1
|
Toke O. Structural and Dynamic Determinants of Molecular Recognition in Bile Acid-Binding Proteins. Int J Mol Sci 2022; 23:505. [PMID: 35008930 PMCID: PMC8745080 DOI: 10.3390/ijms23010505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders in bile acid transport and metabolism have been related to a number of metabolic disease states, atherosclerosis, type-II diabetes, and cancer. Bile acid-binding proteins (BABPs), a subfamily of intracellular lipid-binding proteins (iLBPs), have a key role in the cellular trafficking and metabolic targeting of bile salts. Within the family of iLBPs, BABPs exhibit unique binding properties including positive binding cooperativity and site-selectivity, which in different tissues and organisms appears to be tailored to the local bile salt pool. Structural and biophysical studies of the past two decades have shed light on the mechanism of bile salt binding at the atomic level, providing us with a mechanistic picture of ligand entry and release, and the communication between the binding sites. In this review, we discuss the emerging view of bile salt recognition in intestinal- and liver-BABPs, with examples from both mammalian and non-mammalian species. The structural and dynamic determinants of the BABP-bile-salt interaction reviewed herein set the basis for the design and development of drug candidates targeting the transcellular traffic of bile salts in enterocytes and hepatocytes.
Collapse
Affiliation(s)
- Orsolya Toke
- Laboratory for NMR Spectroscopy, Structural Research Centre, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, H-1117 Budapest, Hungary
| |
Collapse
|
2
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
3
|
Horváth G, Egyed O, Tang C, Kovács M, Micsonai A, Kardos J, Toke O. Ligand entry in human ileal bile acid-binding protein is mediated by histidine protonation. Sci Rep 2019; 9:4825. [PMID: 30886237 PMCID: PMC6423008 DOI: 10.1038/s41598-019-41180-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Human ileal bile acid-binding protein (hI-BABP) has a key role in the intracellular transport of bile salts. To explore the role of histidine protonation in the binding process, the pH-dependence of bile salt binding and internal dynamics in hI-BABP was investigated using NMR spectroscopy and biophysical tools. Thermodynamic and kinetic measurements show an increase in the overall binding affinity and the association rate constant of the first binding step below the pKa of the histidines, suggesting that ligand binding is favoured by the protonated state. The overlap between residues exhibiting a high sensitivity to pH in their backbone amide chemical shifts and protein regions undergoing a global ms conformational exchange indicate a connection between the two processes. According to 15N NMR relaxation dispersion analysis, the slow motion is most pronounced at and above the pKa of the histidines. In agreement with the NMR measurements, MD simulations show a stabilization of the protein by histidine protonation. Hydrogen-bonding and van der Waals interactions mediating the flow of information between the C/D- and G/H-turn regions hosting the three histidines, suggest a complex way of pH-governed allosteric regulation of ligand entry involving a transition between a closed and a more open protein state.
Collapse
Affiliation(s)
- Gergő Horváth
- Laboratory for NMR Spectroscopy, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117, Budapest, Hungary
| | - Orsolya Egyed
- Laboratory for NMR Spectroscopy, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117, Budapest, Hungary
| | - Changguo Tang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA
| | - Mihály Kovács
- Department of Biochemistry, ELTE-MTA "Momentum" Motor Enzymology Research Group, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - András Micsonai
- Department of Biochemistry, MTA-ELTE NAP B Neuroimmunology Research Group, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, MTA-ELTE NAP B Neuroimmunology Research Group, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - Orsolya Toke
- Laboratory for NMR Spectroscopy, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117, Budapest, Hungary.
