1
|
Cong J, Cheng B, Liu J, He P. RTEF-1 Inhibits Vascular Smooth Muscle Cell Calcification through Regulating Wnt/β-Catenin Signaling Pathway. Calcif Tissue Int 2021; 109:203-214. [PMID: 33713163 PMCID: PMC8273062 DOI: 10.1007/s00223-021-00833-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
Vascular calcification (VC) is highly prevailing in cardiovascular disease, diabetes mellitus, and chronic kidney disease and, when present, is associated with cardiovascular events and mortality. The osteogenic differentiation of vascular smooth muscle cells (VSMCs) is regarded as the foundation for mediating VC. Related transcriptional enhancer factor (RTEF-1), also named as transcriptional enhanced associate domain (TEAD) 4 or transcriptional enhancer factor-3 (TEF-3), is a nuclear transcriptional factor with a potent effect on cardiovascular diseases, apart from its oncogenic role in the canonical Hippo pathway. However, the role and mechanism of RTEF-1 in VC, particularly in calcification of VSMCs, are poorly understood. Our results showed that RTEF-1 was reduced in calcified VSMCs. RTEF-1 significantly ameliorated β-glycerophosphate (β-GP)-induced VSMCs calcification, as detected by alizarin red staining and calcium content assay. Also, RTEF-1 reduced alkaline phosphatase (ALP) activity and decreased expressions of osteoblast markers such as Osteocalcin and Runt-related transcription factor-2 (Runx2), but increased expression of contractile protein, including SM α-actin (α-SMA). Additionally, RTEF-1 inhibited β-GP-activated Wnt/β-catenin pathway which plays a critical role in calcification and osteogenic differentiation of VSMCs. Specifically, RTEF-1 reduced the levels of Wnt3a, p-β-catenin (Ser675), glycogen synthase kinase-3β (GSK-3β), and p-GSK-3β (Ser9), but increased the levels of p-β-catenin (Ser33/37). Also, RTEF-1 increased the ratio of p-β-catenin (Ser33/37) to β-catenin proteins and decreased the ratio of p-GSK-3β (Ser9) to GSK-3β protein. LiCl, a Wnt/β-catenin signaling activator, was observed to reverse the protective effect of RTEF-1 overexpression on VSMCs calcification induced by β-GP. Accordingly, Dickkopf-1 (Dkk1), a Wnt antagonist, attenuated the role of RTEF-1 deficiency in β-GP-induced VSMCs calcification. Taken together, we concluded that RTEF-1 ameliorated β-GP-induced calcification and osteoblastic differentiation of VSMCs by inhibiting Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jingjing Cong
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Bei Cheng
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Jinyu Liu
- Department of Rehabilitative Medicine, Wuhan NO.1 Hospital, Wuhan, 430022, Hubei Province, China
| | - Ping He
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
2
|
Kim KS, Seibert JT, Edea Z, Graves KL, Kim ES, Keating AF, Baumgard LH, Ross JW, Rothschild MF. Characterization of the acute heat stress response in gilts: III. Genome-wide association studies of thermotolerance traits in pigs. J Anim Sci 2018; 96:2074-2085. [PMID: 29669012 DOI: 10.1093/jas/sky131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/12/2018] [Indexed: 01/09/2023] Open
Abstract
Heat stress is one of the limiting factors negatively affecting pig production, health, and fertility. Characterizing genomic regions responsible for variation in HS tolerance would be useful in identifying important genetic factor(s) regulating physiological responses to HS. In the present study, we performed genome-wide association analyses for respiration rate (RR), rectal temperature (TR), and skin temperature (TS) during HS in 214 crossbred gilts genotyped for 68,549 single nucleotide polymorphisms (SNP) using the Porcine SNP 70K BeadChip. Considering the top 0.1% smoothed phenotypic variances explained by SNP windows, we detected 26, 26, 21, and 14 genes that reside within SNPs explaining the largest proportion of variance (top 25 SNP windows) and associated with change in RR (ΔRR) from thermoneutral (TN) conditions to HS environment, as well as the change in prepubertal TR (ΔTR), change in postpubertal ΔTR, and change in TS (ΔTS), respectively. The region between 28.85 Mb and 29.10 Mb on chromosome 16 explained about 0.05% of the observed variation for ΔRR. The growth hormone receptor (GHR) gene resides in this region and is associated with the HS response. The other important candidate genes associated with ΔRR (PAIP1, NNT, and TEAD4), ΔTR (LIMS2, TTR, and TEAD4), and ΔTS (ERBB4, FKBP1B, NFATC2, and ATP9A) have reported roles in the cellular stress response. The SNP explaining the largest proportion of variance and located within and in the vicinity of genes were related to apoptosis or cellular stress and are potential candidates that underlie the physiological response to HS in pigs.
