1
|
2-deoxyglucose transiently inhibits yeast AMPK signaling and triggers glucose transporter endocytosis, potentiating the drug toxicity. PLoS Genet 2022; 18:e1010169. [PMID: 35951639 PMCID: PMC9398028 DOI: 10.1371/journal.pgen.1010169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/23/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
2-deoxyglucose is a glucose analog that impacts many aspects of cellular physiology. After its uptake and its phosphorylation into 2-deoxyglucose-6-phosphate (2DG6P), it interferes with several metabolic pathways including glycolysis and protein N-glycosylation. Despite this systemic effect, resistance can arise through strategies that are only partially understood. In yeast, 2DG resistance is often associated with mutations causing increased activity of the yeast 5’-AMP activated protein kinase (AMPK), Snf1. Here we focus on the contribution of a Snf1 substrate in 2DG resistance, namely the alpha-arrestin Rod1 involved in nutrient transporter endocytosis. We report that 2DG triggers the endocytosis of many plasma membrane proteins, mostly in a Rod1-dependent manner. Rod1 participates in 2DG-induced endocytosis because 2DG, following its phosphorylation by hexokinase Hxk2, triggers changes in Rod1 post-translational modifications and promotes its function in endocytosis. Mechanistically, this is explained by a transient, 2DG-induced inactivation of Snf1/AMPK by protein phosphatase 1 (PP1). We show that 2DG-induced endocytosis is detrimental to cells, and the lack of Rod1 counteracts this process by stabilizing glucose transporters at the plasma membrane. This facilitates glucose uptake, which may help override the metabolic blockade caused by 2DG, and 2DG export—thus terminating the process of 2DG detoxification. Altogether, these results shed a new light on the regulation of AMPK signaling in yeast and highlight a remarkable strategy to bypass 2DG toxicity involving glucose transporter regulation.
Collapse
|
2
|
Ramon M, Dang TVT, Broeckx T, Hulsmans S, Crepin N, Sheen J, Rolland F. Default Activation and Nuclear Translocation of the Plant Cellular Energy Sensor SnRK1 Regulate Metabolic Stress Responses and Development. THE PLANT CELL 2019; 31:1614-1632. [PMID: 31123051 PMCID: PMC6635846 DOI: 10.1105/tpc.18.00500] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 05/18/2023]
Abstract
Energy homeostasis is vital to all living organisms. In eukaryotes, this process is controlled by fuel gauging protein kinases: AMP-activated kinase in mammals, Sucrose Non-Fermenting1 (SNF1) in yeast (Saccharomyces cerevisiae), and SNF1-related kinase1 (SnRK1) in plants. These kinases are highly conserved in structure and function and (according to this paradigm) operate as heterotrimeric complexes of catalytic-α and regulatory β- and γ-subunits, responding to low cellular nucleotide charge. Here, we determined that the Arabidopsis (Arabidopsis thaliana) SnRK1 catalytic α-subunit has regulatory subunit-independent activity, which is consistent with default activation (and thus controlled repression), a strategy more generally used by plants. Low energy stress (caused by darkness, inhibited photosynthesis, or hypoxia) also triggers SnRK1α nuclear translocation, thereby controlling induced but not repressed target gene expression to replenish cellular energy for plant survival. The myristoylated and membrane-associated regulatory β-subunits restrict nuclear localization and inhibit target gene induction. Transgenic plants with forced SnRK1α-subunit localization consistently were affected in metabolic stress responses, but their analysis also revealed key roles for nuclear SnRK1 in leaf and root growth and development. Our findings suggest that plants have modified the ancient, highly conserved eukaryotic energy sensor to better fit their unique lifestyle and to more effectively cope with changing environmental conditions.
