1
|
Liu W, Cai X, Duan S, Shen J, Wu J, Zhou Z, Yu K, He C, Wang Y. E3 ubiquitin ligase Smurf1 promotes cardiomyocyte pyroptosis by mediating ubiquitin-dependent degradation of TRIB2 in a rat model of heart failure. Int Rev Immunol 2025:1-15. [PMID: 39749701 DOI: 10.1080/08830185.2024.2434058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 11/17/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE Heart failure (HF) causes structural and functional changes in the heart, with the pyroptosis-mediated inflammatory response as the core link in HF pathogenesis. E3 ubiquitin ligases participate in cardiovascular disease progression. Here, we explored the underlying molecular mechanisms of E3 ubiquitin ligase Smurf1 in governing HF. METHODS HF rat/H9C2 cell models were established by doxorubicin intraperitoneal injections/hypoxia-reoxygenation (H/R), and treated with Smurf1 siRNA and oe-TRIB2 lentivirus plasmids or the NF-κB pathway inhibitor PDTC/si-smurf1, si-TRIB2, protease inhibitor MG132, or lysosomal inhibitor NH4Cl. The cardiac function/cardiac tissue pathological changes/fibrosis in HF rats were evaluated by echocardiography/H&E and Masson staining. GSDMD-N expression was determined by immunohistochemistry. Cell viability/lactate dehydrogenase (LDH) activity/IL-1β and IL-18 levels were measured by CCK-8/LDH kit/ELISA. The interaction between TRIB2 and Smurf1/TRIB2 ubiquitination levels was assessed by co-immunoprecipitation assay. The expression levels of Smurf1 and TRIB2 messenger RNA (mRNA) were determined by RT-qPCR. Levels of Smurf1/TRIB2/the NF-κB pathway-related factors/pyroptosis-related factors and TRIB2 mRNA were determined by Western blot/RT-qPCR. RESULTS Smurf1 was highly expressed in H/R-induced H9C2 cells/HF rats, while its knockdown up-regulated TRIB2 and repressed the NF-κB pathway, reduced cardiomyocyte pyroptosis, and attenuated HF. Mechanistically, Smurf1 promoted TRIB2 degradation through an ubiquitin-dependent manner and activated the NF-κB pathway under H/R conditions. TRIB2 silencing annulled Smurf1 knockdown-regulated NF-κB pathway and cardiomyocyte pyroptosis. TRIB2 overexpression inactivated the NF-κB pathway and reduced cardiomyocyte pyroptosis, thus retarding HF. CONCLUSION Smurf1 was highly expressed in HF rats, which promoted TRIB2 ubiquitination degradation and activated the NF-κB pathway, thereby promoting cardiomyocyte pyroptosis in HF rats.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Xin Cai
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Shiying Duan
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Jihua Shen
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Jiayuan Wu
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Zhengwei Zhou
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Kaili Yu
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Caihong He
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Yuqin Wang
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| |
Collapse
|
2
|
Wei S, Liu Y, Wang Z, Wei T, Zhou W, Li W, Zhang J, Liu Z, Liu Z. Smurf2 Suppresses Proliferation and Cell Cycle of Triple-Negative Breast Cancer Cells by Promoting the Polyubiquitination and Degradation of RPL35A. J Cell Mol Med 2025; 29:e70394. [PMID: 39871432 PMCID: PMC11772314 DOI: 10.1111/jcmm.70394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/29/2025] Open
Abstract
Human L35a ribosomal protein (RPL35A) has been reported to confer higher drug resistance and viability to triple-negative breast cancer (TNBC) cells, but the mechanism related to its promotion of TNBC malignant progression is still unclear. Here, we found that silencing of RPL35A could inhibit the proliferation of TNBC cells by suppressing the G1/S phase transition. Furthermore, SMAD-specific E3 ubiquitin protein ligase 2 (Smurf2) was found to be a potential upstream ubiquitin ligase of RPL35A. Smurf2 could interact with RPL35A and promote its degradation and K63-linked polyubiquitination, thereby suppressing the G1/S phase transition and proliferation of TNBC cells. In addition, the roles of Smurf2 were confirmed in a xenograft mouse model. Finally, we found a negative correlation between the protein levels of RPL35A and Smurf2 in human TNBC tissues. In summary, Smurf2 inhibits the proliferation of TNBC cells by blocking the cell cycle process, which is associated with regulating RPL35A.
Collapse
Affiliation(s)
- Siyu Wei
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Yuying Liu
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Zhihao Wang
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Ti Wei
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Wenkai Zhou
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Wanwan Li
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Jiaxin Zhang
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Zhiyi Liu
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Zhao Liu
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Digestive DiseasesXuzhou Medical UniversityXuzhouJiangsuChina
- Research Center of Digestive DiseasesThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
3
|
Bhargava D, Rusakow D, Zheng W, Awad S, Katz JP. KLF5 inhibition initiates epithelial-mesenchymal transition in non-transformed human squamous epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119789. [PMID: 38909912 PMCID: PMC11365763 DOI: 10.1016/j.bbamcr.2024.119789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The transcriptional regulator Krüppel-like factor 5 (KLF5) is highly expressed in squamous epithelial cells of the esophagus. Increased KLF5 activity induces tumorigenesis and promotes metastasis in several cancers, although this function appears to be context-dependent. Here, we demonstrate that acute KLF5 inhibition, both genetically and with the potent KLF5 inhibitor ML264, causes non-transformed human primary esophageal squamous epithelial cells to enter the epithelial to mesenchymal transition (EMT). Moreover, chronic KLF5 inhibition with ML264 leads to the development of cells with a mesenchymal phenotype characterized by the expression of mesenchymal markers and functionally by reduced cell growth and increased migration and cellular invasion. This EMT resulting from chronic KLF5 inhibition is not driven by β-Catenin or TGF-β signaling. Pharmacologically, ML264 inhibits KLF5 by promoting proteasomal-mediated degradation. Taken together, we demonstrate that reduced KLF5 activity reprograms epithelial cells towards a mesenchymal phenotype and enhances their migratory and invasive potential. These findings have potential implications not only for esophageal cancers but also for normal processes such as esophageal tissue repair following injury.
Collapse
Affiliation(s)
- Dharmendra Bhargava
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Rusakow
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Wilson Zheng
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Silina Awad
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan P Katz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Huang C, Lai W, Mao S, Song D, Zhang J, Xiao X. Quercetin-induced degradation of RhoC suppresses hepatocellular carcinoma invasion and metastasis. Cancer Med 2024; 13:e7082. [PMID: 38457248 PMCID: PMC10923047 DOI: 10.1002/cam4.7082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Tumor metastasis and recurrence are major causes of mortality in patients with hepatocellular carcinoma (HCC) that is still lack of effective therapeutic targets and drugs. Previous reports implied that ras homolog family member C (RhoC) plays a toxic role on metastasis and proliferation of cancer. METHODS In this research, the correlation between RhoC and metastasis ability was confirmed by in vitro experiments and TCGA database. We explored whether quercetin could inhibit cell migration or invasion by transwell assay. Real-time PCR, overexpression and ubiquitination assay, etc. were applied in mechanism study. Primary HCC cells and animal models including patient-derived xenografts (PDXs) were employed to evaluate the anti-metastasis effects of quercetin. RESULTS Clinical relevance and in vitro experiments further confirmed the level of RhoC was positively correlated with invasion and metastasis ability of HCC. Then we uncovered that quercetin could attenuate invasion and metastasis of HCC by downregulating RhoC's level in vitro, in vivo and PDXs. Furthermore, mechanistic investigations displayed quercetin hindered the E3 ligase expression of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) leading to enhancement of RhoC's ubiquitination and proteasomal degradation. CONCLUSIONS Our research has revealed the novel mechanisms quercetin regulates degradation of RhoC level by targeting SMURF2 and identified quercetin may be a potential compound for HCC therapy.
Collapse
Affiliation(s)
- Chunlong Huang
- Department of Hepatobiliary Surgery, The first affiliated hospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Weihua Lai
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| | - Shuai Mao
- Department of Hepatobiliary Surgery, The first affiliated hospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Deli Song
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jihong Zhang
- Department of Hepatobiliary Surgery, The first affiliated hospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiao Xiao
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
5
|
Yang Y, Bhargava D, Chen X, Zhou T, Dursuk G, Jiang W, Wang J, Zong Z, Katz SI, Lomberk GA, Urrutia RA, Katz JP. KLF5 and p53 comprise an incoherent feed-forward loop directing cell-fate decisions following stress. Cell Death Dis 2023; 14:299. [PMID: 37130837 PMCID: PMC10154356 DOI: 10.1038/s41419-023-05731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/04/2023]
Abstract
In response to stress, cells make a critical decision to arrest or undergo apoptosis, mediated in large part by the tumor suppressor p53. Yet the mechanisms of these cell fate decisions remain largely unknown, particularly in normal cells. Here, we define an incoherent feed-forward loop in non-transformed human squamous epithelial cells involving p53 and the zinc-finger transcription factor KLF5 that dictates responses to differing levels of cellular stress from UV irradiation or oxidative stress. In normal unstressed human squamous epithelial cells, KLF5 complexes with SIN3A and HDAC2 repress TP53, allowing cells to proliferate. With moderate stress, this complex is disrupted, and TP53 is induced; KLF5 then acts as a molecular switch for p53 function by transactivating AKT1 and AKT3, which direct cells toward survival. By contrast, severe stress results in KLF5 loss, such that AKT1 and AKT3 are not induced, and cells preferentially undergo apoptosis. Thus, in human squamous epithelial cells, KLF5 gates the response to UV or oxidative stress to determine the p53 output of growth arrest or apoptosis.