Collapse
Affiliation(s)
- Kwan-Suk Kim
- Department of Animal Science, Iowa State University, Ames, IA.,Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA
| | - Zewde Edea
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Kody L Graves
- Department of Animal Science, Iowa State University, Ames, IA
| | - Eui-Soo Kim
- Department of Animal Science, Iowa State University, Ames, IA.,Recombinetics, St. Paul, MN
| | | | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | | |
Collapse
|
3
|
Cummins EP, Keogh CE. Respiratory gases and the regulation of transcription. Exp Physiol 2016; 101:986-1002. [DOI: 10.1113/ep085715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Eoin P. Cummins
- School of Medicine; University College Dublin; Belfield 4 Dublin Ireland
| | - Ciara E. Keogh
- School of Medicine; University College Dublin; Belfield 4 Dublin Ireland
| |
Collapse
|
4
|
Górnikiewicz B, Ronowicz A, Krzemiński M, Sachadyn P. Changes in gene methylation patterns in neonatal murine hearts: Implications for the regenerative potential. BMC Genomics 2016; 17:231. [PMID: 26979619 PMCID: PMC4791959 DOI: 10.1186/s12864-016-2545-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/26/2016] [Indexed: 01/19/2023] Open
Abstract
Background The neonatal murine heart is able to regenerate after severe injury; this capacity however, quickly diminishes and it is lost within the first week of life. DNA methylation is an epigenetic mechanism which plays a crucial role in development and gene expression regulation. Under investigation here are the changes in DNA methylation and gene expression patterns which accompany the loss of regenerative potential. Results The MeDIP-chip (methylated DNA immunoprecipitation microarray) approach was used in order to compare global DNA methylation profiles in whole murine hearts at day 1, 7, 14 and 56 complemented with microarray transcriptome profiling. We found that the methylome transition from day 1 to day 7 is characterized by the excess of genomic regions which gain over those that lose DNA methylation. A number of these changes were retained until adulthood. The promoter genomic regions exhibiting increased DNA methylation at day 7 as compared to day 1 are significantly enriched in the genes critical for heart maturation and muscle development. Also, the promoter genomic regions showing an increase in DNA methylation at day 7 relative to day 1 are significantly enriched with a number of transcription factors binding motifs including those of Mfsd6l, Mef2c, Meis3, Tead4, and Runx1. Conclusions The results indicate that the extensive alterations in DNA methylation patterns along the development of neonatal murine hearts are likely to contribute to the decline of regenerative capabilities observed shortly after birth. This conclusion is supported by the evidence that an increase in DNA methylation in the neonatal murine heart from day 1 to day 7 occurs in the promoter regions of genes playing important roles in cardiovascular system development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2545-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bartosz Górnikiewicz
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Ronowicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Krzemiński
- Department of Probability and Biomathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland.
