1
|
Hu W, Bhattacharya S, Hong T, Wong P, Li L, Vaidehi N, Kalkum M, Shively JE. Structural characterization of a dimeric complex between the short cytoplasmic domain of CEACAM1 and the pseudo tetramer of S100A10-Annexin A2 using NMR and molecular dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183451. [PMID: 32835655 DOI: 10.1016/j.bbamem.2020.183451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
AIIt, a heterotetramer of S100A10 (P11) and Annexin A2, plays a key role in calcium dependent, membrane associations with a variety of proteins. We previously showed that AIIt interacts with the short cytoplasmic domain (12 amino acids) of CEACAM1 (CEACAM1-SF). Since the cytoplasmic domains of CEACAM1 help regulate the formation of cis- or trans-dimers at the cell membrane, we investigated the possible role of their association with AIIt in this process. Using NMR and molecular dynamics, we show that AIIt and its pseudoheterodimer interacts with two molecules of short cytoplasmic domain isoform peptides, and that interaction depends on the binding motif 454-Phe-Gly-Lys-Thr-457 where Phe-454 binds in a hydrophobic pocket of AIIt, the null mutation Phe454Ala reduces binding by 2.5 fold, and the pseudophosphorylation mutant Thr457Glu reduces binding by three fold. Since these two residues in CEACAM1-SF were also found to play a role in the binding of calmodulin and G-actin at the membrane, we hypothesize a sequential set of three interactions are responsible for regulation of cis- to trans-dimerization of CEACAM1. The hydrophobic binding pocket in AIIt corresponds to a previously identified binding pocket for a peptide found in SMARCA3 and AHNAK, suggesting a conserved functional motif in AIIt allowing multiple proteins to reversibly interact with integral membrane proteins in a calcium dependent manner.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Molecular Imaging and Therapy, , Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Teresa Hong
- Department of Molecular Imaging and Therapy, , Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Patty Wong
- Department of Molecular Imaging and Therapy, , Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Lin Li
- Department of Molecular Imaging and Therapy, , Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, , Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - John E Shively
- Department of Molecular Imaging and Therapy, , Beckman Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America.
| |
Collapse
|
2
|
Zhang Z, La Placa D, Nguyen T, Kujawski M, Le K, Li L, Shively JE. CEACAM1 regulates the IL-6 mediated fever response to LPS through the RP105 receptor in murine monocytes. BMC Immunol 2019; 20:7. [PMID: 30674283 PMCID: PMC6345024 DOI: 10.1186/s12865-019-0287-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Systemic inflammation and the fever response to pathogens are coordinately regulated by IL-6 and IL-1β. We previously showed that CEACAM1 regulates the LPS driven expression of IL-1β in murine neutrophils through its ITIM receptor. Results We now show that the prompt secretion of IL-6 in response to LPS is regulated by CEACAM1 expression on bone marrow monocytes. Ceacam1−/− mice over-produce IL-6 in response to an i.p. LPS challenge, resulting in prolonged surface temperature depression and overt diarrhea compared to their wild type counterparts. Intraperitoneal injection of a 64Cu-labeled LPS, PET imaging agent shows confined localization to the peritoneal cavity, and fluorescent labeled LPS is taken up by myeloid splenocytes and muscle endothelial cells. While bone marrow monocytes and their progenitors (CD11b+Ly6G−) express IL-6 in the early response (< 2 h) to LPS in vitro, these cells are not detected in the bone marrow after in vivo LPS treatment perhaps due to their rapid and complete mobilization to the periphery. Notably, tissue macrophages are not involved in the early IL-6 response to LPS. In contrast to human monocytes, TLR4 is not expressed on murine bone marrow monocytes. Instead, the alternative LPS receptor RP105 is expressed and recruits MD1, CD14, Src, VAV1 and β-actin in response to LPS. CEACAM1 negatively regulates RP105 signaling in monocytes by recruitment of SHP-1, resulting in the sequestration of pVAV1 and β-actin from RP105. Conclusion This novel pathway and regulation of IL-6 signaling by CEACAM1 defines a novel role for monocytes in the fever response of mice to LPS. Electronic supplementary material The online version of this article (10.1186/s12865-019-0287-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA.