Collapse
Affiliation(s)
- Yizeng Yang
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Dharmendra Bhargava
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Xiao Chen
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Taicheng Zhou
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Gizem Dursuk
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Wenpeng Jiang
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jinshen Wang
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Zhen Zong
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sharyn I Katz
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Gwen A Lomberk
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Raul A Urrutia
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jonathan P Katz
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 2023; 90:29-44. [PMID: 36806560 PMCID: PMC10023514 DOI: 10.1016/j.semcancer.2023.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cancer therapies, the success of most treatments has been impeded by drug resistance. The crucial role of tumor cell plasticity has emerged recently in cancer progression, cancer stemness and eventually drug resistance. Cell plasticity drives tumor cells to reversibly convert their cell identity, analogous to differentiation and dedifferentiation, to adapt to drug treatment. This phenotypical switch is driven by alteration of the transcriptome. Several pluripotent factors from the KLF and SOX families are closely associated with cancer pathogenesis and have been revealed to regulate tumor cell plasticity. In this review, we particularly summarize recent studies about KLF4, KLF5 and SOX factors in cancer development and evolution, focusing on their roles in cancer initiation, invasion, tumor hierarchy and heterogeneity, and lineage plasticity. In addition, we discuss the various regulation of these transcription factors and related cutting-edge drug development approaches that could be used to drug "undruggable" transcription factors, such as PROTAC and PPI targeting, for targeted cancer therapy. Advanced knowledge could pave the way for the development of novel drugs that target transcriptional regulation and could improve the outcome of cancer therapy.
Collapse
Affiliation(s)
- Lidan Zeng
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Department of Biomedical Informatics, Winship Cancer Institute, Emory University School of Medicine, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA.
| |
Collapse
|
7
|
Kruppel-like Factors in Skeletal Physiology and Pathologies. Int J Mol Sci 2022; 23:ijms232315174. [PMID: 36499521 PMCID: PMC9741390 DOI: 10.3390/ijms232315174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Kruppel-like factors (KLFs) belong to a large group of zinc finger-containing transcription factors with amino acid sequences resembling the Drosophila gap gene Krüppel. Since the first report of molecular cloning of the KLF family gene, the number of KLFs has increased rapidly. Currently, 17 murine and human KLFs are known to play crucial roles in the regulation of transcription, cell proliferation, cellular differentiation, stem cell maintenance, and tissue and organ pathogenesis. Recent evidence has shown that many KLF family molecules affect skeletal cells and regulate their differentiation and function. This review summarizes the current understanding of the unique roles of each KLF in skeletal cells during normal development and skeletal pathologies.
Collapse
|
8
|
Yuan CH, Hsu WC, Huang AM, Yuan BC, Chen IH, Hsu CA, Chen RF, Chu YM, Lin HH, Ke HL. MicroRNA-145-5p modulates Krüppel-like factor 5 and inhibits cell proliferation, migration, and invasion in nasopharyngeal carcinoma. BMC Mol Cell Biol 2022; 23:28. [PMID: 35836107 PMCID: PMC9284881 DOI: 10.1186/s12860-022-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background In several human cancers, Krüppel-like factor 5 (KLF5), a zinc finger transcription factor, can contribute to both tumor progression or suppression; however, the precise role of KLF5 in nasopharyngeal carcinoma (NPC) remains poorly understood. In this study, the association between KLF5 and microRNA-145-5p (miR-145-5p) in NPC cells was elucidated. Results Our results showed that KLF5 expression was up-regulated in NPC group compared to normal group. We found that KLF5 exhibited an oncogenic role in NPC cells. The upregulation of miR-145-5p inhibited the proliferation, migration, and invasion of NPC cells. It was observed that miR-145-5p could down-regulate the mRNA and protein expression of KLF5 in NPC cell lines. Additionally, the activity of focal adhesion kinase (FAK), a migration marker, was regulated by miR-145-5p and KLF5 in NPC cells. Conclusions The results of this study indicated that miR-145-5p could repress the proliferation, migration, and invasion of NPC cells via KLF5/FAK regulation, and could be a potential therapeutic target for patients with NPC. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00430-9.
Collapse
|
9
|
Palioura D, Lazou A, Drosatos K. Krüppel-like factor (KLF)5: An emerging foe of cardiovascular health. J Mol Cell Cardiol 2022; 163:56-66. [PMID: 34653523 PMCID: PMC8816822 DOI: 10.1016/j.yjmcc.2021.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 02/03/2023]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors, which regulate various pathways that pertain to development, metabolism and other cellular mechanisms. KLF5 was first cloned in 1993 and by 1999, it was reported as the intestinal-enriched KLF. Beyond findings that have associated KLF5 with normal development and cancer, it has been associated with various types of cardiovascular (CV) complications and regulation of metabolic pathways in the liver, heart, adipose tissue and skeletal muscle. Specifically, increased KLF5 expression has been linked with cardiomyopathy in diabetes, end-stage heart failure, and as well as in vascular atherosclerotic lesions. In this review article, we summarize research findings about transcriptional, post-transcriptional and post-translational regulation of KLF5, as well as the role of KLF5 in the biology of cells and organs that affect cardiovascular health either directly or indirectly. Finally, we propose KLF5 inhibition as an emerging approach for cardiovascular therapeutics.
Collapse
Affiliation(s)
- Dimitra Palioura
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA;,School of Biology, Aristotle University of Thessaloniki, GR, Greece
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, GR, Greece
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Hiraiwa M, Fukasawa K, Iezaki T, Sabit H, Horie T, Tokumura K, Iwahashi S, Murata M, Kobayashi M, Suzuki A, Park G, Kaneda K, Todo T, Hirao A, Nakada M, Hinoi E. SMURF2 phosphorylation at Thr249 modifies glioma stemness and tumorigenicity by regulating TGF-β receptor stability. Commun Biol 2022; 5:22. [PMID: 35017630 PMCID: PMC8752672 DOI: 10.1038/s42003-021-02950-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/03/2021] [Indexed: 01/17/2023] Open
Abstract
Glioma stem cells (GSCs) contribute to the pathogenesis of glioblastoma, the most malignant form of glioma. The implication and underlying mechanisms of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) on the GSC phenotypes remain unknown. We previously demonstrated that SMURF2 phosphorylation at Thr249 (SMURF2Thr249) activates its E3 ubiquitin ligase activity. Here, we demonstrate that SMURF2Thr249 phosphorylation plays an essential role in maintaining GSC stemness and tumorigenicity. SMURF2 silencing augmented the self-renewal potential and tumorigenicity of patient-derived GSCs. The SMURF2Thr249 phosphorylation level was low in human glioblastoma pathology specimens. Introduction of the SMURF2T249A mutant resulted in increased stemness and tumorigenicity of GSCs, recapitulating the SMURF2 silencing. Moreover, the inactivation of SMURF2Thr249 phosphorylation increases TGF-β receptor (TGFBR) protein stability. Indeed, TGFBR1 knockdown markedly counteracted the GSC phenotypes by SMURF2T249A mutant. These findings highlight the importance of SMURF2Thr249 phosphorylation in maintaining GSC phenotypes, thereby demonstrating a potential target for GSC-directed therapy. Hiraiwa et al. show that phosphorylation of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) at Thr249 mediates ubiquitylation and degradation of the TGF-β receptor TGBR1 leading to loss of glioblastoma stem cell tumorigenic capacity. Their data elucidates a mechanism of regulation of the TGF-β signaling pathway that controls the stem cell status in glioblastoma.
Collapse
Affiliation(s)
- Manami Hiraiwa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kazuya Fukasawa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Takashi Iezaki
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tetsuhiro Horie
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kazuya Tokumura
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Sayuki Iwahashi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Misato Murata
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Masaki Kobayashi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akane Suzuki
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Gyujin Park
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Hirao
- Cancer and Stem Cell Research Program, Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.,WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiichi Hinoi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan. .,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
11
|
Wang X, Qiu T, Wu Y, Yang C, Li Y, Du G, He Y, Liu W, Liu R, Chen CH, Shi Y, Pan J, Zhou J, Jiang D, Chen C. Arginine methyltransferase PRMT5 methylates and stabilizes KLF5 via decreasing its phosphorylation and ubiquitination to promote basal-like breast cancer. Cell Death Differ 2021; 28:2931-2945. [PMID: 33972717 PMCID: PMC8481478 DOI: 10.1038/s41418-021-00793-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Krüppel-like factor 5 (KLF5) is an oncogenic factor that is highly expressed in basal-like breast cancer (BLBC) and promotes cell proliferation, survival, migration, stemness, and tumor growth; however, its posttranslational modifications are poorly defined. Protein arginine methyltransferase 5 (PRMT5) is also an oncogene implicated in various carcinomas, including breast cancer. In this study, we found that PRMT5 interacts with KLF5 and catalyzes the di-methylation of KLF5 at Arginine 57 (R57) in a methyltransferase activity-dependent manner in BLBC cells. Depletion or pharmaceutical inhibition (using PJ-68) of PRMT5 decreased the expression of KLF5 and its downstream target genes in vitro and in vivo. PRMT5-induced KLF5R57me2 antagonizes GSK3β-mediated KLF5 phosphorylation and subsequently Fbw7-mediated KLF5 ubiquitination and coupled degradation. Functionally, PRMT5 promotes breast cancer stem cell maintenance and proliferation, at least partially, by stabilizing KLF5. PRMT5 and KLF5 protein levels were positively correlated in clinical BLBCs. Taken together, PRMT5 methylates KLF5 to prevent its phosphorylation, ubiquitination, and degradation, and thus promotes breast cancer stem cell maintenance and proliferation. These findings suggest that PRMT5 is a potential therapeutic target for BLBC.