| |
Collapse
|
5
|
Sun S, Cheng B, Sun PG, Wu XH, Wu QQ, He P. RTEF-1 protects against oxidative damage induced by H2O2 in human umbilical vein endothelial cells through Klotho activation. Exp Biol Med (Maywood) 2015; 240:1606-13. [PMID: 26041389 DOI: 10.1177/1535370215587914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/27/2015] [Indexed: 11/15/2022] Open
Abstract
Oxidative stress is a main risk factor of vascular aging, which may lead to age-associated diseases. Related transcriptional enhancer factor-1 (RTEF-1) has been suggested to regulate many genes expression which are involved in the endothelial angiogenesis and vasodilation. However, whether RTEF-1 has a direct role in anti-oxidation and what specific genes are involved in RTEF-1-driven anti-oxidation have not been elucidated. In this study, we found that overexpressing RTEF-1 in H2O2-treated human umbilical vein endothelial cells decreased senescence-associated-β-galactosidase (SA-β-gal)-positive cells and G0/G1 cells population. The expressions of p53 and p21 were decreased in H2O2-treated RTEF-1 o/e human umbilical vein endothelial cells. However, specific small interfering RNA of RTEF-1 totally reversed the anti-oxidation effect of RTEF-1 and inhibited RTEF-1-induced decreased p53 and p21 expressions. It demonstrated that RTEF-1 could protect cells from H2O2-induced oxidative damage. In addition, we demonstrated that RTEF-1 could up-regulate Klotho gene expression and activate its promoter. Furthermore, Klotho small interfering RNA significantly blocked RTEF-1-driven endothelial cell protection from H2O2-induced oxidative damage and increased p53 and p21 expressions. These results reveal that RTEF-1 is a potential anti-oxidation gene and can prevent H2O2-induced endothelial cell oxidative damage by activating Klotho.
Collapse
Affiliation(s)
- Shan Sun
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bei Cheng
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pan-Ge Sun
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Hua Wu
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin-Qin Wu
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ping He
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Che P, Liu J, Shan Z, Wu R, Yao C, Cui J, Zhu X, Wang J, Burnett MS, Wang S, Wang J. miR-125a-5p impairs endothelial cell angiogenesis in aging mice via RTEF-1 downregulation. Aging Cell 2014; 13:926-34. [PMID: 25059272 PMCID: PMC4331751 DOI: 10.1111/acel.12252] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2014] [Indexed: 12/05/2022] Open
Abstract
Increasing evidence suggests that microRNAs (miRNAs) play important roles in impaired endothelial cell (EC) angiogenesis during aging. However, their exact roles in the aging process remain unclear. We aimed to determine whether miRNAs cause angiogenesis defects in ECs during aging and to uncover the underlying mechanisms. To study the miRNA-induced changes in ECs during aging, we performed microarray analyses on arterial ECs collected from young and aging mice. Using qRT–PCR, we showed that microRNA-125a-5p (mir-125a-5p) expression was approximately 2.9 times higher in old endothelial cells (OECs) compared with samples collected from young animals. Western blot assays showed a lower expression level of an mir-125a-5p target known as related transcriptional enhancer factor-1 (RTEF-1) in OECs compared with its expression levels in young cells. Overexpression of mir-125a-5p in young endothelial cells (YECs) using pre-mir-125a-5p caused the downregulation of RTEF-1, endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) and resulted in impaired angiogenesis, as evidenced by spheroid sprouting and tube formation assays in vitro. Conversely, repression of mir-125a-5p in OECs using anti-mir-125a-5p increased RTEF-1, eNOS and VEGF expression and improved EC angiogenesis. Importantly, impaired angiogenesis caused by knock-down of RTEF-1 was not efficiently rescued by anti-mir-125a-5p. Dual-luciferase reporter gene analysis showed that RTEF-1 is a direct target of mir-125a-5p, which regulates angiogenesis by repressing RTEF-1 expression and modulating eNOS and VEGF expression. These findings indicate that mir-125a-5p and RTEF-1 are potential therapeutic targets for improving EC-mediated angiogenesis in elderly individuals.
