system enzymes and sterol-synthesizing enzymes are consistent with early origins of these features shared between the PVC superphylum and Eukarya.
Collapse
Affiliation(s)
- James T Staley
- Department of Microbiology and Astrobiology Program, University of Washington, Seattle 98195, USA
| | - John A Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
18
|
Abstract
As discovered over the past 25 years, the cytoskeletons of bacteria and archaea are complex systems of proteins whose central components are dynamic cytomotive filaments. They perform roles in cell division, DNA partitioning, cell shape determination and the organisation of intracellular components. The protofilament structures and polymerisation activities of various actin-like, tubulin-like and ESCRT-like proteins of prokaryotes closely resemble their eukaryotic counterparts but show greater diversity. Their activities are modulated by a wide range of accessory proteins but these do not include homologues of the motor proteins that supplement filament dynamics to aid eukaryotic cell motility. Numerous other filamentous proteins, some related to eukaryotic IF-proteins/lamins and dynamins etc, seem to perform structural roles similar to those in eukaryotes.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
19
|
Selvaa Kumar C, Gadewal N, Mohammed SM. Seminal role of deletion of amino acid residues in H1-S2 and S-loop regions in eukaryotic β-tubulin investigated from docking and dynamics perspective. J Theor Biol 2015; 378:79-88. [PMID: 25956360 DOI: 10.1016/j.jtbi.2015.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 11/16/2022]
Abstract
Tubulin is the fundamental unit of microtubules. It is reported to effect different functions like cell division, chromosomal segregation, motility and intracellular transportation. α- and β-tubulin associate laterally and longitudinally to form protofilaments. Both the subunits are structurally identical to each other except for the deletions reported in H1-S2 and S loop regions in eukaryotic β-tubulin. These deletions mimic the ancestral tubulin protein named Latest Common FtsZ-Tubulin Ancestor (LCFTA) with a shorter S-loop region resulting in weak dimerization. However, in eukaryotic beta tubulin, the significance of this shorter region remains elusive till date. The main objective of this study was to model variants of beta tubulin (βmut1, βmut2 and βmut3) with inserts that lengthened the loop, and to compare them with the native α- and β-subunits to understand their biological significance. Further, one more mutant was modeled with the intention of understanding the counter effect of additional deletion of amino acid residues from both H1-S2 and S-loop regions; this mutant was designated as βmut4. Our study confirms that the insertion of amino acid residues considerably increases the protein-protein interactions in βmut1-βmut1, βmut2-βmut2 and βmut3-βmut3 compared to their native β-subunit. Similarly, the binding affinity of GTP also increases in βmut2 and βmut3 as compared to the wild type. However, these deletions result in decreased protein-protein and ligand interactions in wild beta tubulin and βmut4, as compared to βmut1, βmut2,and βmut3. Therefore, we conclude here that residual inserts in the H1-S2 and S loop sub segments bring about conformational changes in regions critically involved in lateral interactions and in the nucleotide binding site, thus altering the binding affinities between the dimers and the ligands. Regarding the biological importance of such deletions in wild beta tubulin, these deletions result in flexible M-loop leading to weak protein-protein interaction. This could be an adaptive feature playing a crucial role in protofilament dissociation during GTP hydrolysis, because of weak dimerization.
Collapse
Affiliation(s)
- C Selvaa Kumar
- School of Biotechnology and Bioinformatics, D.Y. Patil University, CBD Belapur, Navi Mumbai, India.
| | - Nikhil Gadewal
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, India.