| |
Collapse
|
4
|
D'Onofrio M, Zanzoni S, Munari F, Monaco HL, Assfalg M, Capaldi S. The long variant of human ileal bile acid-binding protein associated with colorectal cancer exhibits sub-cellular localization and lipid binding behaviour distinct from those of the common isoform. Biochim Biophys Acta Gen Subj 2017; 1861:2315-2324. [PMID: 28689989 DOI: 10.1016/j.bbagen.2017.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/09/2017] [Accepted: 07/05/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ileal bile acid-binding protein, IBABP, participates in the intracellular trafficking of bile salts and influences their signaling activities. The recently discovered variant, IBABP-L, bearing an N-terminal 49-amino acid extension, was found to be associated with colorectal cancer and to protect cancer cells from the cytotoxic effects of deoxycholate. However, the precise function and the molecular properties of this variant are currently unknown. METHODS Bioinformatics tools and confocal microscopy were used to investigate the sub-cellular localization of IBABP-L; protein dynamics, ligand binding and interaction with membrane models were studied by 2D NMR and fluorescence spectroscopy. RESULTS Based on sub-cellular localization experiments we conclude that IBABP-L is targeted to the secretory pathway by a 24-residue signal peptide and, upon its cleavage, the mature protein is constitutively released into the extracellular space. Site-resolved NMR experiments indicated the distinct preference of primary and secondary bile salts to form either heterotypic or homotypic complexes with IBABP-L. The presence of the relatively dynamic N-terminal extension, originating only subtle conformational perturbations in the globular domain, was found to influence binding site occupation in IBABP-L as compared to IBABP. Even more pronounced differences were found in the tendency of the two variants to associate with phospholipid bilayers. CONCLUSIONS IBABP-L exhibits different sub-cellular localization, ligand-binding properties and membrane interaction propensity compared to the canonical short isoform. GENERAL SIGNIFICANCE Our results constitute an essential first step towards an understanding of the role of IBABP-L in bile salt trafficking and signaling under healthy and pathological conditions.
Collapse
Affiliation(s)
- Mariapina D'Onofrio
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Serena Zanzoni
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Francesca Munari
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Hugo L Monaco
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michael Assfalg
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Stefano Capaldi
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
5
|
D'Onofrio M, Barracchia CG, Bortot A, Munari F, Zanzoni S, Assfalg M. Molecular differences between human liver fatty acid binding protein and its T94A variant in their unbound and lipid-bound states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1152-1159. [PMID: 28668637 DOI: 10.1016/j.bbapap.2017.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 01/12/2023]
Abstract
Liver fatty acid binding protein (L-FABP) is an abundant cytosolic protein playing a central role in intracellular lipid trafficking. The L-FABP T94A variant, originating from one of the most common polymorphisms in the FABP family, is associated with several lipid-related disorders. However, the molecular factors that determine the observed functional differences are currently unknown. In our work, we performed a high resolution comparative molecular analysis of L-FABP T94T and L-FABP T94A in their unbound states and in the presence of representative ligands of the fatty acid and bile acid classes. We collected residue-resolved NMR spectral fingerprints of the two variants, and compared secondary structures, backbone dynamics, side chain arrangements, binding site occupation, and intermolecular contacts. We found that threonine to alanine replacement did not result in strongly perturbed structural and dynamic features, although differences in oleic acid binding by the two variants were detected. Based on chemical shift perturbations at sites distant from position 94 and on differences in intermolecular contacts, we suggest that long-range communication networks in L-FABP propagate the effect of amino acid substitution at sites relevant for ligand binding or biomolecular recognition.