| | - Deirdre La Placa
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Tung Nguyen
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Maciej Kujawski
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Keith Le
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Lin Li
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - John E Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA.
| |
Collapse
|
3
|
Ghazarian H, Hu W, Mao A, Nguyen T, Vaidehi N, Sligar S, Shively JE. NMR analysis of free and lipid nanodisc anchored CEACAM1 membrane proximal peptides with Ca 2+/CaM. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:787-797. [PMID: 30639287 DOI: 10.1016/j.bbamem.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/16/2018] [Accepted: 01/08/2019] [Indexed: 11/28/2022]
Abstract
CEACAM1, a homotypic transmembrane receptor with 12 or 72 amino acid cytosolic domain isoforms, is converted from inactive cis-dimers to active trans-dimers by calcium-calmodulin (Ca2+/CaM). Previously, the weak binding of Ca2+/CaM to the human 12 AA cytosolic domain was studied using C-terminal anchored peptides. We now show the binding of 15N labeled Phe-454 cytosolic domain peptides in solution or membrane anchored using NMR demonstrates a significant role for the lipid bilayer. Although binding is increased by the mutation Phe454Ala, this mutation was previously shown to abrogate actin binding. On the other hand, Ca2+/CaM binding is abrogated by phosphorylation of nearby Thr-457, a post-translation modification required for actin binding and subsequent in vitro lumen formation. Binding of Ca2+/CaM to a membrane proximal peptide from the long 72 AA cytosolic domain anchored to lipid nanodiscs was very weak compared to lipid free conditions, suggesting membrane specific effects between the two isoforms. NMR analysis of 15N labeled Ca2+/CaM with unlabeled peptides showed the C-lobe of Ca2+/CaM is involved in peptide interactions, and hydrophobic residues such as Met-109, Val-142 and Met-144 play important roles in binding peptide. This information was incorporated into transmembrane models of CEACAM1 binding to Ca2+/CaM. The lack of Ca2+/CaM binding to phosphorylated Thr-457, a residue we have previously shown to be phosphorylated by CaMK2D, also dependent on Ca2+/CaM, suggests stepwise binding of the cytosolic domain first to Ca2+/CaM and then to actin.
Collapse
Affiliation(s)
- Haike Ghazarian
- Department of Molecular Imaging and Therapy, Diabetes, Metabolism and Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America; City of Hope Irell and Manella Graduate School of Biological Sciences, 1450 East Duarte road, Duarte, CA 91010, United States of America
| | - Weidong Hu
- Department of Molecular Imaging and Therapy, Diabetes, Metabolism and Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Allen Mao
- Department of Molecular Imaging and Therapy, Diabetes, Metabolism and Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Tung Nguyen
- Department of Molecular Imaging and Therapy, Diabetes, Metabolism and Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Nagarajan Vaidehi
- Department of Molecular Imaging and Therapy, Diabetes, Metabolism and Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America
| | - Stephen Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States of America
| | - John E Shively
- Department of Molecular Imaging and Therapy, Diabetes, Metabolism and Research Institute of City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States of America.