Collapse
Affiliation(s)
- Matthew Ramon
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Tuong Vi T Dang
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| | - Tom Broeckx
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| | - Sander Hulsmans
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| | - Nathalie Crepin
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium
| |
Collapse
|
3
|
Lubitz T, Welkenhuysen N, Shashkova S, Bendrioua L, Hohmann S, Klipp E, Krantz M. Network reconstruction and validation of the Snf1/AMPK pathway in baker's yeast based on a comprehensive literature review. NPJ Syst Biol Appl 2015; 1:15007. [PMID: 28725459 PMCID: PMC5516868 DOI: 10.1038/npjsba.2015.7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/19/2015] [Accepted: 07/14/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND/OBJECTIVES The SNF1/AMPK protein kinase has a central role in energy homeostasis in eukaryotic cells. It is activated by energy depletion and stimulates processes leading to the production of ATP while it downregulates ATP-consuming processes. The yeast SNF1 complex is best known for its role in glucose derepression. METHODS We performed a network reconstruction of the Snf1 pathway based on a comprehensive literature review. The network was formalised in the rxncon language, and we used the rxncon toolbox for model validation and gap filling. RESULTS We present a machine-readable network definition that summarises the mechanistic knowledge of the Snf1 pathway. Furthermore, we used the known input/output relationships in the network to identify and fill gaps in the information transfer through the pathway, to produce a functional network model. Finally, we convert the functional network model into a rule-based model as a proof-of-principle. CONCLUSIONS The workflow presented here enables large scale reconstruction, validation and gap filling of signal transduction networks. It is analogous to but distinct from that established for metabolic networks. We demonstrate the workflow capabilities, and the direct link between the reconstruction and dynamic modelling, with the Snf1 network. This network is a distillation of the knowledge from all previous publications on the Snf1/AMPK pathway. The network is a knowledge resource for modellers and experimentalists alike, and a template for similar efforts in higher eukaryotes. Finally, we envisage the workflow as an instrumental tool for reconstruction of large signalling networks across Eukaryota.
Collapse
Affiliation(s)
- Timo Lubitz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niek Welkenhuysen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Sviatlana Shashkova
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Loubna Bendrioua
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Krantz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in Saccharomyces cerevisiae. Biochem J 2015; 468:33-47. [PMID: 25730376 DOI: 10.1042/bj20140734] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glc7 is the only catalytic subunit of the protein phosphatase type 1 in the yeast S. cerevisiae and, together with its regulatory subunits, is involved in many essential processes. Analysis of the non-essential mutants in the regulatory subunits of Glc7 revealed that the lack of Reg1, and no other subunit, causes hypersensitivity to unfolded protein response (UPR)-inducers, which was concomitant with an augmented UPR element-dependent transcriptional response. The Glc7-Reg1 complex takes part in the regulation of the yeast AMP-activated serine/threonine protein kinase Snf1 in response to glucose. We demonstrate in the present study that the observed phenotypes of reg1 mutant cells are attributable to the inappropriate activation of Snf1. Indeed, growth in the presence of limited concentrations of glucose, where Snf1 is active, or expression of active forms of Snf1 in a wild-type strain increased the sensitivity to the UPR-inducer tunicamycin. Furthermore, reg1 mutant cells showed a sustained HAC1 mRNA splicing and KAR2 mRNA levels during the recovery phase of the UPR, and dysregulation of the Ire1-oligomeric equilibrium. Finally, overexpression of protein phosphatases Ptc2 and Ptc3 alleviated the growth defect of reg1 cells under endoplasmic reticulum (ER) stress conditions. Altogether, our results reveal that Snf1 plays an important role in the attenuation of the UPR, as well as identifying the protein kinase and its effectors as possible pharmacological targets for human diseases that are associated with insufficient UPR activation.
Collapse
|
5
|
Hsu HE, Liu TN, Yeh CS, Chang TH, Lo YC, Kao CF. Feedback Control of Snf1 Protein and Its Phosphorylation Is Necessary for Adaptation to Environmental Stress. J Biol Chem 2015; 290:16786-96. [PMID: 25947383 DOI: 10.1074/jbc.m115.639443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 12/26/2022] Open
Abstract
Snf1, a member of the AMP-activated protein kinase family, plays a critical role in metabolic energy control in yeast cells. Snf1 activity is activated by phosphorylation of Thr-210 on the activation loop of its catalytic subunit; following activation, Snf1 regulates stress-responsive transcription factors. Here, we report that the level of Snf1 protein is dramatically decreased in a UBP8- and UBP10-deleted yeast mutant (ubp8Δ ubp10Δ), and this is independent of transcriptional regulation and proteasome-mediated degradation. Surprisingly, most Snf1-mediated functions, including glucose limitation regulation, utilization of alternative carbon sources, stress responses, and aging, are unaffected in this strain. Snf1 phosphorylation in ubp8Δ ubp10Δ cells is hyperactivated upon stress, which may compensate for the loss of the Snf1 protein and protect cells against stress and aging. Furthermore, artificial elevation of Snf1 phosphorylation (accomplished through deletion of REG1, which encodes a protein that regulates Snf1 dephosphorylation) restored Snf1 protein levels and the regulation of Snf1 activity in ubp8Δ ubp10Δ cells. Our results reveal the existence of a feedback loop that controls Snf1 protein level and its phosphorylation, which is masked by Ubp8 and Ubp10 through an unknown mechanism. We propose that this dynamic modulation of Snf1 phosphorylation and its protein level may be important for adaptation to environmental stress.