Collapse
Affiliation(s)
- Xinye Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Ting Qiu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Yingying Wu
- Department of Pathology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yi Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Guangshi Du
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Yaohui He
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Wen Liu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Rong Liu
- The First Affiliated Hospital, Peking University, Beijing, China
| | - Chuan-Huizi Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yujie Shi
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China.
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China.
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Manikoth Ayyathan D, Levy-Cohen G, Shubely M, Boutros-Suleiman S, Lepechkin-Zilbermintz V, Shokhen M, Albeck A, Gruzman A, Blank M. Development and characterisation of SMURF2-targeting modifiers. J Enzyme Inhib Med Chem 2021; 36:401-409. [PMID: 33430646 PMCID: PMC7808752 DOI: 10.1080/14756366.2020.1871337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The C2-WW-HECT-domain E3 ubiquitin ligase SMURF2 emerges as an important regulator of diverse cellular processes. To date, SMURF2-specific modulators were not developed. Here, we generated and investigated a set of SMURF2-targeting synthetic peptides and peptidomimetics designed to stimulate SMURF2’s autoubiquitination and turnover via a disruption of the inhibitory intramolecular interaction between its C2 and HECT domains. The results revealed the effects of these molecules both in vitro and in cellulo at the nanomolar concentration range. Moreover, the data showed that targeting of SMURF2 with either these modifiers or SMURF2-specific shRNAs could accelerate cell growth in a cell-context-dependent manner. Intriguingly, a concomitant cell treatment with a selected SMURF2-targeting compound and the DNA-damaging drug etoposide markedly increased the cytotoxicity produced by this drug in growing cells. Altogether, these findings demonstrate that SMURF2 can be druggable through its self-destructive autoubiquitination, and inactivation of SMURF2 might be used to affect cell sensitivity to certain anticancer drugs.
Collapse
Affiliation(s)
- Dhanoop Manikoth Ayyathan
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Moran Shubely
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Sandy Boutros-Suleiman
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Michael Shokhen
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Amnon Albeck
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Arie Gruzman
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
13
|
Huang Y, Xu Y, Feng S, He P, Sheng B, Ni J. miR-19b enhances osteogenic differentiation of mesenchymal stem cells and promotes fracture healing through the WWP1/Smurf2-mediated KLF5/β-catenin signaling pathway. Exp Mol Med 2021; 53:973-985. [PMID: 34035464 PMCID: PMC8178348 DOI: 10.1038/s12276-021-00631-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC)-derived exosomes have been found to enhance fracture healing. In addition, microRNAs contributing to the healing of various bone fractures have attracted widespread attention in recent years, but knowledge of the mechanisms by which they act is still very limited. In this study, we clarified the function of altered microRNA-19b (miR-19b) expression in BMSCs in fracture healing. We modulated miR-19b expression via mimics/inhibitors in BMSCs and via agomirs in mice to explore the effects of these changes on osteogenic factors, bone cell mineralization and the healing status of modeled fractures. Through gain- and loss-of function assays, the binding affinity between miR-19b and WWP1/Smurf2 was identified and characterized to explain the underlying mechanism involving the KLF5/β-catenin signaling pathway. miR-19b promoted the differentiation of human BMSCs into osteoblasts by targeting WWP1 and Smurf2. Overexpression of WWP1 or Smurf2 degraded the target protein KLF5 in BMSCs through ubiquitination to inhibit fracture healing. KLF5 knockdown delayed fracture healing by modulating the Wnt/β-catenin signaling pathway. Furthermore, miR-19b enhanced fracture healing via the KLF5/β-catenin signaling pathway by targeting WWP1 or Smurf2. Moreover, miR-19b was found to be enriched in BMSC-derived exosomes, and treatment with exosomes promoted fracture healing in vivo. Collectively, these results indicate that mesenchymal stem cell-derived exosomal miR-19b represses the expression of WWP1 or Smurf2 and elevates KLF5 expression through the Wnt/β-catenin signaling pathway, thereby facilitating fracture healing. Understanding how a small regulatory RNA molecule helps to promote fracture healing could lead to new treatments for broken bones. Working with human cells and mouse models, a team led by Yongqiang Xu from the Hunan Provincial People’s Hospital in Changsha, China, showed how microRNA-19b in extracellular vesicles secreted by bone marrow stem cells (BMSCs) contributes to the healing process. The researchers found that the microRNA blocks the function of two proteins that normally restrain the activity of a third protein needed for BMSCs to home in on the site of injury and turn into new bone tissue. In mice with leg bone fractures, injections of microRNA-19b–filled vesicles derived from BMSCs accelerated healing and recovery, suggesting that similar therapies might be helpful in human patients.
Collapse
Affiliation(s)
- Yan Huang
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, China.,Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yongqiang Xu
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, China.
| | - Siyin Feng
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, China
| | - Pan He
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, China
| | - Bing Sheng
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, China
| | - Jiangdong Ni
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Luo Y, Chen C. The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci 2021; 112:2097-2117. [PMID: 33811715 PMCID: PMC8177779 DOI: 10.1111/cas.14910] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Krüppel‐like factor 5 (KLF5) is a member of the KLF family. Recent studies have suggested that KLF5 regulates the expression of a large number of new target genes and participates in diverse cellular functions, such as stemness, proliferation, apoptosis, autophagy, and migration. In response to multiple signaling pathways, various transcriptional modulation and posttranslational modifications affect the expression level and activity of KLF5. Several transgenic mouse models have revealed the physiological and pathological functions of KLF5 in different cancers. Studies of KLF5 will provide prognostic biomarkers, therapeutic targets, and potential drugs for cancers.
Collapse
Affiliation(s)
- Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
15
|
Yang L, Zhou W, Lin H. Posttranslational Modifications of Smurfs: Emerging Regulation in Cancer. Front Oncol 2021; 10:610663. [PMID: 33718111 PMCID: PMC7950759 DOI: 10.3389/fonc.2020.610663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Smad ubiquitination regulatory factors (Smurfs) belong to the Nedd4 subfamily of HECT-type E3 ubiquitin ligases. Under normal situations, Smurfs are exactly managed by upstream regulators, and thereby strictly control tumor biological processes, including cell growth, differentiation, apoptosis, polarization, epithelial mesenchymal transition (EMT), and invasion. Disruption of Smurf activity has been implicated in cancer progression, and Smurf activity is controlled by a series of posttranslational modifications (PTMs), including phosphorylation, ubiquitination, neddylation, sumoylation, and methylation. The effect and function of Smurfs depend on PTMs and regulate biological processes. Specifically, these modifications regulate the functional expression of Smurfs by affecting protein degradation and protein interactions. In this review, we summarize the complexity and diversity of Smurf PTMs from biochemical and biological perspectives and highlight the understanding of their roles in cancer.
Collapse
Affiliation(s)
- Longtao Yang
- Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Wenwen Zhou
- Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Fu J, Zheng H, Xue Y, Jin R, Yang G, Chen Z, Yuan G. WWP2 Promotes Odontoblastic Differentiation by Monoubiquitinating KLF5. J Dent Res 2020; 100:432-439. [PMID: 33164644 DOI: 10.1177/0022034520970866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
WW domain-containing E3 Ub-protein ligase 2 (WWP2) belongs to the homologous to E6AP C-terminus (HECT) E3 ligase family. It has been explored to regulate osteogenic differentiation, chondrogenesis, and palatogenesis. Odontoblasts are terminally differentiated mesenchymal cells, which contribute to dentin formation in tooth development. However, it remained unknown whether WWP2 participated in odontoblast differentiation. In this study, WWP2 was found to be expressed in mouse dental papilla cells (mDPCs), odontoblasts, and odontoblastic-induced mDPCs by immunohistochemistry and Western blotting. Besides, WWP2 expression was decreased in the cytoplasm but increased in the nuclei of differentiation-induced mDPCs. When Wwp2 was knocked down, the elevated expression of odontoblast marker genes (Dmp1 and Dspp) in mDPCs induced by differentiation medium was suppressed. Meanwhile, a decrease of alkaline phosphatase (ALP) activity was observed by ALP staining, and reduced formation of mineralized matrix nodules was demonstrated by Alizarin Red S staining. Overexpression of WWP2 presented opposite results to knockdown experiments, suggesting that WWP2 promoted odontoblastic differentiation of mDPCs. Further investigation found that WWP2 was coexpressed and interacted with KLF5 in the nuclei, leading to ubiquitination of KLF5. The PPPSY (PY2) motif of KLF5 was essential for its physical binding with WWP2. Also, cysteine 838 (Cys838) of WWP2 was the active site for ubiquitination of KLF5, which did not lead to proteolysis of KLF5. Then, KLF5 was confirmed to be monoubiquitinated and transactivated by WWP2, which promoted the expression of KLF5 downstream genes Dmp1 and Dspp. Deletion of the PY2 motif of KLF5 or mutation of Cys838 of WWP2 reduced the upregulation of Dmp1 and Dspp. Besides, lysine (K) residues K31, K52, K83, and K265 of KLF5 were verified to be crucial to WWP2-mediated KLF5 transactivation. Taken together, WWP2 promoted odontoblastic differentiation by monoubiquitinating KLF5.
