1
|
Fenton AR, Janowitz HN, Franklin LP, Young RG, Moro CA, DeGennaro MV, McReynolds MR, Wang W, Hanna-Rose W. A Caenorhabditis elegans model of adenylosuccinate lyase deficiency reveals neuromuscular and reproductive phenotypes of distinct etiology. Mol Genet Metab 2023; 140:107686. [PMID: 37607437 PMCID: PMC10840804 DOI: 10.1016/j.ymgme.2023.107686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Inborn errors of purine metabolism are rare syndromes with an array of complex phenotypes in humans. One such disorder, adenylosuccinate lyase deficiency (ASLD), is caused by a decrease in the activity of the bi-functional purine biosynthetic enzyme adenylosuccinate lyase (ADSL). Mutations in human ADSL cause epilepsy, muscle ataxia, and autistic-like symptoms. Although the genetic basis of ASLD is known, the molecular mechanisms driving phenotypic outcome are not. Here, we characterize neuromuscular and reproductive phenotypes associated with a deficiency of adsl-1 in Caenorhabditis elegans. We demonstrate that adsl-1 function contributes to regulation of spontaneous locomotion, that adsl-1 functions acutely for proper mobility, and that aspects of adsl-1-related dysfunction are reversible. Using pharmacological supplementation, we correlate phenotypes with distinct metabolic perturbations. The neuromuscular defect correlates with accumulation of a purine biosynthetic intermediate whereas reproductive deficiencies can be ameliorated by purine supplementation, indicating differing molecular mechanisms behind the phenotypes. Because purine metabolism is highly conserved in metazoans, we suggest that similar separable metabolic perturbations result in the varied symptoms in the human disorder and that a dual-approach therapeutic strategy may be beneficial.
Collapse
Affiliation(s)
- Adam R Fenton
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haley N Janowitz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Latisha P Franklin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Riley G Young
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Corinna A Moro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael V DeGennaro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wenqing Wang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Moro CA, Sony SA, Franklin LP, Dong S, Peifer MM, Wittig KE, Hanna-Rose W. Adenylosuccinate lyase deficiency affects neurobehavior via perturbations to tyramine signaling in Caenorhabditis elegans. PLoS Genet 2023; 19:e1010974. [PMID: 37773959 PMCID: PMC10566684 DOI: 10.1371/journal.pgen.1010974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
Adenylosuccinate lyase deficiency is an ultrarare congenital metabolic disorder associated with muscle weakness and neurobehavioral dysfunction. Adenylosuccinate lyase is required for de novo purine biosynthesis, acting twice in the pathway at non-sequential steps. Genetic models can contribute to our understanding of the etiology of disease phenotypes and pave the way for development of therapeutic treatments. Here, we establish the first model to specifically study neurobehavioral aspects of adenylosuccinate lyase deficiency. We show that reduction of adsl-1 function in C. elegans is associated with a novel learning phenotype in a gustatory plasticity assay. The animals maintain capacity for gustatory plasticity, evidenced by a change in their behavior in response to cue pairing. However, their behavioral output is distinct from that of control animals. We link substrate accumulation that occurs upon adsl-1 deficiency to an unexpected perturbation in tyrosine metabolism and show that a lack of tyramine mediates the behavioral changes through action on the metabotropic TYRA-2 tyramine receptor. Our studies reveal a potential for wider metabolic perturbations, beyond biosynthesis of purines, to impact behavior under conditions of adenylosuccinate lyase deficiency.