Collapse
Affiliation(s)
- Hsiang-En Hsu
- From the Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taipei, Taiwan
| | - Tzu-Ning Liu
- the Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617
| | - Chung-Shu Yeh
- the Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 11221, and the Genomics Research Center and
| | - Tien-Hsien Chang
- the Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 11221, and the Genomics Research Center and
| | - Yi-Chen Lo
- the Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617,
| | - Cheng-Fu Kao
- From the Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taipei, Taiwan
| |
Collapse
|
6
|
Jiao R, Postnikoff S, Harkness TA, Arnason TG. The SNF1 Kinase Ubiquitin-associated Domain Restrains Its Activation, Activity, and the Yeast Life Span. J Biol Chem 2015; 290:15393-15404. [PMID: 25869125 DOI: 10.1074/jbc.m115.647032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 02/04/2023] Open
Abstract
The enzyme family of heterotrimeric AMP-dependent protein kinases is activated upon low energy states, conferring a switch toward energy-conserving metabolic pathways through immediate kinase actions on enzyme targets and delayed alterations in gene expression through its nuclear relocalization. This family is evolutionarily conserved, including the presence of a ubiquitin-associated (UBA) motif in most catalytic subunits. The potential for the UBA domain to promote protein associations or direct subcellular location, as seen in other UBA-containing proteins, led us to query whether the UBA domain within the yeast AMP-dependent protein kinase ortholog, SNF1 kinase, was important in these aspects of its regulation. Here, we demonstrate that conserved UBA motif mutations significantly alter SNF1 kinase activation and biological activity, including enhanced allosteric subunit associations and increased oxidative stress resistance and life span. Significantly, the enhanced UBA-dependent longevity and oxidative stress response are at least partially dependent on the Fkh1 and Fkh2 stress response transcription factors, which in turn are shown to influence Snf1 gene expression.
Collapse
Affiliation(s)
- Rubin Jiao
- Departments of Anatomy and Cell Biology and University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Spike Postnikoff
- Departments of Anatomy and Cell Biology and University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Troy A Harkness
- Departments of Anatomy and Cell Biology and University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Terra G Arnason
- Departments of Anatomy and Cell Biology and University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
7
|
da Silveira Dos Santos AX, Riezman I, Aguilera-Romero MA, David F, Piccolis M, Loewith R, Schaad O, Riezman H. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Mol Biol Cell 2014; 25:3234-46. [PMID: 25143408 PMCID: PMC4196872 DOI: 10.1091/mbc.e14-03-0851] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The regulatory pathways required to maintain eukaryotic lipid homeostasis are largely unknown. We developed a systematic approach to uncover new players in the regulation of lipid homeostasis. Through an unbiased mass spectrometry-based lipidomic screening, we quantified hundreds of lipid species, including glycerophospholipids, sphingolipids, and sterols, from a collection of 129 mutants in protein kinase and phosphatase genes of Saccharomyces cerevisiae. Our approach successfully identified known kinases involved in lipid homeostasis and uncovered new ones. By clustering analysis, we found connections between nutrient-sensing pathways and regulation of glycerophospholipids. Deletion of members of glucose- and nitrogen-sensing pathways showed reciprocal changes in glycerophospholipid acyl chain lengths. We also found several new candidates for the regulation of sphingolipid homeostasis, including a connection between inositol pyrophosphate metabolism and complex sphingolipid homeostasis through transcriptional regulation of AUR1 and SUR1. This robust, systematic lipidomic approach constitutes a rich, new source of biological information and can be used to identify novel gene associations and function.
Collapse
Affiliation(s)
- Aline Xavier da Silveira Dos Santos
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Maria-Auxiliadora Aguilera-Romero
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| | - Fabrice David
- École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Manuele Piccolis
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Robbie Loewith
- National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
8
|
Liu J, Huang X, Withers BR, Blalock E, Liu K, Dickson RC. Reducing sphingolipid synthesis orchestrates global changes to extend yeast lifespan. Aging Cell 2013; 12:833-41. [PMID: 23725375 DOI: 10.1111/acel.12107] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2013] [Indexed: 01/09/2023] Open
Abstract
Studies of aging and longevity are revealing how diseases that shorten life can be controlled to improve the quality of life and lifespan itself. Two strategies under intense study to accomplish these goals are rapamycin treatment and calorie restriction. New strategies are being discovered including one that uses low-dose myriocin treatment. Myriocin inhibits the first enzyme in sphingolipid synthesis in all eukaryotes, and we showed recently that low-dose myriocin treatment increases yeast lifespan at least in part by down-regulating the sphingolipid-controlled Pkh1/2-Sch9 (ortholog of mammalian S6 kinase) signaling pathway. Here we show that myriocin treatment induces global effects and changes expression of approximately forty percent of the yeast genome with 1252 genes up-regulated and 1497 down-regulated (P < 0.05) compared with untreated cells. These changes are due to modulation of evolutionarily conserved signaling pathways including activation of the Snf1/AMPK pathway and down-regulation of the protein kinase A (PKA) and target of rapamycin complex 1 (TORC1) pathways. Many processes that enhance lifespan are regulated by these pathways in response to myriocin treatment including respiration, carbon metabolism, stress resistance, protein synthesis, and autophagy. These extensive effects of myriocin match those of rapamycin and calorie restriction. Our studies in yeast together with other studies in mammals reveal the potential of myriocin or related compounds to lower the incidence of age-related diseases in humans and improve health span.