Collapse
Affiliation(s)
- J Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| | - H Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| | - Y Xue
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| | - R Jin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| | - G Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| | - Z Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| | - G Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, HuBei, China
| |
Collapse
|
17
|
Huang S, Hsu L, Chang N. Functional role of WW domain-containing proteins in tumor biology and diseases: Insight into the role in ubiquitin-proteasome system. FASEB Bioadv 2020; 2:234-253. [PMID: 32259050 PMCID: PMC7133736 DOI: 10.1096/fba.2019-00060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/23/2019] [Accepted: 01/31/2020] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) governs the protein degradation process and balances proteostasis and cellular homeostasis. It is a well-controlled mechanism, in which removal of the damaged or excessive proteins is essential in driving signal pathways for cell survival or death. Accumulation of damaged proteins and failure in removal may contribute to disease initiation such as in cancers and neurodegenerative diseases. In this notion, specific protein-protein interaction is essential for the recognition of targeted proteins in UPS. WW domain plays an indispensable role in the protein-protein interactions during signaling. Among the 51 WW domain-containing proteins in the human proteomics, near one-quarter of them are involved in the UPS, suggesting that WW domains are crucial modules for driving the protein-protein binding and subsequent ubiquitination and degradation. In this review, we detail a broad spectrum of WW domains in protein-protein recognition, signal transduction, and relevance to diseases. New perspectives in dissecting the molecular interactions are provided.
Collapse
Affiliation(s)
- Shenq‐Shyang Huang
- Graduate Program of Biotechnology in MedicineInstitute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchuTaiwan, ROC
| | - Li‐Jin Hsu
- Department of Medical Laboratory Science and BiotechnologyNational Cheng Kung University College of MedicineTainanTaiwan, ROC
| | - Nan‐Shan Chang
- Institute of Molecular MedicineNational Cheng Kung University College of MedicineTainanTaiwan, ROC
- Department of NeurochemistryNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNYUSA
- Graduate Institute of Biomedical SciencesCollege of MedicineChina Medical UniversityTaichungTaiwan, ROC
| |
Collapse
|
18
|
SMURF2 prevents detrimental changes to chromatin, protecting human dermal fibroblasts from chromosomal instability and tumorigenesis. Oncogene 2020; 39:3396-3410. [PMID: 32103168 DOI: 10.1038/s41388-020-1226-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/17/2023]
Abstract
E3 ubiquitin ligases (E3s) play essential roles in the maintenance of tissue homeostasis under normal and stress conditions, as well as in disease states, particularly in cancer. However, the role of E3s in the initiation of human tumors is poorly understood. Previously, we reported that genetic ablation of the HECT-type E3 ubiquitin ligase Smurf2 induces carcinogenesis in mice; but whether and how these findings are pertinent to the inception of human cancer remain unknown. Here we show that SMURF2 is essential to protect human dermal fibroblasts (HDFs) from malignant transformation, and its depletion converts HDFs into tumorigenic entity. This phenomenon was associated with the radical changes in chromatin structural and epigenetic landscape, dysregulated gene expression and cell-cycle control, mesenchymal-to-epithelial transition and impaired DNA damage response. Furthermore, we show that SMURF2-mediated tumor suppression is interlinked with SMURF2's ability to regulate the expression of two central chromatin modifiers-an E3 ubiquitin ligase RNF20 and histone methyltransferase EZH2. Silencing these factors significantly reduced the growth and transformation capabilities of SMURF2-depleted cells. Finally, we demonstrate that SMURF2-compromised HDFs are highly tumorigenic in nude mice. These findings suggest the critical role that SMURF2 plays in preventing malignant alterations, chromosomal instability and cancer.
Collapse
|
19
|
Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol 2019; 67:102-116. [PMID: 31899247 DOI: 10.1016/j.semcancer.2019.12.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/10/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Smad ubiquitination regulatory factor 1 (Smurf1) and Smurf2 are HECT-type E3 ubiquitin ligases, and both Smurfs were initially identified to regulate Smad protein stability in the TGF-β/BMP signaling pathway. In recent years, Smurfs have exhibited E3 ligase-dependent and -independent activities in various kinds of cells. Smurfs act as either potent tumor promoters or tumor suppressors in different tumors by regulating biological processes, including metastasis, apoptosis, cell cycle, senescence and genomic stability. The regulation of Smurfs activity and expression has therefore emerged as a hot spot in tumor biology research. Further, the Smurf1- or Smurf2-deficient mice provide more in vivo clues for the functional study of Smurfs in tumorigenesis and development. In this review, we summarize these milestone findings and, in turn, reveal new avenues for the prevention and treatment of cancer by regulating Smurfs.
Collapse
Affiliation(s)
- Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xueli Zhang
- Department of General Surgery, Shanghai Fengxian Central Hospital Graduate Training Base, Fengxian Hospital, Southern Medical University, Shanghai, China.
| | - Lingqiang Zhang
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Peixian People's Hospital, Jiangsu Province 221600, China.
| |
Collapse
|
20
|
Wu Y, Qin J, Li F, Yang C, Li Z, Zhou Z, Zhang H, Li Y, Wang X, Liu R, Tao Q, Chen W, Chen C. USP3 promotes breast cancer cell proliferation by deubiquitinating KLF5. J Biol Chem 2019; 294:17837-17847. [PMID: 31624151 DOI: 10.1074/jbc.ra119.009102] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-like factor 5 (KLF5) transcription factor is highly expressed in basal type breast cancer and promotes breast cancer cell proliferation, survival, migration, and tumorigenesis. KLF5 protein stability is regulated by ubiquitination. In this study, ubiquitin-specific protease 3 (USP3) was identified as a new KLF5 deubiquitinase by genome-wide siRNA library screening. We demonstrated that USP3 interacts with KLF5 and stabilizes KLF5 via deubiquitination. USP3 knockdown inhibits breast cancer cell proliferation in vitro and tumorigenesis in vivo, which can be partially rescued by ectopic expression of KLF5. Furthermore, we observed a positive correlation between USP3 and KLF5 protein expression levels in human breast cancer samples. These findings suggest that USP3 is a new KLF5 deubiquitinase and that USP3 may represent a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yingying Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,University of the Chinese Academy of Sciences, Beijing 101407, China.,First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Junying Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Fubing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhen Li
- Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yunxi Li
- Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Xinye Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir Y. K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong 518172, China
| | - Wenlin Chen
- Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China .,Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
21
|
Li Y, Yang D, Tian N, Zhang P, Zhu Y, Meng J, Feng M, Lu Y, Liu Q, Tong L, Hu L, Zhang L, Yang JY, Wu L, Tong X. The ubiquitination ligase SMURF2 reduces aerobic glycolysis and colorectal cancer cell proliferation by promoting ChREBP ubiquitination and degradation. J Biol Chem 2019; 294:14745-14756. [PMID: 31409643 DOI: 10.1074/jbc.ra119.007508] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
The glucose-responsive transcription factor carbohydrate response element-binding protein (ChREBP) critically promotes aerobic glycolysis and cell proliferation in colorectal cancer cells. It has been reported that ubiquitination may be important in the regulation of ChREBP protein levels and activities. However, the ChREBP-specific E3 ligase and molecular mechanism of ChREBP ubiquitination remains unclear. Using database exploration and expression analysis, we found here that levels of the E3 ligase SMURF2 (Smad-ubiquitination regulatory factor 2) negatively correlate with those of ChREBP in cancer tissues and cell lines. We observed that SMURF2 interacts with ChREBP and promotes ChREBP ubiquitination and degradation via the proteasome pathway. Interestingly, ectopic SMURF2 expression not only decreased ChREBP levels but also reduced aerobic glycolysis, increased oxygen consumption, and decreased cell proliferation in colorectal cancer cells. Moreover, SMURF2 knockdown increased aerobic glycolysis, decreased oxygen consumption, and enhanced cell proliferation in these cells, mostly because of increased ChREBP accumulation. Furthermore, we identified Ser/Thr kinase AKT as an upstream suppressor of SMURF2 that protects ChREBP from ubiquitin-mediated degradation. Taken together, our results indicate that SMURF2 reduces aerobic glycolysis and cell proliferation by promoting ChREBP ubiquitination and degradation via the proteasome pathway in colorectal cancer cells. We conclude that the SMURF2-ChREBP interaction might represent a potential target for managing colorectal cancer.