Collapse
Affiliation(s)
| | | | - Andrea Bortot
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Francesca Munari
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
6
|
Tomaselli S, Ramirez DOS, Carletto RA, Varesano A, Vineis C, Zanzoni S, Molinari H, Ragona L. Electrospun Lipid Binding Proteins Composite Nanofibers with Antibacterial Properties. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/13/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Simona Tomaselli
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, via Corti 12 20133 Milano Italy
| | | | | | - Alessio Varesano
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, C.so G. Pella 16 13900 Biella Italy
| | - Claudia Vineis
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, C.so G. Pella 16 13900 Biella Italy
| | - Serena Zanzoni
- Dipartimento di Biotecnologie; Università degli Studi di Verona; Strada le Grazie 15 37134 Verona Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, via Corti 12 20133 Milano Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, via Corti 12 20133 Milano Italy
| |
Collapse
|
7
|
Pérez Santero S, Favretto F, Zanzoni S, Chignola R, Assfalg M, D'Onofrio M. Effects of macromolecular crowding on a small lipid binding protein probed at the single-amino acid level. Arch Biochem Biophys 2016; 606:99-110. [DOI: 10.1016/j.abb.2016.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/16/2016] [Accepted: 07/21/2016] [Indexed: 11/29/2022]
|
8
|
Horváth G, Bencsura Á, Simon Á, Tochtrop GP, DeKoster GT, Covey DF, Cistola DP, Toke O. Structural determinants of ligand binding in the ternary complex of human ileal bile acid binding protein with glycocholate and glycochenodeoxycholate obtained from solution NMR. FEBS J 2016; 283:541-55. [PMID: 26613247 DOI: 10.1111/febs.13610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/03/2015] [Accepted: 11/24/2015] [Indexed: 01/13/2023]
Abstract
UNLABELLED Besides aiding digestion, bile salts are important signal molecules exhibiting a regulatory role in metabolic processes. Human ileal bile acid binding protein (I-BABP) is an intracellular carrier of bile salts in the epithelial cells of the distal small intestine and has a key role in the enterohepatic circulation of bile salts. Positive binding cooperativity combined with site selectivity of glycocholate and glycochenodeoxycholate, the two most abundant bile salts in the human body, make human I-BABP a unique member of the family of intracellular lipid binding proteins. Solution NMR structure of the ternary complex of human I-BABP with glycocholate and glycochenodeoxycholate reveals an extensive network of hydrogen bonds and hydrophobic interactions stabilizing the bound bile salts. Conformational changes accompanying bile salt binding affects four major regions in the protein including the C/D, E/F and G/H loops as well as the helical segment. Most of these protein regions coincide with a previously described network of millisecond time scale fluctuations in the apo protein, a motion absent in the bound state. Comparison of the heterotypic doubly ligated complex with the unligated form provides further evidence of a conformation selection mechanism of ligand entry. Structural and dynamic aspects of human I-BABP-bile salt interaction are discussed and compared with characteristics of ligand binding in other members of the intracellular lipid binding protein family. PROTEIN DATA BANK ACCESSION NUMBERS The coordinates of the 10 lowest energy structures of the human I-BABP : GCDA : GCA complex as well as the distance restraints used to calculate the final ensemble have been deposited in the Brookhaven Protein Data Bank with accession number 2MM3.
Collapse
Affiliation(s)
- Gergő Horváth
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ákos Bencsura
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Simon
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gregory P Tochtrop
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.,Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO, USA
| | - Gregory T DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Douglas F Covey
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO, USA
| | - David P Cistola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Orsolya Toke
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
9
|
Favretto F, Ceccon A, Zanzoni S, D'Onofrio M, Ragona L, Molinari H, Assfalg M. The unique ligand binding features of subfamily-II iLBPs with respect to bile salts and related drugs. Prostaglandins Leukot Essent Fatty Acids 2015; 95:1-10. [PMID: 25468388 DOI: 10.1016/j.plefa.2014.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/20/2014] [Indexed: 11/28/2022]
Abstract
Intracellular lipid binding proteins (iLBPs) are a family of evolutionarily related small cytoplasmic proteins implicated in the transcellular transport of lipophilic ligands. Subfamily-II iLBPs include the liver fatty acid binding protein (L-FABP), and the ileal and the liver and ileal bile acid binding proteins (L-BABP and I-BABP). Atomic-level investigations during the past 15-20 years have delivered relevant information on bile acid binding by this protein group, revealing unique features including binding cooperativity, promiscuity, and site selectivity. Using NMR spectroscopy and other biophysical techniques, our laboratories have contributed to an understanding of the molecular determinants of some of these properties and their generality among proteins from different animal species. We focused especially on formation of heterotypic complexes, considering the mixed compositions of physiological bile acid pools. Experiments performed with synthetic bile acid derivatives showed that iLBPs could act as targets for cell-specific contrast agents and, more generally, as effective carriers of amphiphilic drugs. This review collects the major findings related to bile salt interactions with iLBPs aiming to provide keys for a deeper understanding of protein-mediated intracellular bile salt trafficking.