Collapse
Affiliation(s)
- Corinna A. Moro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sabrina A. Sony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Latisha P. Franklin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Shirley Dong
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mia M. Peifer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kathryn E. Wittig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
3
|
Kim GD, Qiu D, Jessen HJ, Mayer A. Metabolic Consequences of Polyphosphate Synthesis and Imminent Phosphate Limitation. mBio 2023; 14:e0010223. [PMID: 37074217 PMCID: PMC10294617 DOI: 10.1128/mbio.00102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023] Open
Abstract
Cells stabilize intracellular inorganic phosphate (Pi) to compromise between large biosynthetic needs and detrimental bioenergetic effects of Pi. Pi homeostasis in eukaryotes uses Syg1/Pho81/Xpr1 (SPX) domains, which are receptors for inositol pyrophosphates. We explored how polymerization and storage of Pi in acidocalcisome-like vacuoles supports Saccharomyces cerevisiae metabolism and how these cells recognize Pi scarcity. Whereas Pi starvation affects numerous metabolic pathways, beginning Pi scarcity affects few metabolites. These include inositol pyrophosphates and ATP, a low-affinity substrate for inositol pyrophosphate-synthesizing kinases. Declining ATP and inositol pyrophosphates may thus be indicators of impending Pi limitation. Actual Pi starvation triggers accumulation of the purine synthesis intermediate 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), which activates Pi-dependent transcription factors. Cells lacking inorganic polyphosphate show Pi starvation features already under Pi-replete conditions, suggesting that vacuolar polyphosphate supplies Pi for metabolism even when Pi is abundant. However, polyphosphate deficiency also generates unique metabolic changes that are not observed in starving wild-type cells. Polyphosphate in acidocalcisome-like vacuoles may hence be more than a global phosphate reserve and channel Pi to preferred cellular processes. IMPORTANCE Cells must strike a delicate balance between the high demand of inorganic phosphate (Pi) for synthesizing nucleic acids and phospholipids and its detrimental bioenergetic effects by reducing the free energy of nucleotide hydrolysis. The latter may stall metabolism. Therefore, microorganisms manage the import and export of phosphate, its conversion into osmotically inactive inorganic polyphosphates, and their storage in dedicated organelles (acidocalcisomes). Here, we provide novel insights into metabolic changes that yeast cells may use to signal declining phosphate availability in the cytosol and differentiate it from actual phosphate starvation. We also analyze the role of acidocalcisome-like organelles in phosphate homeostasis. This study uncovers an unexpected role of the polyphosphate pool in these organelles under phosphate-rich conditions, indicating that its metabolic roles go beyond that of a phosphate reserve for surviving starvation.
Collapse
Affiliation(s)
- Geun-Don Kim
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | | | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
4
|
Wizrah MS, Chua SM, Luo Z, Manik MK, Pan M, Whyte JM, Robertson AA, Kappler U, Kobe B, Fraser JA. AICAR transformylase/IMP cyclohydrolase (ATIC) is essential for de novo purine biosynthesis and infection by Cryptococcus neoformans. J Biol Chem 2022; 298:102453. [PMID: 36063996 PMCID: PMC9525906 DOI: 10.1016/j.jbc.2022.102453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/27/2023] Open
Abstract
The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5'-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.
Collapse
Affiliation(s)
- Maha S.I. Wizrah
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Sheena M.H. Chua
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Zhenyao Luo
- School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Mohammad K. Manik
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Mengqi Pan
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Jessica M.L. Whyte
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Avril A.B. Robertson
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,For correspondence: James A. Fraser
| |
Collapse
|
5
|
Expression and purification of the 5'-nucleotidase YitU from Bacillus species: its enzymatic properties and possible applications in biotechnology. Appl Microbiol Biotechnol 2020; 104:2957-2972. [PMID: 32040605 PMCID: PMC7062661 DOI: 10.1007/s00253-020-10428-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 11/05/2022]
Abstract
5’-Nucleotidases (EC 3.1.3.5) are enzymes that catalyze the hydrolytic dephosphorylation of 5′-ribonucleotides and 5′-deoxyribonucleotides to their corresponding nucleosides plus phosphate. In the present study, to search for new genes encoding 5′-nucleotidases specific for purine nucleotides in industrially important Bacillus species, “shotgun” cloning and the direct selection of recombinant clones grown in purine nucleosides at inhibitory concentrations were performed in the Escherichia coli GS72 strain, which is sensitive to these compounds. As a result, orthologous yitU genes from Bacillus subtilis and Bacillus amyloliquefaciens, whose products belong to the ubiquitous haloacid dehalogenase superfamily (HADSF), were selected and found to have a high sequence similarity of 87%. B. subtilis YitU was produced in E. coli as an N-terminal hexahistidine-tagged protein, purified and biochemically characterized as a soluble 5′-nucleotidase with broad substrate specificity with respect to various deoxyribo- and ribonucleoside monophosphates: dAMP, GMP, dGMP, CMP, AMP, XMP, IMP and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-monophosphate (AICAR-P). However, the preferred substrate for recombinant YitU was shown to be flavin mononucleotide (FMN). B. subtilis and B. amyloliquefaciens yitU overexpression increased riboflavin (RF) and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) accumulation and can be applied to breed highly performing RF- and AICAR-producing strains.