Collapse
Affiliation(s)
- Yakui Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dianqiang Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Na Tian
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yemin Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Meng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Feng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingfeng Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Hu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lukuan Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - James Y Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.,Ministry of Education Engineering Research Center of Molecular Diagnostics and State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lifang Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
22
|
Emanuelli A, Manikoth Ayyathan D, Koganti P, Shah PA, Apel-Sarid L, Paolini B, Detroja R, Frenkel-Morgenstern M, Blank M. Altered Expression and Localization of Tumor Suppressive E3 Ubiquitin Ligase SMURF2 in Human Prostate and Breast Cancer. Cancers (Basel) 2019; 11:cancers11040556. [PMID: 31003445 PMCID: PMC6521037 DOI: 10.3390/cancers11040556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
SMURF2, an E3 ubiquitin ligase and suggested tumor suppressor, operates in normal cells to prevent genomic instability and carcinogenesis. However, the mechanisms underlying SMURF2 inactivation in human malignancies remain elusive, as SMURF2 is rarely found mutated or deleted in cancers. We hypothesized that SMURF2 might have a distinct molecular biodistribution in cancer versus normal cells and tissues. The expression and localization of SMURF2 were analyzed in 666 human normal and cancer tissues, with primary focus on prostate and breast tumors. These investigations were accompanied by SMURF2 gene expression analyses, subcellular fractionation and biochemical studies, including SMURF2’s interactome analysis. We found that while in normal cells and tissues SMURF2 has a predominantly nuclear localization, in prostate and aggressive breast carcinomas SMURF2 shows a significantly increased cytoplasmic sequestration, associated with the disease progression. Mechanistic studies showed that the nuclear export machinery was not involved in cytoplasmic accumulation of SMURF2, while uncovered that its stability is markedly increased in the cytoplasmic compartment. Subsequent interactome analyses pointed to 14-3-3s as SMURF2 interactors, which could potentially affect its localization. These findings link the distorted expression of SMURF2 to human carcinogenesis and suggest the alterations in SMURF2 localization as a potential mechanism obliterating its tumor suppressor activities.
Collapse
Affiliation(s)
- Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Dhanoop Manikoth Ayyathan
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Praveen Koganti
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Pooja Anil Shah
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Liat Apel-Sarid
- Department of Pathology, The Galilee Medical Center, 22100 Nahariya, Israel.
| | - Biagio Paolini
- Department of Pathology and Laboratory Medicine, Anatomic Pathology Unit 1, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Rajesh Detroja
- Laboratory of Cancer Genomics and BioComputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Milana Frenkel-Morgenstern
- Laboratory of Cancer Genomics and BioComputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502 Safed, Israel.
| |
Collapse
|
23
|
Koganti P, Levy-Cohen G, Blank M. Smurfs in Protein Homeostasis, Signaling, and Cancer. Front Oncol 2018; 8:295. [PMID: 30116722 PMCID: PMC6082930 DOI: 10.3389/fonc.2018.00295] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an evolutionary conserved highly-orchestrated enzymatic cascade essential for normal cellular functions and homeostasis maintenance. This pathway relies on a defined set of cellular enzymes, among them, substrate-specific E3 ubiquitin ligases (E3s). These ligases are the most critical players, as they define the spatiotemporal nature of ubiquitination and confer specificity to this cascade. Smurf1 and Smurf2 (Smurfs) are the C2-WW-HECT-domain E3 ubiquitin ligases, which recently emerged as important determinants of pivotal cellular processes. These processes include cell proliferation and differentiation, chromatin organization and dynamics, DNA damage response and genomic integrity maintenance, gene expression, cell stemness, migration, and invasion. All these processes are intimately connected and profoundly altered in cancer. Initially, Smurf proteins were identified as negative regulators of the bone morphogenetic protein (BMP) and the transforming growth factor beta (TGF-β) signaling pathways. However, recent studies have extended the scope of Smurfs' biological functions beyond the BMP/TGF-β signaling regulation. Here, we provide a critical literature overview and updates on the regulatory roles of Smurfs in molecular and cell biology, with an emphasis on cancer. We also highlight the studies demonstrating the impact of Smurf proteins on tumor cell sensitivity to anticancer therapies. Further in-depth analyses of Smurfs' biological functions and influences on molecular pathways could provide novel therapeutic targets and paradigms for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Praveen Koganti
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
24
|
Tao R, Zhang B, Li Y, King JL, Tian R, Xia S, Schiavon CR, Dong JT. HDAC-mediated deacetylation of KLF5 associates with its proteasomal degradation. Biochem Biophys Res Commun 2018; 500:777-782. [PMID: 29679567 DOI: 10.1016/j.bbrc.2018.04.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023]
Abstract
Krüppel-like factor 5 (KLF5) is a basic transcription factor that regulates diverse cellular processes during tumor development. Acetylation of KLF5 at lysine 369 (K369) reverses its function from promoting to suppressing cell proliferation and tumor growth. In this study, we examined the regulation of KLF5 by histone deacetylases in the prostate cancer cell line DU 145. While confirming the functions of HDAC1/2 in KLF5 deacetylation and the promotion of cell proliferation, we found that the knockdown of HDAC1/2 upregulated KLF5 protein but not KLF5 mRNA, and the increase in KLF5 protein level by silencing HDAC1/2 was at least in part due to decreased proteasomal degradation. Deacetylase activity was required for HDAC1/2-mediated KLF5 degradation, and mutation of KLF5 to an acetylation-mimicking form prevented its degradation, even though the mutation did not affect the binding of KLF5 with HDAC1/2. Mutation of K369 to arginine, which prevents acetylation, did not affect the binding of KLF5 to HDAC1 or the response of KLF5 to HDAC1/2-promoted degradation. These findings provide a novel mechanistic association between the acetylation status of KLF5 and its protein stability. They also suggest that maintaining KLF5 in a deacetylated form may be an important mechanism by which KLF5 and HDACs promote cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Ran Tao
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA; Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Baotong Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Jamie L King
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Ruoyu Tian
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Cara Rae Schiavon
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Jin-Tang Dong
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA; Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
25
|
Regulation of CNKSR2 protein stability by the HECT E3 ubiquitin ligase Smurf2, and its role in breast cancer progression. BMC Cancer 2018. [PMID: 29534682 PMCID: PMC5850909 DOI: 10.1186/s12885-018-4188-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Smurf2 E3 ubiquitin ligase physically associates with and regulate the stability of distinct cellular protein substrates. The multi-functional scaffold protein Connector enhancer of kinase suppressor of ras 2 (CNKSR2) plays a key role in regulating cell proliferation, and differentiation through multiple receptor tyrosine kinase pathways. The aim of this study was to investigate whether the interaction between Smurf2 and CNKSR2 has any significant role in the post transcriptional regulation of CNKSR2 expression in breast cancer. METHODS Here we demonstrate a novel interaction of CNKSR2 with Smurf2 by co-immunoprecipitation, indirect immunofluorescence studies, and surface plasmon resonance (SPR) analysis, which can ubiquitinate, but stabilize CNKSR2 by protecting it from proteasome mediated degradation. RESULTS CNKSR2 protein levels were significantly increased upon forced overexpression of Smurf2, indicating the role of Smurf2 in regulating the stability of CNKSR2. Conversely, Smurf2 knockdown resulted in a marked decrease in the protein level expression of CNKSR2 by facilitating enhanced polyubiquitination and proteasomal degradation and reduced the proliferation and clonogenic survival of MDA-MB-231 breast cancer cell lines. Tissue microarray data from 84 patients with various stages of mammary carcinoma, including (in order of increasing malignant potential) normal, usual hyperplasia, fibrocystic changes, fibroadenoma, carcinoma-in-situ, and invasive ductal carcinoma showed a statistically significant association between Smurf2 and CNKSR2 expression, which is also well correlated with the ER, PR, and HER2 status of the tissue samples. A comparatively high expression of Smurf2 and CNKSR2 was observed when the expression of ER and PR was low, and HER2 was high. Consistently, both Smurf2 and CNKSR2 showed an integrated expression in MCF10 breast progression model cell lines. CONCLUSIONS Altogether, our findings reveal that Smurf2 is a novel positive regulator of CNKSR2 and suggest that Smurf2-CNKSR2 interaction may serve as a common strategy to control proliferation of human breast cancer cells by modulating CNKSR2 protein stability.