Collapse
Affiliation(s)
- Filippo Favretto
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Alberto Ceccon
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Laura Ragona
- Institute for Macromolecular Studies, National Research Council, Via Bassini 15, Milan 20133, Italy
| | - Henriette Molinari
- Institute for Macromolecular Studies, National Research Council, Via Bassini 15, Milan 20133, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy.
| |
Collapse
|
10
|
Horváth G, Egyed O, Toke O. Temperature Dependence of Backbone Dynamics in Human Ileal Bile Acid-Binding Protein: Implications for the Mechanism of Ligand Binding. Biochemistry 2014; 53:5186-98. [DOI: 10.1021/bi500553f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gergő Horváth
- Institute of Organic Chemistry,
Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Orsolya Egyed
- Institute of Organic Chemistry,
Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Orsolya Toke
- Institute of Organic Chemistry,
Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| |
Collapse
|
11
|
Pagano K, Tomaselli S, Zanzoni S, Assfalg M, Molinari H, Ragona L. Bile acid binding protein: a versatile host of small hydrophobic ligands for applications in the fields of MRI contrast agents and bio-nanomaterials. Comput Struct Biotechnol J 2013; 6:e201303021. [PMID: 24688729 PMCID: PMC3962148 DOI: 10.5936/csbj.201303021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 01/02/2023] Open
Abstract
During the last decade a growing amount of evidence has been obtained, supporting the role of the beta-clamshell family of intracellular lipid binding proteins (iLBPs) not only in the translocation of lipophilic molecules but also in lipid mediated signalling and metabolism. Given the central role of lipids in physiological processes, it is essential to have detailed knowledge on their interactions with cognate binding proteins. Structural and dynamical aspects of the binding mechanisms have been widely investigated by means of NMR spectroscopy, docking and molecular dynamics simulation approaches. iLBPs share a stable beta-barrel fold, delimiting an internal cavity capable of promiscuous ligand binding and display significant flexibility at the putative ligand portal. These features make this class of proteins good scaffolds to build host-guest systems for applications in nanomedicine and nanomaterials.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Simona Tomaselli
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Serena Zanzoni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| |
Collapse
|
12
|
Turpin ER, Fang HJ, Thomas NR, Hirst JD. Cooperativity and site selectivity in the ileal lipid binding protein. Biochemistry 2013; 52:4723-33. [PMID: 23758264 DOI: 10.1021/bi400192w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The ileal lipid binding protein (ILBP or I-BABP) binds bile salts with positive cooperativity and has unusual site selectivity, whereby cholic acid binds preferentially in one site and chenodeoxycholic in another, despite both sites having an affinity for both ligands and the ligands only differing by a single hydroxyl group. Previous studies of the human variant have assumed that the ligand/protein binding ratio is 2:1, but we show, using electrospray ionization mass spectroscopy, that human ILBP binds bile acids with a 3:1 ratio, even at low protein and ligand concentrations. Docking calculations and molecular dynamics (MD) simulations identify an allosterically active binding site on the protein exterior that induces a change from a closed conformation to an open one, characterized by a movement of one of the α-helices by ~10° with respect to the β-clam shell. Additional independent MD simulations of several hundred nanoseconds implicate the change between conformations in the mechanisms of both cooperativity and ligand site selectivity.
Collapse
Affiliation(s)
- Eleanor R Turpin
- School of Chemistry, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | |
Collapse
|
13
|
Favretto F, Assfalg M, Gallo M, Cicero DO, D'Onofrio M, Molinari H. Ligand Binding Promiscuity of Human Liver Fatty Acid Binding Protein: Structural and Dynamic Insights from an Interaction Study with Glycocholate and Oleate. Chembiochem 2013; 14:1807-19. [DOI: 10.1002/cbic.201300156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 11/09/2022]
|
14
|
Zanzoni S, D’Onofrio M, Molinari H, Assfalg M. Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy. Biochem Biophys Res Commun 2012; 427:677-81. [DOI: 10.1016/j.bbrc.2012.09.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
|
15
|
Fang C, Filipp FV, Smith JW. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα. J Lipid Res 2012; 53:664-73. [PMID: 22223860 DOI: 10.1194/jlr.m021733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA.
Collapse
Affiliation(s)
- Changming Fang
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|