Collapse
Affiliation(s)
- Peng Che
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Jun Liu
- Department of Cardiology The First Affiliated Hospital of Sun Yat‐Sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Zhen Shan
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Ridong Wu
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Chen Yao
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Jin Cui
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Xiaonan Zhu
- Department of Pharmacology Laboratory The First Affiliated Hospital of Sun Yat‐sen University NO.58 Zhongshan Road 2 Guangzhou 510080 China
| | - Junwei Wang
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Mary Susan Burnett
- Cardiovascular Research Institute MedStar Health Research Institute Washington DC 20010 USA
| | - Shenming Wang
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - JinSong Wang
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| |
Collapse
|
7
|
Guo S, Philbrick MJ, An X, Xu M, Wu J. Response gene to complement 32 (RGC-32) in endothelial cells is induced by glucose and helpful to maintain glucose homeostasis. Int J Clin Exp Med 2014; 7:2541-2549. [PMID: 25356107 PMCID: PMC4211757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
Endothelium dysfunction has been understood primarily in terms of abnormal vasomotor function, which plays an important role in the pathogenesis of diabetes and chronic diabetic complications. However, it has not been fully studied that the endothelium may regulate metabolism itself. The response gene to complement 32 (RGC-32) has be considered as an angiogenic inhibitor in the context of endothelial cells. We found that RGC-32 was induced by high fat diet in vivo and by glucose or insulin in endothelial cells, and then we set out to investigate the role of endothelial RGC-32 in metabolism. DNA array analysis and qPCR results showed that glutamine-fructose-6-phosphate aminotransferase [isomerizing] 1 (GFPT1), solute carrier family 2 (facilitated glucose transporter), member 12 (SLC2A12, GLUT12) and glucagon-like peptide 2 receptor (GLP2R) may be among possible glucose metabolism related downstream genes of RGC-32. Additionally, in the mice with endothelial specific over-expressed RGC-32, the disposal of carbohydrate was improved without changing insulin sensitivity when mice were faced with high fat diet challenges. Taken together, our findings suggest that RGC-32 in the endothelial cells regulates glucose metabolism related genes and subsequent helps to maintain the homeostasis of blood glucose.
Collapse
Affiliation(s)
- Shuzhen Guo
- School of Preclinical Medicine, Beijing University of Chinese MedicineBeijing, China
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Melissa J Philbrick
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Xiaojing An
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Ming Xu
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Jiaping Wu
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
8
|
Seo KS, Park JH, Heo JY, Jing K, Han J, Min KN, Kim C, Koh GY, Lim K, Kang GY, Uee Lee J, Yim YH, Shong M, Kwak TH, Kweon GR. SIRT2 regulates tumour hypoxia response by promoting HIF-1α hydroxylation. Oncogene 2014; 34:1354-62. [PMID: 24681946 DOI: 10.1038/onc.2014.76] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 01/28/2014] [Accepted: 02/14/2014] [Indexed: 02/07/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that has a central role in the regulation of tumour metabolism under hypoxic conditions. HIF-1α stimulates glycolytic energy production and promotes tumour growth. Sirtuins are NAD(+)-dependent protein deacetylases that regulate cellular metabolism in response to stress; however, their involvement in the hypoxic response remains unclear. In this study, it is shown that SIRT2-mediated deacetylation of HIF-1α regulates its stability in tumour cells. SIRT2 overexpression destabilized HIF-1α under hypoxic conditions, whereas HIF-1α protein levels were high in SIRT2-deficient cells. SIRT2 directly interacted with HIF-1α and deacetylated Lys709 of HIF-1α. Deacetylation of HIF-1α by SIRT2 resulted in increased binding affinity for prolyl hydroxylase 2, a key regulator of HIF-1α stability, and increased HIF-1α hydroxylation and ubiquitination. Moreover, a pharmacological agent that increased the intracellular NAD(+)/NADH ratio led to the degradation of HIF-1α by increasing SIRT2-mediated deacetylation and subsequent hydroxylation. These findings suggest that SIRT2-mediated HIF-1α deacetylation is critical for the destablization of HIF-1α and the hypoxic response of tumour cells.