| | | |
Collapse
|
20
|
Findeisen P, Mühlhausen S, Dempewolf S, Hertzog J, Zietlow A, Carlomagno T, Kollmar M. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol Evol 2014; 6:2274-88. [PMID: 25169981 PMCID: PMC4202323 DOI: 10.1093/gbe/evu187] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tubulins belong to the most abundant proteins in eukaryotes providing the backbone for many cellular substructures like the mitotic and meiotic spindles, the intracellular cytoskeletal network, and the axonemes of cilia and flagella. Homologs have even been reported for archaea and bacteria. However, a taxonomically broad and whole-genome-based analysis of the tubulin protein family has never been performed, and thus, the number of subfamilies, their taxonomic distribution, and the exact grouping of the supposed archaeal and bacterial homologs are unknown. Here, we present the analysis of 3,524 tubulins from 504 species. The tubulins formed six major subfamilies, α to ζ. Species of all major kingdoms of the eukaryotes encode members of these subfamilies implying that they must have already been present in the last common eukaryotic ancestor. The proposed archaeal homologs grouped together with the bacterial TubZ proteins as sister clade to the FtsZ proteins indicating that tubulins are unique to eukaryotes. Most species contained α- and/or β-tubulin gene duplicates resulting from recent branch- and species-specific duplication events. This shows that tubulins cannot be used for constructing species phylogenies without resolving their ortholog–paralog relationships. The many gene duplicates and also the independent loss of the δ-, ε-, or ζ-tubulins, which have been shown to be part of the triplet microtubules in basal bodies, suggest that tubulins can functionally substitute each other.
Collapse
Affiliation(s)
- Peggy Findeisen
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefanie Mühlhausen
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Silke Dempewolf
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jonny Hertzog
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexander Zietlow
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Teresa Carlomagno
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
21
|
Lin L, Thanbichler M. Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton (Hoboken) 2013; 70:409-23. [PMID: 23852773 DOI: 10.1002/cm.21126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 11/11/2022]
Abstract
Bacteria possess a diverse set of cytoskeletal proteins that mediate key cellular processes such as morphogenesis, cell division, DNA segregation, and motility. Similar to eukaryotic actin or tubulin, many of them require nucleotide binding and hydrolysis for proper polymerization and function. However, there is also a growing number of bacterial cytoskeletal elements that assemble in a nucleotide-independent manner, including intermediate filament-like structures as well several classes of bacteria-specific polymers. The members of this group form stable scaffolds that have architectural roles or act as localization factors recruiting other proteins to distinct positions within the cell. Here, we highlight the elements that constitute the nucleotide-independent cytoskeleton of bacteria and discuss their biological functions in different species.
Collapse
Affiliation(s)
- Lin Lin
- Max Planck Research Group "Prokaryotic Cell Biology", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Faculty of Biology, Philipps-Universität, Marburg, Germany
| | | |
Collapse
|
22
|
Fuerst JA. The PVC superphylum: exceptions to the bacterial definition? Antonie van Leeuwenhoek 2013; 104:451-66. [PMID: 23912444 DOI: 10.1007/s10482-013-9986-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/22/2013] [Indexed: 11/30/2022]
Abstract
The PVC superphylum is a grouping of distinct phyla of the domain bacteria proposed initially on the basis of 16S rRNA gene sequence analysis. It consists of a core of phyla Planctomycetes, Verrucomicrobia and Chlamydiae, but several other phyla have been considered to be members, including phylum Lentisphaerae and several other phyla consisting only of yet-to-be cultured members. The genomics-based links between Planctomycetes, Verrucomicrobia and Chlamydiae have been recently strengthened, but there appear to be other features which may confirm the relationship at least of Planctomycetes, Verrucomicrobia and Lentisphaerae. Remarkably these include the unique planctomycetal compartmentalized cell plan differing from the cell organization typical for bacteria. Such a shared cell plan suggests that the common ancestor of the PVC superphylum members may also have been compartmentalized, suggesting this is an evolutionarily homologous feature at least within the superphylum. Both the PVC endomembranes and the eukaryote-homologous membrane-coating MC proteins linked to endocytosis ability in Gemmata obscuriglobus and shared by PVC members suggest such homology may extend beyond the bacteria to the Eukarya. If so, either our definition of bacteria may have to change or PVC members admitted to be exceptions. The cases for and against considering the PVC superphylum members as exceptions to the bacteria are discussed, and arguments for them as exceptions presented. Recent critical analysis has favoured convergence and analogy for explaining eukaryote-like features in planctomycetes and other PVC organisms. The case is made for constructing hypotheses leaving the possibility of homology and evolutionary links to eukaryote features open. As the case of discovery of endocytosis-like protein uptake in planctomycetes has suggested, this may prove a strong basis for the immediate future of experimental research programs in the PVC scientific community.