| |
Collapse
|
4
|
Dery KJ, Silver C, Yang L, Shively JE. Interferon regulatory factor 1 and a variant of heterogeneous nuclear ribonucleoprotein L coordinately silence the gene for adhesion protein CEACAM1. J Biol Chem 2018; 293:9277-9291. [PMID: 29720400 DOI: 10.1074/jbc.ra117.001507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
The adhesion protein carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is widely expressed in epithelial cells as a short cytoplasmic isoform (S-iso) and in leukocytes as a long cytoplasmic isoform (L-iso) and is frequently silenced in cancer by unknown mechanisms. Previously, we reported that interferon response factor 1 (IRF1) biases alternative splicing (AS) to include the variable exon 7 (E7) in CEACAM1, generating long cytoplasmic isoforms. We now show that IRF1 and a variant of heterogeneous nuclear ribonucleoprotein L (Lv1) coordinately silence the CEACAM1 gene. RNAi-mediated Lv1 depletion in IRF1-treated HeLa and melanoma cells induced significant CEACAM1 protein expression, reversed by ectopic Lv1 expression. The Lv1-mediated CEACAM1 repression resided in residues Gly71-Gly89 and Ala38-Gly89 in Lv1's N-terminal extension. ChIP analysis of IRF1- and FLAG-tagged Lv1-treated HeLa cells and global treatment with the global epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A indicated that IRF1 and Lv1 together induce chromatin remodeling, restricting IRF1 access to the CEACAM1 promoter. In interferon γ-treated HeLa cells, the transcription factor SP1 did not associate with the CEACAM1 promoter, but binding by upstream transcription factor 1 (USF1), a known CEACAM1 regulator, was greatly enhanced. ChIP-sequencing revealed that Lv1 overexpression in IRF1-treated cells induces transcriptional silencing across many genes, including DCC (deleted in colorectal carcinoma), associated with CEACAM5 in colon cancer. Notably, IRF1, but not IRF3 and IRF7, affected CEACAM1 expression via translational repression. We conclude that IRF1 and Lv1 coordinately regulate CEACAM1 transcription, alternative splicing, and translation and may significantly contribute to CEACAM1 silencing in cancer.
Collapse
Affiliation(s)
- Kenneth J Dery
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Craig Silver
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, and
| | - Lu Yang
- The Integrative Genomics and Bioinformatics Core, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - John E Shively
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010,
| |
Collapse
|
5
|
Dery KJ, Kujawski M, Grunert D, Wu X, Ngyuen T, Cheung C, Yim JH, Shively JE. IRF-1 regulates alternative mRNA splicing of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in breast epithelial cells generating an immunoreceptor tyrosine-based inhibition motif (ITIM) containing isoform. Mol Cancer 2014; 13:64. [PMID: 24650050 PMCID: PMC4113144 DOI: 10.1186/1476-4598-13-64] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/07/2014] [Indexed: 11/17/2022] Open
Abstract
Background Interferon regulatory factor-1 (IRF-1) is a master regulator of IFN-γ induced gene transcription. Previously we have shown that IRF-1 transcriptionally induces CEACAM1 via an ISRE (Interferon-Stimulated Response Element) in its promoter. CEACAM1 pre-mRNA undergoes extensive alternative splicing (AS) generating isoforms to produce either a short (S) cytoplasmic domain expressed primarily in epithelial cells or as an ITIM-containing long (L) isoform in immune cells. Methods The transcriptional and molecular mechanism of CEACAM1 minigenes AS containing promoter ISREs mutations in the breast epithelial, MDA-MB-468, cell line was detected using flow cytometry. In addition, transcriptome sequencing was utilized to determine whether IRF-1 could direct the AS of other genes as well. Tumor xenografts were used to evaluate CEACAM1 isoform expression on the leading edge of breast tumor cells. Results In the present study, we provide evidence that CEACAM1’s promoter and variable exon 7 cross-talk allowing IRF-1 to direct AS events. Transcriptome sequencing shows that IRF-1 can also induce the global AS of genes involved in regulation of growth and differentiation as well as genes of the cytokine family. Furthermore, MDA-MB-468 cells grown as tumor xenografts exhibit an AS switch to the L-isoform of CEACAM1, demonstrating that an in vivo inflammatory milieu is also capable of generating the AS switch, similar to that found in human breast cancers Mol Cancer 7:46, 2008. Conclusions The novel AS regulatory activities attributed to IRF-1 indicate that the IFN-γ response involves a global change in both gene transcription and AS in breast epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John E Shively
- Departments of Immunology, Beckman Research Institute, City of Hope, Duarte, California, USA.