Collapse
Affiliation(s)
- K-S Seo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - J-H Park
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - J-Y Heo
- 1] Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea [2] Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - K Jing
- 1] Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea [2] Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - J Han
- 1] Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea [2] Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - K-N Min
- KT&G Life Sciences Corp. R&D Center, Suwon, Korea
| | - C Kim
- National Research Laboratory of Vascular Biology and Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - G Y Koh
- National Research Laboratory of Vascular Biology and Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - K Lim
- 1] Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea [2] Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea [3] Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Korea
| | - G-Y Kang
- Diatech Korea Co., Ltd, Seoul, Korea
| | - J Uee Lee
- Department of Pathology, St. Mary's Hospital, The Catholic University, Daejeon, Korea
| | - Y-H Yim
- Korea Research Institute of Standard and Science, Daejeon, Korea
| | - M Shong
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - T-H Kwak
- KT&G Life Sciences Corp. R&D Center, Suwon, Korea
| | - G R Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
9
|
Guo S, Messmer-Blust AF, Wu J, Song X, Philbrick MJ, Shie JL, Rana JS, Li J. Role of A20 in cIAP-2 protection against tumor necrosis factor α (TNF-α)-mediated apoptosis in endothelial cells. Int J Mol Sci 2014; 15:3816-33. [PMID: 24595242 PMCID: PMC3975369 DOI: 10.3390/ijms15033816] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/30/2014] [Accepted: 02/06/2014] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor α (TNF-α) influences endothelial cell viability by altering the regulatory molecules involved in induction or suppression of apoptosis. However, the underlying mechanisms are still not completely understood. In this study, we demonstrated that A20 (also known as TNFAIP3, tumor necrosis factor α-induced protein 3, and an anti-apoptotic protein) regulates the inhibitor of apoptosis protein-2 (cIAP-2) expression upon TNF-α induction in endothelial cells. Inhibition of A20 expression by its siRNA resulted in attenuating expression of TNF-α-induced cIAP-2, yet not cIAP-1 or XIAP. A20-induced cIAP-2 expression can be blocked by the inhibition of phosphatidyl inositol-3 kinase (PI3-K), but not nuclear factor (NF)-κB, while concomitantly increasing the number of endothelial apoptotic cells and caspase 3 activation. Moreover, TNF-α-mediated induction of apoptosis was enhanced by A20 inhibition, which could be rescued by cIAP-2. Taken together, these results identify A20 as a cytoprotective factor involved in cIAP-2 inhibitory pathway of TNF-α-induced apoptosis. This is consistent with the idea that endothelial cell viability is dependent on interactions between inducers and suppressors of apoptosis, susceptible to modulation by TNF-α.
Collapse
Affiliation(s)
- Shuzhen Guo
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Angela F Messmer-Blust
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jiaping Wu
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Xiaoxiao Song
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Melissa J Philbrick
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jue-Lon Shie
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jamal S Rana
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jian Li
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
10
|
He P, Philbrick MJ, An X, Wu J, Messmer-Blust AF, Li J. Endothelial differentiation gene-1, a new downstream gene is involved in RTEF-1 induced angiogenesis in endothelial cells. PLoS One 2014; 9:e88143. [PMID: 24520353 PMCID: PMC3919740 DOI: 10.1371/journal.pone.0088143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/03/2014] [Indexed: 11/18/2022] Open
Abstract
Related Transcriptional Enhancer Factor-1 (RTEF-1) has been suggested to induce angiogenesis through regulating target genes. Whether RTEF-1 has a direct role in angiogenesis and what specific genes are involved in RTEF-1 driven angiogenisis have not been elucidated. We found that over-expressing RTEF-1 in Human dermal microvascular endothelial cells-1 (HMEC-1) significantly increased endothelial cell aggregation, growth and migration while the processes were inhibited by siRNA of RTEF-1. In addition, we observed that Endothelial differentiation gene-1 (Edg-1) expression was up-regulated by RTEF-1 at the transcriptional level. RTEF-1 could bind to Edg-1 promoter and subsequently induce its activity. Edg-1 siRNA significantly blocked RTEF-1-driven increases in endothelial cell aggregation in a Matrigel assay and retarded RTEF-1-induced endothelial cell growth and migration. Pertussis Toxin (PTX), a Gi/Go protein sensitive inhibitor, was found to inhibit RTEF-1 driven endothelial cell aggregation and migration. Our data demonstrates that Edg-1 is a potential target gene of RTEF-1 and is involved in RTEF-1-induced angiogenesis in endothelial cells. Gi/Go protein coupled receptor pathway plays a role in RTEF-1 driven angiogenesis in endothelial cells.