Collapse
Affiliation(s)
- John A Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia,
| |
Collapse
|
23
|
Breviario D, Gianì S, Morello L. Multiple tubulins: evolutionary aspects and biological implications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:202-18. [PMID: 23662651 DOI: 10.1111/tpj.12243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 05/05/2023]
Abstract
Plant tubulin is a dimeric protein that contributes to formation of microtubules, major intracellular structures that are involved in the control of fundamental processes such as cell division, polarity of growth, cell-wall deposition, intracellular trafficking and communications. Because it is a structural protein whose function is confined to the role of microtubule formation, tubulin may be perceived as an uninteresting gene product, but such a perception is incorrect. In fact, tubulin represents a key molecule for studying fundamental biological issues such as (i) microtubule evolution (also with reference to prokaryotic precursors and the formation of cytomotive filaments), (ii) protein structure with reference to the various biochemical features of members of the FstZ/tubulin superfamily, (iii) isoform variations contributed by the existence of multi-gene families and various kinds of post-translational modifications, (iv) anti-mitotic drug interactions and mode of action, (v) plant and cell symmetry, as determined using a series of tubulin mutants, (vi) multiple and sophisticated mechanisms of gene regulation, and (vii) intron molecular evolution. In this review, we present and discuss many of these issues, and offer an updated interpretation of the multi-tubulin hypothesis.
Collapse
Affiliation(s)
- Diego Breviario
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20133 Milano, Italy.
| | | | | |
Collapse
|
24
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Andreu JM, Oliva MA. Purification and assembly of bacterial tubulin BtubA/B and constructs bearing eukaryotic tubulin sequences. Methods Cell Biol 2013; 115:269-81. [PMID: 23973078 DOI: 10.1016/b978-0-12-407757-7.00017-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacterial tubulin BtubA/B is a close structural homolog of eukaryotic αβ-tubulin, thought to have originated by transfer of ancestral tubulin genes from a primitive eukaryotic cell to a bacterium, followed by divergent evolution. BtubA and BtubB are easily expressed homogeneous polypeptides that fold spontaneously without eukaryotic chaperone requirements, associate into weak BtubA/B heterodimers and assemble forming tubulin-like protofilaments. These protofilaments coalesce into pairs and bundles, or form five-protofilament tubules proposed to share the architecture of microtubules. Bacterial tubulin is an attractive framework for tubulin engineering. Potential applications include humanizing different sections of bacterial tubulin with the aims of creating recombinant binding sites for antitumor drugs, obtaining well-defined substrates for the enzymes responsible for tubulin posttranslational modification, or bacterial microtubule-like polymeric trails for motor proteins. Several divergent sequences from the surface loops of bacterial tubulin have already been replaced by the corresponding eukaryotic sequences, yielding soluble folded chimeras. We describe the purification protocol of untagged bacterial tubulin BtubA/B by means of ion exchange, size exclusion chromatography, and an assembly-disassembly cycle. This is followed by methods and examples to characterize its assembly, employing light scattering, sedimentation, and electron microscopy.
Collapse
Affiliation(s)
- José M Andreu
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|
26
|
Abstract
Far from being simple 'bags' of enzymes, bacteria are richly endowed with ultrastructures that challenge and expand standard definitions of the cytoskeleton. Here we review rods, rings, twisted pairs, tubes, sheets, spirals, moving patches, meshes and composites, and suggest defining the term 'bacterial cytoskeleton' as all cytoplasmic protein filaments and their superstructures that move or scaffold (stabilize/position/recruit) other cellular materials. The evolution of each superstructure has been driven by specific functional requirements. As a result, while homologous proteins with different functions have evolved to form surprisingly divergent superstructures, those of unrelated proteins with similar functions have converged.