| |
Collapse
|
6
|
Nguyen T, Chen CJ, Shively JE. Phosphorylation of CEACAM1 molecule by calmodulin kinase IID in a three-dimensional model of mammary gland lumen formation. J Biol Chem 2013; 289:2934-45. [PMID: 24302721 DOI: 10.1074/jbc.m113.496992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1), a transmembrane protein, expressed on normal breast epithelial cells is down-regulated in breast cancer. Phosphorylation of Thr-457 on the short cytoplasmic domain isoform (CEACAM1-SF) that is predominant in normal epithelial cells is required for lumen formation in a three-dimensional model that involves apoptosis of the central acinar cells. Calmodulin kinase IID (CaMKIID) was selected as a candidate for the kinase required for Thr-457 phosphorylation from a gene chip analysis comparing genes up-regulated in MCF7 cells expressing wild type CEACAM1-SF compared with the T457A-mutated gene (Chen, C. J., Kirshner, J., Sherman, M. A., Hu, W., Nguyen, T., and Shively, J. E. (2007) J. Biol. Chem. 282, 5749-5760). Up-regulation of CaMKIID during lumen formation was confirmed by analysis of mRNA and protein levels. CaMKIID was able to phosphorylate a synthetic peptide corresponding to the cytoplasmic domain of CEACAM1-SF and was covalently bound to biotinylated and T457C-modified peptide in the presence of a kinase trap previously described by Shokat and co-workers (Maly, D. J., Allen, J. A., and Shokat, K. M. (2004) J. Am. Chem. Soc. 126, 9160-9161). When cell lysates from wild type-transfected MCF7 cells undergoing lumen formation were incubated with the peptide and kinase trap, a cross-linked band corresponding to CaMKIID was observed. When these cells were treated with an RNAi that inhibits CaMKIID expression, lumen formation was blocked by over 90%. We conclude that CaMKIID specifically phosphorylates Thr-457 on CEACAM1-SF, which in turn regulates the process of lumen formation via apoptosis of the central acinar cells.
Collapse
Affiliation(s)
- Tung Nguyen
- From the Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | | | | |
Collapse
|
7
|
Dahal GR, Rawson J, Gassaway B, Kwok B, Tong Y, Ptácek LJ, Bates E. An inwardly rectifying K+ channel is required for patterning. Development 2012; 139:3653-64. [PMID: 22949619 DOI: 10.1242/dev.078592] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations that disrupt function of the human inwardly rectifying potassium channel KIR2.1 are associated with the craniofacial and digital defects of Andersen-Tawil Syndrome, but the contribution of Kir channels to development is undefined. Deletion of mouse Kir2.1 also causes cleft palate and digital defects. These defects are strikingly similar to phenotypes that result from disrupted TGFβ/BMP signaling. We use Drosophila melanogaster to show that a Kir2.1 homolog, Irk2, affects development by disrupting BMP signaling. Phenotypes of irk2 deficient lines, a mutant irk2 allele, irk2 siRNA and expression of a dominant-negative Irk2 subunit (Irk2DN) all demonstrate that Irk2 function is necessary for development of the adult wing. Compromised Irk2 function causes wing-patterning defects similar to those found when signaling through a Drosophila BMP homolog, Decapentaplegic (Dpp), is disrupted. To determine whether Irk2 plays a role in the Dpp pathway, we generated flies in which both Irk2 and Dpp functions are reduced. Irk2DN phenotypes are enhanced by decreased Dpp signaling. In wild-type flies, Dpp signaling can be detected in stripes along the anterior/posterior boundary of the larval imaginal wing disc. Reducing function of Irk2 with siRNA, an irk2 deletion, or expression of Irk2DN reduces the Dpp signal in the wing disc. As Irk channels contribute to Dpp signaling in flies, a similar role for Kir2.1 in BMP signaling may explain the morphological defects of Andersen-Tawil Syndrome and the Kir2.1 knockout mouse.
Collapse
Affiliation(s)
- Giri Raj Dahal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Piggot TJ, Piñeiro Á, Khalid S. Molecular Dynamics Simulations of Phosphatidylcholine Membranes: A Comparative Force Field Study. J Chem Theory Comput 2012; 8:4593-609. [DOI: 10.1021/ct3003157] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Thomas J. Piggot
- School of Chemistry, University
of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Ángel Piñeiro
- Department of Applied Physics,
University of Santiago de Compostela, Campus Vida, 15782, Santiago
de Compostela, Spain
| | - Syma Khalid
- School of Chemistry, University
of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|