Collapse
Affiliation(s)
- Ping He
- Department of Gerontology of Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melissa J. Philbrick
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaojin An
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jiaping Wu
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angela F. Messmer-Blust
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jian Li
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ma J, Zhang L, Tipton AR, Wu J, Messmer-Blust AF, Philbrick MJ, Qi Y, Liu ST, Liu H, Li J, Guo S. Structural and functional analysis of the related transcriptional enhancer factor-1 and NF-κB interaction. Am J Physiol Heart Circ Physiol 2013; 306:H233-42. [PMID: 24213609 DOI: 10.1152/ajpheart.00069.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The related transcriptional enhancer factor-1 (RTEF-1) increases gene transcription of hypoxia-inducible factor 1α (HIF-1α) and enhances angiogenesis in endothelium. Both hypoxia and inflammatory factor TNF-α regulate gene expression of HIF-1α, but how RTEF-1 and TNF-α coordinately regulate HIF-1α gene transcription is unclear. Here, we found that RTEF-1 interacts with p65 subunit of NF-κB, a primary mediator of TNF-α. RTEF-1 increased HIF-1α promoter activity, whereas expression of p65 subunit inhibited the stimulatory effect. By contrast, knockdown of p65 markedly enhanced RTEF-1 stimulation on the HIF-1α promoter activity (7-fold). A physical interaction between RTEF-1 and p65 was confirmed by coimmunoprecipitation experiments in cells and glutathione S-transferase (GST)-pull-down assays. A computational analysis of RTEF-1 crystal structures revealed that a conserved surface of RTEF-1 potentially interacts with p65 via four amino acid residues located at T347, Y349, R351, and Y352. We performed site-directed mutagenesis and GST-pull-down assays and demonstrated that Tyr352 (Y352) in RTEF-1 is a key site for the formation of RTEF-1 and p65-NF-κB complex. An alanine mutation at Y352 of RTEF-1 disrupted the interaction of RTEF-1 with p65. Moreover, expression of RTEF-1 decreased TNF-α-induced HIF-1α promoter activity, IL-1β, and IL-6 mRNA levels in cells; however, the effect of RTEF-1 was largely lost when Y352 was mutated to alanine. These results indicate that RTEF-1 interacts with p65-NF-κB through Y352 and that they antagonize each other for HIF-1α transcriptional activation, suggesting a novel mechanism by which RTEF-1 regulates gene expression, linking hypoxia to inflammation.
Collapse
Affiliation(s)
- Jieliang Ma
- College of Life Science, Liaoning University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bharadwaj AS, Appukuttan B, Wilmarth PA, Pan Y, Stempel AJ, Chipps TJ, Benedetti EE, Zamora DO, Choi D, David LL, Smith JR. Role of the retinal vascular endothelial cell in ocular disease. Prog Retin Eye Res 2013; 32:102-80. [PMID: 22982179 PMCID: PMC3679193 DOI: 10.1016/j.preteyeres.2012.08.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 12/14/2022]
Abstract
Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell.
Collapse
Affiliation(s)
| | | | - Phillip A. Wilmarth
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University
| | - Yuzhen Pan
- Casey Eye Institute, Oregon Health & Science University
| | | | | | | | | | - Dongseok Choi
- Department of Public Health and Preventive Medicine, Oregon Health & Science University
| | - Larry L. David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University
| | - Justine R. Smith
- Casey Eye Institute, Oregon Health & Science University
- Department of Cell & Developmental Biology, Oregon Health & Science University
| |
Collapse
|
13
|
|
14
|
Jin Y, Messmer-Blust AF, Li J. The role of transcription enhancer factors in cardiovascular biology. Trends Cardiovasc Med 2012; 21:1-5. [PMID: 22498013 DOI: 10.1016/j.tcm.2011.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The transcriptional enhancer factor (TEF) multigene family is primarily functional in muscle-specific genes through binding to MCAT elements that activate or repress transcription of many genes in response to physiological and pathological stimuli. Among the TEF family, TEF-1, RTEF-1, and DTEF-1 are critical regulators of cardiac and smooth muscle-specific genes during cardiovascular development and cardiac disorders including cardiac hypertrophy. Emerging evidence suggests that in addition to functioning as muscle-specific transcription factors, members of the TEF family may be key mediators of gene expression induced by hypoxia in endothelial cells by virtue of its multidomain organization, potential for post-translational modifications, and interactions with numerous transcription factors, which represent a cell-selective control mediator of nuclear signaling. We review the recent literature demonstrating the involvement of the TEF family of transcription factors in the regulation of differential gene expression in cardiovascular physiology and pathology.