Collapse
Affiliation(s)
- Martin Pilhofer
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, 1200 E California Blvd, M/C 114-96, Pasadena, CA, USA.
| | | |
Collapse
|
27
|
Fuerst JA, Sagulenko E. Keys to eukaryality: planctomycetes and ancestral evolution of cellular complexity. Front Microbiol 2012; 3:167. [PMID: 22586422 PMCID: PMC3343278 DOI: 10.3389/fmicb.2012.00167] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/13/2012] [Indexed: 12/26/2022] Open
Abstract
Planctomycetes are known to display compartmentalization via internal membranes, thus resembling eukaryotes. Significantly, the planctomycete Gemmata obscuriglobus has not only a nuclear region surrounded by a double-membrane, but is also capable of protein uptake via endocytosis. In order to clearly analyze implications for homology of their characters with eukaryotes, a correct understanding of planctomycete structure is an essential starting point. Here we outline the major features of such structure necessary for assessing the case for or against homology with eukaryote cell complexity. We consider an evolutionary model for cell organization involving reductive evolution of Planctomycetes from a complex proto-eukaryote-like last universal common ancestor, and evaluate alternative models for origins of the unique planctomycete cell plan. Overall, the structural and molecular evidence is not consistent with convergent evolution of eukaryote-like features in a bacterium and favors a homologous relationship of Planctomycetes and eukaryotes.
Collapse
Affiliation(s)
- John A Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | | |
Collapse
|
28
|
Souza WD. Prokaryotic cells: structural organisation of the cytoskeleton and organelles. Mem Inst Oswaldo Cruz 2012; 107:283-93. [DOI: 10.1590/s0074-02762012000300001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/23/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
- Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brasil; Instituto Nacional de Metrologia, Brasil
| |
Collapse
|
29
|
Abstract
Tubulins are a family of GTPases that are key components of the cytoskeleton in all eukaryotes and are distantly related to the FtsZ GTPase that is involved in cell division in most bacteria and many archaea. Among prokaryotes, bona fide tubulins have been identified only in bacteria of the genus Prosthecobacter. These bacterial tubulin genes appear to have been horizontally transferred from eukaryotes. Here we describe tubulins encoded in the genomes of thaumarchaeota of the genus Nitrosoarchaeum that we denote artubulins Phylogenetic analysis results are compatible with the origin of eukaryotic tubulins from artubulins. These findings expand the emerging picture of the origin of key components of eukaryotic functional systems from ancestral forms that are scattered among the extant archaea.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
30
|
Pilhofer M, Ladinsky MS, McDowall AW, Petroni G, Jensen GJ. Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton. PLoS Biol 2011; 9:e1001213. [PMID: 22162949 PMCID: PMC3232192 DOI: 10.1371/journal.pbio.1001213] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 10/25/2011] [Indexed: 01/21/2023] Open
Abstract
Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as "bacterial microtubules" (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening.
Collapse
Affiliation(s)
- Martin Pilhofer
- California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, Division of Biology, Pasadena, California, United States of America
- * E-mail: (GJJ); (MP)
| | - Mark S. Ladinsky
- California Institute of Technology, Pasadena, California, United States of America
| | - Alasdair W. McDowall
- California Institute of Technology, Pasadena, California, United States of America
| | - Giulio Petroni
- Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Grant J. Jensen
- California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, Division of Biology, Pasadena, California, United States of America
- * E-mail: (GJJ); (MP)
| |
Collapse
|
31
|
Aylett CH, Löwe J, Amos LA. New Insights into the Mechanisms of Cytomotive Actin and Tubulin Filaments. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:1-71. [DOI: 10.1016/b978-0-12-386033-0.00001-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|