Collapse
Affiliation(s)
| | - Xinhe Huang
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center; University of Kentucky College of Medicine; Lexington; KY; 40536; USA
| | - Bradley R. Withers
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center; University of Kentucky College of Medicine; Lexington; KY; 40536; USA
| | - Eric Blalock
- Department of Molecular and Biomedical Pharmacology; University of Kentucky College of Medicine; Lexington; KY; 40536; USA
| | - Ke Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education; College of Life Science, Sichuan University; Chengdu; 610064; China
| | - Robert C. Dickson
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center; University of Kentucky College of Medicine; Lexington; KY; 40536; USA
| |
Collapse
|
9
|
Ruiz A, Xu X, Carlson M. Ptc1 protein phosphatase 2C contributes to glucose regulation of SNF1/AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae. J Biol Chem 2013; 288:31052-8. [PMID: 24019512 DOI: 10.1074/jbc.m113.503763] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The SNF1/AMP-activated protein kinases (AMPKs) function in energy regulation in eukaryotic cells. SNF1/AMPKs are αβγ heterotrimers that are activated by phosphorylation of the activation loop Thr on the catalytic subunit. Protein kinases that activate SNF1/AMPK have been identified, but the protein phosphatases responsible for dephosphorylation of the activation loop are less well defined. For Saccharomyces cerevisiae SNF1/AMPK, Reg1-Glc7 protein phosphatase 1 and Sit4 type 2A-related phosphatase function together to dephosphorylate Thr-210 on the Snf1 catalytic subunit during growth on high concentrations of glucose; reg1Δ and sit4Δ single mutations do not impair dephosphorylation when inappropriate glycogen synthesis, also caused by these mutations, is blocked. We here present evidence that Ptc1 protein phosphatase 2C also has a role in dephosphorylation of Snf1 Thr-210 in vivo. The sit4Δ ptc1Δ mutant exhibited partial defects in regulation of the phosphorylation state of Snf1. The reg1Δ ptc1Δ mutant was viable only when expressing mutant Snf1 proteins with reduced kinase activity, and Thr-210 phosphorylation of the mutant SNF1 heterotrimers was substantially elevated during growth on high glucose. This evidence, together with findings on the reg1Δ sit4Δ mutant, indicates that although Reg1-Glc7 plays the major role, all three phosphatases contribute to maintenance of the Snf1 activation loop in the dephosphorylated state during growth on high glucose. Ptc1 has overlapping functions with Reg1-Glc7 and Sit4 in glucose regulation of SNF1/AMPK and cell viability.
Collapse
Affiliation(s)
- Amparo Ruiz
- From the Department of Genetics and Development, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
10
|
Ramon M, Ruelens P, Li Y, Sheen J, Geuten K, Rolland F. The hybrid four-CBS-domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:11-25. [PMID: 23551663 PMCID: PMC6599549 DOI: 10.1111/tpj.12192] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 05/17/2023]
Abstract
The AMPK/SNF1/SnRK1 protein kinases are a family of ancient and highly conserved eukaryotic energy sensors that function as heterotrimeric complexes. These typically comprise catalytic α subunits and regulatory β and γ subunits, the latter function as the energy-sensing modules of animal AMPK through adenosine nucleotide binding. The ability to monitor accurately and adapt to changing environmental conditions and energy supply is essential for optimal plant growth and survival, but mechanistic insight in the plant SnRK1 function is still limited. In addition to a family of γ-like proteins, plants also encode a hybrid βγ protein that combines the Four-Cystathionine β-synthase (CBS)-domain (FCD) structure in γ subunits with a glycogen-binding domain (GBD), typically found in β subunits. We used integrated functional analyses by ectopic SnRK1 complex reconstitution, yeast mutant complementation, in-depth phylogenetic reconstruction, and a seedling starvation assay to show that only the hybrid KINβγ protein that recruited the GBD around the emergence of the green chloroplast-containing plants, acts as the canonical γ subunit required for heterotrimeric complex formation. Mutagenesis and truncation analysis further show that complex interaction in plant cells and γ subunit function in yeast depend on both a highly conserved FCD and a pre-CBS domain, but not the GBD. In addition to novel insight into canonical AMPK/SNF/SnRK1 γ subunit function, regulation and evolution, we provide a new classification of plant FCD genes as a convenient and reliable tool to predict regulatory partners for the SnRK1 energy sensor and novel FCD gene functions.