Collapse
Affiliation(s)
- Yi Jin
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
15
|
Messmer-Blust AF, Philbrick MJ, Guo S, Wu J, He P, Guo S, Li J. RTEF-1 attenuates blood glucose levels by regulating insulin-like growth factor binding protein-1 in the endothelium. Circ Res 2012; 111:991-1001. [PMID: 22843786 DOI: 10.1161/circresaha.112.268110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Related transcriptional enhancer factor-1 (RTEF-1) plays an important role in endothelial cell function by regulating angiogenesis; however, the mechanism underlying the role of RTEF-1 in the endothelium in vivo is not well defined. OBJECTIVE We investigated the biological functions of RTEF-1 by disrupting the gene that encodes it in mice endothelium -specific RTEF-1-deficient transgenic mice (RTEF-1(-/-)). METHODS AND RESULTS RTEF-1(-/-) mice showed significantly increased blood glucose levels and insulin resistance, accompanied by decreased levels of insulin-like growth factor binding protein-1 (IGFBP-1) mRNA in the endothelium and decreased serum IGFBP-1 levels. Additionally, the RTEF-1(-/-) phenotype was exacerbated when the mice were fed a high-fat diet, which correlated with decreased IGFBP-1 levels. In contrast, vascular endothelial cadherin/RTEF-1-overexpressing(1) transgenic mice (VE-Cad/RTEF1) demonstrated improved glucose clearance and insulin sensitivity in response to a high-fat diet. Furthermore, we demonstrated that RTEF-1 upregulates IGFBP-1 through selective binding and promotion of transcription from the insulin response element site. Insulin prevented RTEF-1 expression and significantly inhibited IGFBP-1 transcription in endothelial cells in a dose-dependent fashion. CONCLUSIONS To the best of our knowledge, this is the first report demonstrating that RTEF-1 stimulates promoter activity through an insulin response element and also mediates the effects of insulin on gene expression. These results show that RTEF-1-stimulated IGFBP-1 expression may be central to the mechanism by which RTEF-1 attenuates blood glucose levels. These findings provide the basis for novel insights into the transcriptional regulation of IGFBP-1 and contribute to our understanding of the role of vascular endothelial cells in metabolism.
Collapse
Affiliation(s)
- Angela F Messmer-Blust
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Appukuttan B, McFarland TJ, Stempel A, Kassem JB, Hartzell M, Zhang Y, Bond D, West K, Wilson R, Stout A, Pan Y, Ilias H, Robertson K, Klein ML, Wilson D, Smith JR, Stout JT. The related transcriptional enhancer factor-1 isoform, TEAD4(216), can repress vascular endothelial growth factor expression in mammalian cells. PLoS One 2012; 7:e31260. [PMID: 22761647 PMCID: PMC3382240 DOI: 10.1371/journal.pone.0031260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022] Open
Abstract
Increased cellular production of vascular endothelial growth factor (VEGF) is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4) protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4(216), which represses VEGF promoter activity. The TEAD4(216) isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE), which is the sequence critical to hypoxia inducible factor (HIF)-mediated effects. The TEAD4(216) protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4(216) isoform can competitively repress the stimulatory activity of the TEAD4(434) and TEAD4(148) enhancers. Synthesis of the native VEGF(165) protein and cellular proliferation is suppressed by the TEAD4(216) isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4(216) isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases.
Collapse
Affiliation(s)
- Binoy Appukuttan
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rodríguez-Jiménez FJ, Moreno-Manzano V. Modulation of hypoxia-inducible factors (HIF) from an integrative pharmacological perspective. Cell Mol Life Sci 2012; 69:519-34. [PMID: 21984597 PMCID: PMC11115032 DOI: 10.1007/s00018-011-0813-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/17/2011] [Accepted: 09/01/2011] [Indexed: 12/11/2022]
Abstract
Oxygen homeostasis determines the activity and expression of a multitude of cellular proteins and the interplay of pathways that affect crucial cellular processes for development, physiology, and pathophysiology. Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment and drives cellular adaptation to such conditions. Selective gene expression under hypoxic conditions is the result of an exquisite regulation of HIF, from the pre-transcriptional stage of the HIF gene to the final transcriptional activity of HIF protein. We provide a dissected analysis of HIF modulation with special focus on hypoxic conditions and HIF pharmacological interventions that can guide the application of any future HIF-mediated therapy.
Collapse
|