Collapse
|
26
|
TGF-β synergizes with ML264 to block IL-1β-induced matrix degradation mediated by Krüppel-like factor 5 in the nucleus pulposus. Biochim Biophys Acta Mol Basis Dis 2018; 1864:579-589. [DOI: 10.1016/j.bbadis.2017.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/06/2017] [Accepted: 11/26/2017] [Indexed: 02/06/2023]
|
27
|
Fu RJ, He W, Wang XB, Li L, Zhao HB, Liu XY, Pang Z, Chen GQ, Huang L, Zhao KW. DNMT1-maintained hypermethylation of Krüppel-like factor 5 involves in the progression of clear cell renal cell carcinoma. Cell Death Dis 2017; 8:e2952. [PMID: 28749461 PMCID: PMC5550868 DOI: 10.1038/cddis.2017.323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/27/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the major subtype of renal cell carcinoma (RCC) that is resistant to conventional radiation and chemotherapy. It is a challenge to explore effective therapeutic targets and drugs for this kind of cancer. Transcription factor Krüppel-like factor 5 (KLF5) exerts diverse functions in various tumor types. By analyzing cohorts of the Cancer Genome Atlas (TCGA) data sets, we find that KLF5 expression is suppressed in ccRCC patients and higher level of KLF5 expression is associated with better prognostic outcome. Our further investigations demonstrate that KLF5 genomic loci are hypermethylated at proximal exon 4 and suppression of DNA methyltransferase 1 (DNMT1) expression by ShRNAs or a methylation inhibitor 5-Aza-CdR can recover KLF5 expression. Meanwhile, there is a negative correlation between expressions of KLF5 and DNMT1 in ccRCC tissues. Ectopic KLF5 expression inhibits ccRCC cell proliferation and migration/invasion in vitro and decreases xenograft growth and metastasis in vivo. Moreover, 5-Aza-CdR, a chemotherapy drug as DNMTs' inhibitor that can induce KLF5 expression, suppresses ccRCC cell growth, while knockdown of KLF5 abolishes 5-Aza-CdR-induced growth inhibition. Collectively, our data demonstrate that KLF5 inhibits ccRCC growth as a tumor suppressor and highlight the potential of 5-Aza-CdR to release KLF5 expression as a therapeutic modality for the treatment of ccRCC.
Collapse
Affiliation(s)
- Rong-Jie Fu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Wei He
- Department of Pathology, Ren-Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Bo Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Lei Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Huan-Bin Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xiao-Ye Liu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Zhi Pang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Guo-Qiang Chen
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Lei Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Ke-Wen Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
28
|
Wang Z, Gao Y, Zhang C, Hu H, Guo D, Xu Y, Xu Q, Zhang W, Deng S, Lv P, Yang Y, Ding Y, Li Q, Weng C, Chen X, Gong S, Chen H, Niu J, Tang H. Quinolinate Phosphoribosyltransferase is an Antiviral Host Factor Against Hepatitis C Virus Infection. Sci Rep 2017; 7:5876. [PMID: 28724915 PMCID: PMC5517448 DOI: 10.1038/s41598-017-06254-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/09/2017] [Indexed: 01/09/2023] Open
Abstract
HCV infection can decrease NAD+/NADH ratio, which could convert lipid metabolism to favor HCV replication. In hepatocytes, quinolinate phosphoribosyl transferase (QPRT) catabolizes quinolinic acid (QA) to nicotinic acid mononucleotide (NAMN) for de novo NAD synthesis. However, whether and how HCV modulates QPRT hence the lipogenesis is unknown. In this work, we found QPRT was reduced significantly in livers of patients or humanized C/OTg mice with persistent HCV infection. Mechanistic studies indicated that HCV NS3/4A promoted proteasomal degradation of QPRT through Smurf2, an E3 ubiquitin-protein ligase, in Huh7.5.1 cells. Furthermore, QPRT enzymatic activity involved in suppression of HCV replication in cells. Activation of QPRT with clofibrate (CLO) or addition of QPRT catabolite NAD both inhibited HCV replication in cells, probably through NAD+-dependent Sirt1 inhibition of cellular lipogenesis. More importantly, administration of CLO, a hypolipidemic drug used in clinics, could significantly reduce the viral load in HCV infected C/OTg mice. Take together, these results suggested that HCV infection triggered proteasomal degradation of QPRT and consequently reduced de novo NAD synthesis and lipogenesis, in favor of HCV replication. Hepatic QPRT thus likely served as a cellular factor that dampened productive HCV replication.
Collapse
Affiliation(s)
- Zhilong Wang
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.,CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Chao Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiming Hu
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Dongwei Guo
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Heilong Jiang, 150001, China
| | - Yi Xu
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Qiuping Xu
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Weihong Zhang
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Sisi Deng
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Pingyun Lv
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yan Yang
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yanhua Ding
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Qingquan Li
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Changjiang Weng
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Heilong Jiang, 150001, China
| | - Xinwen Chen
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Sitang Gong
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Hairong Chen
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Hong Tang
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China. .,CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
29
|
SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts. Nat Commun 2017; 8:14570. [PMID: 28216630 PMCID: PMC5321737 DOI: 10.1038/ncomms14570] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 01/10/2017] [Indexed: 01/17/2023] Open
Abstract
Coordination between osteoblasts and osteoclasts is required for bone health and homeostasis. Here we show that mice deficient in SMURF2 have severe osteoporosis in vivo. This low bone mass phenotype is accompanied by a pronounced increase in osteoclast numbers, although Smurf2-deficient osteoclasts have no intrinsic alterations in activity. Smurf2-deficient osteoblasts display increased expression of RANKL, the central osteoclastogenic cytokine. Mechanistically, SMURF2 regulates RANKL expression by disrupting the interaction between SMAD3 and vitamin D receptor by altering SMAD3 ubiquitination. Selective deletion of Smurf2 in the osteoblast lineage recapitulates the phenotype of germline Smurf2-deficient mice, indicating that SMURF2 regulates osteoblast-dependent osteoclast activity rather than directly affecting the osteoclast. Our results reveal SMURF2 as an important regulator of the critical communication between osteoblasts and osteoclasts. Furthermore, the bone mass phenotype in Smurf2- and Smurf1-deficient mice is opposite, indicating that SMURF2 has a non-overlapping and, in some respects, opposite function to SMURF1. The balance between osteoclast and osteoblast-mediated bone turnover is essential for bone health and homeostasis. Here the authors show that both germline and osteoblast-specific Smurf2-deficient mice have osteoporosis as a result of increased osteoblast RANKL production and excess osteoclastogenesis.
Collapse
|
30
|
Wu B, Guo B, Kang J, Deng X, Fan Y, Zhang X, Ai K. Downregulation of Smurf2 ubiquitin ligase in pancreatic cancer cells reversed TGF-β-induced tumor formation. Tumour Biol 2016; 37:16077–16091. [PMID: 27730540 DOI: 10.1007/s13277-016-5432-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/23/2016] [Indexed: 01/17/2023] Open
Abstract
Smad ubiquitin regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that regulates transforming growth factor β (TGF-β)/Smad signaling and is implicated in a wide range of cellular responses. However, the exact mechanism whereby Smurf2 controls TGF-β-induced signaling pathways remains unknown. Here, we identified the relationship between the alternate TGF-β signaling pathways: TGF-β/PI3K/Akt/β-catenin and TGF-β/Smad2/3/FoxO1/PUMA and Smurf2. The results showed that TGF-β promoted proliferation, invasion, and migration of human pancreatic carcinoma (PANC-1) cells through the PI3K/Akt/β-catenin pathway. Inhibiting the PI3K/Akt signal transformed the TGF-β-induced cell response from promoting proliferation to Smad2/3/FoxO1/PUMA-mediated apoptosis. The activation of Akt inhibited the phosphorylation/activation of Smad3 and promoted the phosphorylation/inactivation of FoxO1, inhibiting the nuclear translocation of both Smad3 and FoxO1 and inhibiting the expression of PUMA, a key apoptotic mediator. However, downregulation of Smurf2 in PANC-1 cells removed Akt-mediated suppression of Smad3 and FoxO1, allowing TGF-β-induced phosphorylation/activation of Smad2/3, dephosphorylation/activation of FoxO1, nuclear translocation of both factors, and activation of PUMA-mediated apoptosis. Downregulation of Smurf2 also decreased invasion and migration in TGF-β-induced PANC-1 cells. The in vivo experiments also revealed that downregulation of Smurf2 delayed the growth of xenograft tumors originating from PANC-1 cells especially when treated with TGF-β. Taken together, these results indicate that expression of Smurf2 plays a central role in the determination and activation/inhibition of particular cellular pathways and the ultimate fate of cells induced by TGF-β. An increased understanding of the intricacies of the TGF-β signaling pathway may provide a new anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Bo Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Bomin Guo
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Jie Kang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Xianzhao Deng
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Youben Fan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Xiaoping Zhang
- Institution of Interventional and Vascular Surgery, Tongji Univerity, No. 301 Middle Yan Chang Rd, Shanghai, 200072, China.