Collapse
Affiliation(s)
- Matthew Ramon
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Philip Ruelens
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Yi Li
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative, Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Koen Geuten
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| |
Collapse
|
11
|
Sanz P, Rubio T, Garcia-Gimeno MA. AMPKbeta subunits: more than just a scaffold in the formation of AMPK complex. FEBS J 2013; 280:3723-33. [DOI: 10.1111/febs.12364] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/15/2013] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia; CSIC and Centro de Investigación en Red de Enfermedades Raras (CIBERER); Spain
| | - Teresa Rubio
- Instituto de Biomedicina de Valencia; CSIC and Centro de Investigación en Red de Enfermedades Raras (CIBERER); Spain
| | - Maria Adelaida Garcia-Gimeno
- Instituto de Biomedicina de Valencia; CSIC and Centro de Investigación en Red de Enfermedades Raras (CIBERER); Spain
| |
Collapse
|
12
|
Chandrashekarappa DG, McCartney RR, Schmidt MC. Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation. J Biol Chem 2012. [PMID: 23184934 DOI: 10.1074/jbc.m112.422659] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) is a conserved signaling molecule in a pathway that maintains adenosine triphosphate homeostasis. Recent studies have suggested that low energy adenylate ligands bound to one or more sites in the γ subunit of AMPK promote the formation of an active, phosphatase-resistant conformation. We propose an alternative model in which the kinase domain association with the heterotrimer core results in activation of the kinase catalytic activity, whereas low energy adenylate ligands bound in the kinase active site promote phosphatase resistance. Purified Snf1 α subunit with a conservative, single amino acid substitution in the kinase domain is protected from dephosphorylation by adenosine diphosphate in the complete absence of the β and γ subunits. Staurosporine, a compound known to bind to the active site of many protein kinases, mediates strong protection from dephosphorylation to yeast and mammalian AMPK enzymes. The analog-sensitive Snf1-I132G protein but not wild type Snf1 exhibits protection from dephosphorylation when bound by the adenosine analog 2NM-PP1 in vitro and in vivo. These data demonstrate that ligand binding to the Snf1 active site can mediate phosphatase resistance. Finally, Snf1 kinase with an amino acid substitution at the interface of the kinase domain and the heterotrimer core exhibits normal regulation of phosphorylation in vivo but greatly reduced Snf1 kinase activity, supporting a model in which kinase domain association with the heterotrimer core is needed for kinase activation.
Collapse
Affiliation(s)
- Dakshayini G Chandrashekarappa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
13
|
Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases. Proc Natl Acad Sci U S A 2012; 109:8652-7. [PMID: 22589305 DOI: 10.1073/pnas.1206280109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The SNF1/AMP-activated protein kinases are αβγ-heterotrimers that sense and regulate energy status in eukaryotes. They are activated by phosphorylation of the catalytic Snf1/α subunit, and the Snf4/γ regulatory subunit regulates phosphorylation through adenine nucleotide binding. In Saccharomyces cerevisiae, the Snf1 subunit is phosphorylated on the activation-loop Thr-210 in response to glucose limitation. To assess the requirement of the heterotrimer for regulated Thr-210 phosphorylation, we examined Snf1 and a truncated Snf1 kinase domain (residues 1-309) that has partial Snf1 function. Snf1(1-309) does not interact with the β and Snf4/γ regulatory subunits, and its activity was independent of them in vivo. Phosphorylation of both Snf1 and Snf1(1-309) increased in response to glucose limitation in wild-type cells and in cells lacking β- and Snf4/γ-subunits. These results indicate that glucose regulation of activation-loop phosphorylation can occur by mechanism(s) that function independently of the regulatory subunits. We further show that the Reg1-Glc7 protein phosphatase 1 and Sit4 type 2A-like phosphatase are largely responsible for dephosphorylation of Thr-210 of Snf1(1-309). Together, these findings suggest that these two phosphatases mediate heterotrimer-independent regulation of Thr-210 phosphorylation.
Collapse
|