| | - Kaixing Ai
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
31
|
Ge F, Chen W, Qin J, Zhou Z, Liu R, Liu L, Tan J, Zou T, Li H, Ren G, Chen C. Ataxin-3 like (ATXN3L), a member of the Josephin family of deubiquitinating enzymes, promotes breast cancer proliferation by deubiquitinating Krüppel-like factor 5 (KLF5). Oncotarget 2016; 6:21369-78. [PMID: 26079537 PMCID: PMC4673271 DOI: 10.18632/oncotarget.4128] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/02/2015] [Indexed: 11/25/2022] Open
Abstract
The Krüppel-like factor 5 (KLF5) has been suggested to promote breast cell proliferation, survival and tumorigenesis. KLF5 protein degradation is increased by several E3 ubiquitin ligases, including WWP1 and SCFFbw7, through the ubiquitin-proteasome pathway. However, the deubiquitinase (DUB) of KLF5 has not been demonstrated. In this study, we identified ATXN3L as a KLF5 DUB by genome-wide siRNA screening. ATXN3L directly binds to KLF5, decreasing its ubiquitination and thus degradation. Functionally, knockdown of ATXN3L inhibits breast cancer cell proliferation partially through KLF5. These findings reveal a previously unrecognized role of ATXN3L in the regulation of KLF5 stability in breast cancer. ATXN3L might be a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Fei Ge
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenlin Chen
- Department of Breast Surgery, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Junying Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Linlin Liu
- Laboratory for Conservation and Utilization of Bioresource, Yunnan University, Kunming, China
| | - Jing Tan
- Department of Breast Surgery, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tianning Zou
- Department of Breast Surgery, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyuan Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
32
|
Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, Shao M, You D, Fan Z, Xia H, Liu R, Chen C. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun 2015; 6:8471. [PMID: 26419610 PMCID: PMC4598844 DOI: 10.1038/ncomms9471] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
The transcription factor KLF5 is highly expressed in basal-like breast cancer and promotes breast cancer cell proliferation, survival, migration and tumour growth. Here we show that, in breast cancer cells, KLF5 is stabilized by the deubiquitinase (DUB) BAP1. With a genome-wide siRNA library screen of DUBs, we identify BAP1 as a bona fide KLF5 DUB. BAP1 interacts directly with KLF5 and stabilizes KLF5 via deubiquitination. KLF5 is in the BAP1/HCF-1 complex, and this newly identified complex promotes cell cycle progression partially by inhibiting p27 gene expression. Furthermore, BAP1 knockdown inhibits tumorigenicity and lung metastasis, which can be rescued partially by ectopic expression of KLF5. Collectively, our findings not only identify BAP1 as the DUB for KLF5, but also reveal a critical mechanism that regulates KLF5 expression in breast cancer. Our findings indicate that BAP1 could be a potential therapeutic target for breast and other cancers. The zinc finger-containing transcription factor KLF5 drives cell proliferation and migration. Here, the authors show that the debuquitinase BAP1 directly stabilizes KLF5, thus promoting basal-like breast cancer cell-cycle progression and metastasis.
Collapse
Affiliation(s)
- Junying Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Wenlin Chen
- Department of Breast Surgery, Breast Cancer Clinical Research Center, Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650031, China
| | - Chunyan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Graduate School of the Chinese Academy of Sciences, Beijing 100039, China.,Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Guangzhe Ge
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ming Shao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dingyun You
- Kunming Medical University, Kunming, Yunnan 650031, China
| | - Zhixiang Fan
- Kunming Medical University, Kunming, Yunnan 650031, China
| | - Houjun Xia
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| |
Collapse
|
33
|
Chen WC, Lin HH, Tang MJ. Matrix-Stiffness–Regulated Inverse Expression of Krüppel-Like Factor 5 and Krüppel-Like Factor 4 in the Pathogenesis of Renal Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [DOI: 10.1016/j.ajpath.2015.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Zou X, Levy-Cohen G, Blank M. Molecular functions of NEDD4 E3 ubiquitin ligases in cancer. Biochim Biophys Acta Rev Cancer 2015; 1856:91-106. [DOI: 10.1016/j.bbcan.2015.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 02/08/2023]
|
35
|
Ge F, Chen W, Yang R, Zhou Z, Chang N, Chen C, Zou T, Liu R, Tan J, Ren G. WWOX suppresses KLF5 expression and breast cancer cell growth. Chin J Cancer Res 2014; 26:511-6. [PMID: 25400415 DOI: 10.3978/j.issn.1000-9604.2014.09.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/05/2014] [Indexed: 12/31/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor in a variety of cancers, including breast cancer. Reduced WWOX expression is associated with the basal-like subtype and a relatively poor disease-free survival rate among breast cancer patients. Though several WWOX partners have been identified, the functional mechanisms of WWOX's role in cancers have not been fully addressed to date. In the current study, we found WWOX suppresses expression of KLF5-an oncogenic transcription factor-at protein level, and suppresses cancer cell proliferation in both bladder and breast cancer cell lines. Furthermore, we demonstrated that WWOX physically interacts with KLF5 via the former's WW domains and the latter's PY motifs. Interestingly, we found the expression of WWOX negatively correlates with KLF5 expression in a panel of breast cancer cell lines. Taken together, we conjecture that WWOX may suppress cancer cell proliferation partially by reducing the expression of KLF5.
Collapse
Affiliation(s)
- Fei Ge
- 1 Department of Endocrine Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China ; 2 Department of Breast Surgery, 3 Second Department of Internal Medicine of Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China ; 4 Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China ; 5 Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, China
| | - Wenlin Chen
- 1 Department of Endocrine Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China ; 2 Department of Breast Surgery, 3 Second Department of Internal Medicine of Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China ; 4 Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China ; 5 Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, China
| | - Runxiang Yang
- 1 Department of Endocrine Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China ; 2 Department of Breast Surgery, 3 Second Department of Internal Medicine of Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China ; 4 Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China ; 5 Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, China
| | - Zhongmei Zhou
- 1 Department of Endocrine Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China ; 2 Department of Breast Surgery, 3 Second Department of Internal Medicine of Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China ; 4 Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China ; 5 Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, China
| | - Nanshan Chang
- 1 Department of Endocrine Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China ; 2 Department of Breast Surgery, 3 Second Department of Internal Medicine of Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China ; 4 Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China ; 5 Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, China
| | - Ceshi Chen
- 1 Department of Endocrine Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China ; 2 Department of Breast Surgery, 3 Second Department of Internal Medicine of Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China ; 4 Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China ; 5 Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, China
| | - Tianning Zou
- 1 Department of Endocrine Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China ; 2 Department of Breast Surgery, 3 Second Department of Internal Medicine of Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China ; 4 Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China ; 5 Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, China
| | - Rong Liu
- 1 Department of Endocrine Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China ; 2 Department of Breast Surgery, 3 Second Department of Internal Medicine of Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China ; 4 Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China ; 5 Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, China
| | - Jing Tan
- 1 Department of Endocrine Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China ; 2 Department of Breast Surgery, 3 Second Department of Internal Medicine of Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China ; 4 Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China ; 5 Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, China
| | - Guosheng Ren
- 1 Department of Endocrine Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China ; 2 Department of Breast Surgery, 3 Second Department of Internal Medicine of Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China ; 4 Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China ; 5 Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, China
| |
Collapse
|
36
|
David D, Jagadeeshan S, Hariharan R, Nair AS, Pillai RM. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner. Cell Div 2014; 9:2. [PMID: 25191523 PMCID: PMC4154384 DOI: 10.1186/1747-1028-9-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/26/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Smurf2 is a member of the HECT family of E3 ubiquitin ligases that play important roles in determining the competence of cells to respond to TGF- β/BMP signaling pathway. However, besides TGF-β/BMP pathway, Smurf2 regulates a repertoire of other signaling pathways ranging from planar cell polarity during embryonic development to cell proliferation, migration, differentiation and senescence. Expression of Smurf2 is found to be dysregulated in many cancers including breast cancer. The purpose of the present study is to examine the effect of Smurf2 knockdown on the tumorigenic potential of human breast cancer cells emphasizing more on proliferative signaling pathway. METHODS siRNAs targeting different regions of the Smurf2 mRNA were employed to knockdown the expression of Smurf2. The biological effects of synthetic siRNAs on human breast cancer cells were investigated by examining the cell proliferation, migration, invasion, focus formation, anchorage-independent growth, cell cycle arrest, and cell cycle and cell proliferation related protein expressions upon Smurf2 silencing. RESULTS Smurf2 silencing in human breast cancer cells resulted in a decreased focus formation potential and clonogenicity as well as in vitro cell migration/invasion capabilities. Moreover, knockdown of Smurf2 suppressed cell proliferation. Cell cycle analysis showed that the anti-proliferative effect of Smurf2 siRNA was mediated by arresting cells in the G0/G1 phase, which was caused by decreased expression of cyclin D1and cdk4, followed by upregulation p21 and p27. Furthermore, we demonstrated that silencing of Smurf2 downregulated the proliferation of breast cancer cells by modulating the PI3K- PTEN-AKT-FoxO3a pathway via the scaffold protein CNKSR2 which is involved in RAS-dependent signaling pathways. The present study provides the first evidence that silencing Smurf2 using synthetic siRNAs can regulate the tumorigenic properties of human breast cancer cells in a CNKSR2 dependent manner. CONCLUSIONS Our results therefore suggest a novel relation between Smurf2 and CNKSR2 thereby regulating AKT-dependent cell proliferation and invasion. Owing to the fact that PI3K-AKT signaling is hyperactivated in various human cancers and that Smurf2 also regulates cellular transformation, our results indicate that Smurf2 may serve as a potential molecule for targeted cancer therapy of certain tumour types including breast cancer.
Collapse
Affiliation(s)
- Diana David
- Research Scholar, Cancer Research, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - Sankar Jagadeeshan
- Research Scholar, Department of Genetics, Dr.ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Taramani 600 113, India
| | - Ramkumar Hariharan
- Depatment of Pathology, University of Washington, Seattle, WA 98105, USA
| | - Asha Sivakumari Nair
- Research Scholar, Cancer Research, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | | |
Collapse
|
37
|
Curcumin promotes KLF5 proteasome degradation through downregulating YAP/TAZ in bladder cancer cells. Int J Mol Sci 2014; 15:15173-87. [PMID: 25170806 PMCID: PMC4200832 DOI: 10.3390/ijms150915173] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/13/2014] [Accepted: 08/20/2014] [Indexed: 01/01/2023] Open
Abstract
KLF5 (Krüppel-like factor 5) plays critical roles in normal and cancer cell proliferation through modulating cell cycle progression. In this study, we demonstrated that curcumin targeted KLF5 by promoting its proteasome degradation, but not by inhibiting its transcription in bladder cancer cells. We also demonstrated that lentivirus-based knockdown of KLF5 inhibited cancer cell growth, while over-expression of a Flag-tagged KLF5 could partially reverse the effects of curcumin on cell growth and cyclin D1 expression. Furthermore, we found that curcumin could down-regulate the expression of Hippo pathway effectors, YAP and TAZ, which have been reported to protect KLF5 protein from degradation. Indeed, knockdown of YAP by small interfering RNA caused the attenuation of KLF5 protein, but not KLF5 mRNA, which was reversed by co-incubation with proteasome inhibitor. A xenograft assay in nude mice finally proved the potent inhibitory effects of curcumin on tumor growth and the pro-proliferative YAP/TAZ/KLF5/cyclin D1 axis. Thus, our data indicates that curcumin promotes KLF5 proteasome-dependent degradation through targeting YAP/TAZ in bladder cancer cells and also suggests the therapeutic potential of curcumin in the treatment of bladder cancer.
Collapse
|
38
|
Luan Y, Wang P. FBW7-mediated ubiquitination and degradation of KLF5. World J Biol Chem 2014; 5:216-223. [PMID: 24921010 PMCID: PMC4050114 DOI: 10.4331/wjbc.v5.i2.216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/15/2014] [Accepted: 03/18/2014] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factor (KLF) family proteins are transcription factors that regulate numerous cellular functions, such as cell proliferation, differentiation, and cell death. Posttranslational modification of KLF proteins is important for their transcriptional activities and biological functions. One KLF family member with important roles in cell proliferation and tumorigenesis is KLF5. The function of KLF5 is tightly controlled by post-translational modifications, including SUMOylation, phosphorylation, and ubiquitination. Recent studies from our lab and others’ have demonstrated that the tumor suppressor FBW7 is an essential E3 ubiquitin ligase that targets KLF5 for ubiquitination and degradation. KLF5 contains functional Cdc4 phospho-degrons (CPDs), which are required for its interaction with FBW7. Mutation of CPDs in KLF5 blocks the ubiquitination and degradation of KLF5 by FBW7. The protein kinase Glycogen synthase kinase 3β is involved in the phosphorylation of KLF5 CPDs. In both cancer cell lines and mouse models, it has been shown that FBW7 regulates the expression of KLF5 target genes through the modulation of KLF5 stability. In this review, we summarize the current progress on delineating FBW7-mediated KLF5 ubiquitination and degradation.
Collapse
|
39
|
Wooten CJ, Adcock AF, Agina-Obu DI, Lopez D. Having excess levels of PCSK9 is not sufficient to induce complex formation between PCSK9 and the LDL receptor. Arch Biochem Biophys 2014; 545:124-32. [PMID: 24486405 DOI: 10.1016/j.abb.2014.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 01/14/2014] [Accepted: 01/18/2014] [Indexed: 12/12/2022]
Abstract
Proprotein convertase subtilisin/kexin-9 (PCSK9) acts mainly by forming complexes with the LDL receptor at the cell surface, which are then degraded in the lysosome. Studies were performed to determine whether excess levels of PCSK9 was sufficient to induce PCSK9/LDL receptor complex formation in human hepatocyte-like C3A cells. It was demonstrated using ELISA that instead of considering the overall levels of PCSK9 protein that is produced in response to certain treatment, what is critical is how much PCSK9 is actually capable of forming complexes. Despite the high levels, most of the PCSK9 produced as a result of incubating cells with a medium supplemented with BD™ MITO+ serum extender (MITO+ medium) appeared to be inhibited by a secreted factor. Having lower levels of PCSK9/LDL receptor complexes did not prevent an increase in the degradation rate of LDL receptors in MITO+ medium as compared to fetal bovine serum (FBS) containing medium (Regular medium), an effect that did not correlate with an increase in protein levels of the inducible degrader of LDL receptors (IDOL), as demonstrated using Western blotting analysis. Additional studies are required to determine the exact mechanism(s) for the degradation of the LDL receptor and/or to identify the secreted inhibitor of PCSK9.
Collapse
Affiliation(s)
- Catherine J Wooten
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Audrey F Adcock
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - DaTonye I Agina-Obu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Dayami Lopez
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
40
|
Diakiw SM, D'Andrea RJ, Brown AL. The double life of KLF5: Opposing roles in regulation of gene-expression, cellular function, and transformation. IUBMB Life 2013; 65:999-1011. [DOI: 10.1002/iub.1233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Sonya M. Diakiw
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre; University of New South Wales; Australia
- Department of Haematology; SA Pathology; Adelaide Australia
| | - Richard J. D'Andrea
- Department of Haematology; SA Pathology; Adelaide Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Australia
- Centre for Cancer Biology, SA Pathology; Adelaide Australia
- School of Medicine; University of Adelaide; Adelaide Australia
| | - Anna L. Brown
- Department of Haematology; SA Pathology; Adelaide Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Australia
- Centre for Cancer Biology, SA Pathology; Adelaide Australia
- School of Molecular and Biomedical Sciences; University of Adelaide; Adelaide Australia
| |
Collapse
|
41
|
Martin-Garrido A, Williams HC, Lee M, Seidel-Rogol B, Ci X, Dong JT, Lassègue B, Martín AS, Griendling KK. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation. PLoS One 2013; 8:e79657. [PMID: 24236150 PMCID: PMC3827379 DOI: 10.1371/journal.pone.0079657] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Abel Martin-Garrido
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Holly C. Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Minyoung Lee
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Bonnie Seidel-Rogol
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Xinpei Ci
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, United States of America
| | - Jin-Tang Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, United States of America
| | - Bernard Lassègue
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Alejandra San Martín
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
42
|
Arumemi F, Bayles I, Paul J, Milcarek C. Shared and discrete interacting partners of ELL1 and ELL2 by yeast two-hybrid assay. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.47101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Liu R, Dong JT, Chen C. Role of KLF5 in hormonal signaling and breast cancer development. VITAMINS AND HORMONES 2013; 93:213-25. [PMID: 23810009 DOI: 10.1016/b978-0-12-416673-8.00002-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Steroid hormones, including ovarian steroid hormones progesterone and estrogen and androgen, play vital roles in the development of normal mammary gland and breast cancer via their receptors. How these hormones regulate these physiological and pathological processes remains to be elucidated. Krüppel-like factor 5 (KLF5) is a transcription factor playing significant roles in breast carcinogenesis, whose expression has been shown to be regulated by hormones. In this review, the relationships among hormonal signaling, KLF5, and breast cancer are summarized and discussed.
Collapse
Affiliation(s)
- Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | | | | |
Collapse
|
44
|
David D, Nair SA, Pillai MR. Smurf E3 ubiquitin ligases at the cross roads of oncogenesis and tumor suppression. Biochim Biophys Acta Rev Cancer 2012; 1835:119-28. [PMID: 23164545 DOI: 10.1016/j.bbcan.2012.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/07/2012] [Accepted: 11/09/2012] [Indexed: 10/27/2022]
Abstract
Smad ubiquitin regulatory factors (Smurfs) belong to the HECT- family of E3 ubiquitin ligases and comprise mainly of two members, Smurf1 and Smurf2. Initially, Smurfs have been implicated in determining the competence of cells to respond to TGF-β/BMP signaling pathway. Nevertheless, the intrinsic catalytic activity has extended the repertoire of Smurf substrates beyond the TGF-β/BMP super family expanding its realm further to epigenetic modifications of histones governing the chromatin landscape. Through regulation of a large number of proteins in multiple cellular compartments, Smurfs regulate diverse cellular processes, including cell-cycle progression, cell proliferation, differentiation, DNA damage response, maintenance of genomic stability, and metastasis. As the genomic ablation of Smurfs leads to global changes in histone modifications and predisposition to a wide spectrum of tumors, Smurfs are also considered to have a novel tumor suppressor function. This review focuses on regulation network and biological functions of Smurfs in connection with its role in cancer progression. By providing a portrait of their protein targets, we intend to link the substrate specificity of Smurfs with their contribution to tumorigenesis. Since the regulation and biological functions of Smurfs are quite complex, understanding the oncogenic potential of these E3 ubiquitin ligases may facilitate the development of mechanism-based drugs in cancer treatment.
Collapse
Affiliation(s)
- Diana David
- Cancer research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum-695 014, Kerala, India.
| | | | | |
Collapse
|
45
|
Abstract
The classical genetic approach for exploring biological pathways typically begins by identifying mutations that cause a phenotype of interest. Overexpression or misexpression of a wild-type gene product, however, can also cause mutant phenotypes, providing geneticists with an alternative yet powerful tool to identify pathway components that might remain undetected using traditional loss-of-function analysis. This review describes the history of overexpression, the mechanisms that are responsible for overexpression phenotypes, tests that begin to distinguish between those mechanisms, the varied ways in which overexpression is used, the methods and reagents available in several organisms, and the relevance of overexpression to human disease.
Collapse
|