Collapse
|
6
|
Agmon N, Temple J, Tang Z, Schraink T, Baron M, Chen J, Mita P, Martin JA, Tu BP, Yanai I, Fenyö D, Boeke JD. Phylogenetic debugging of a complete human biosynthetic pathway transplanted into yeast. Nucleic Acids Res 2020; 48:486-499. [PMID: 31745563 PMCID: PMC7145547 DOI: 10.1093/nar/gkz1098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/04/2019] [Accepted: 11/16/2019] [Indexed: 12/30/2022] Open
Abstract
Cross-species pathway transplantation enables insight into a biological process not possible through traditional approaches. We replaced the enzymes catalyzing the entire Saccharomyces cerevisiae adenine de novo biosynthesis pathway with the human pathway. While the 'humanized' yeast grew in the absence of adenine, it did so poorly. Dissection of the phenotype revealed that PPAT, the human ortholog of ADE4, showed only partial function whereas all other genes complemented fully. Suppressor analysis revealed other pathways that play a role in adenine de-novo pathway regulation. Phylogenetic analysis pointed to adaptations of enzyme regulation to endogenous metabolite level 'setpoints' in diverse organisms. Using DNA shuffling, we isolated specific amino acids combinations that stabilize the human protein in yeast. Thus, using adenine de novo biosynthesis as a proof of concept, we suggest that the engineering methods used in this study as well as the debugging strategies can be utilized to transplant metabolic pathway from any origin into yeast.
Collapse
Affiliation(s)
- Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jasmine Temple
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Zuojian Tang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobias Schraink
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Maayan Baron
- Institute for Computational Medicine and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jun Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paolo Mita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - James A Martin
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Benjamin P Tu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Itai Yanai
- Institute for Computational Medicine and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
7
|
Hill BG, Shiva S, Ballinger S, Zhang J, Darley-Usmar VM. Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biol Chem 2019; 401:3-29. [PMID: 31815377 PMCID: PMC6944318 DOI: 10.1515/hsz-2019-0268] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
It is now becoming clear that human metabolism is extremely plastic and varies substantially between healthy individuals. Understanding the biochemistry that underlies this physiology will enable personalized clinical interventions related to metabolism. Mitochondrial quality control and the detailed mechanisms of mitochondrial energy generation are central to understanding susceptibility to pathologies associated with aging including cancer, cardiac and neurodegenerative diseases. A precision medicine approach is also needed to evaluate the impact of exercise or caloric restriction on health. In this review, we discuss how technical advances in assessing mitochondrial genetics, cellular bioenergetics and metabolomics offer new insights into developing metabolism-based clinical tests and metabolotherapies. We discuss informatics approaches, which can define the bioenergetic-metabolite interactome and how this can help define healthy energetics. We propose that a personalized medicine approach that integrates metabolism and bioenergetics with physiologic parameters is central for understanding the pathophysiology of diseases with a metabolic etiology. New approaches that measure energetics and metabolomics from cells isolated from human blood or tissues can be of diagnostic and prognostic value to precision medicine. This is particularly significant with the development of new metabolotherapies, such as mitochondrial transplantation, which could help treat complex metabolic diseases.
Collapse
Affiliation(s)
- Bradford G. Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15143
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
8
|
Pinson B, Ceschin J, Saint-Marc C, Daignan-Fornier B. Dual control of NAD + synthesis by purine metabolites in yeast. eLife 2019; 8:43808. [PMID: 30860478 PMCID: PMC6430606 DOI: 10.7554/elife.43808] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolism is a highly integrated process resulting in energy and biomass production. While individual metabolic routes are well characterized, the mechanisms ensuring crosstalk between pathways are poorly described, although they are crucial for homeostasis. Here, we establish a co-regulation of purine and pyridine metabolism in response to external adenine through two separable mechanisms. First, adenine depletion promotes transcriptional upregulation of the de novo NAD+ biosynthesis genes by a mechanism requiring the key-purine intermediates ZMP/SZMP and the Bas1/Pho2 transcription factors. Second, adenine supplementation favors the pyridine salvage route resulting in an ATP-dependent increase of intracellular NAD+. This control operates at the level of the nicotinic acid mononucleotide adenylyl-transferase Nma1 and can be bypassed by overexpressing this enzyme. Therefore, in yeast, pyridine metabolism is under the dual control of ZMP/SZMP and ATP, revealing a much wider regulatory role for these intermediate metabolites in an integrated biosynthesis network.
Collapse
Affiliation(s)
- Benoît Pinson
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | - Johanna Ceschin
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | - Christelle Saint-Marc
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | | |
Collapse
|
9
|
Daignan-Fornier B, Pinson B. Yeast to Study Human Purine Metabolism Diseases. Cells 2019; 8:E67. [PMID: 30658520 PMCID: PMC6356901 DOI: 10.3390/cells8010067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/04/2023] Open
Abstract
Purine nucleotides are involved in a multitude of cellular processes, and the dysfunction of purine metabolism has drastic physiological and pathological consequences. Accordingly, several genetic disorders associated with defective purine metabolism have been reported. The etiology of these diseases is poorly understood and simple model organisms, such as yeast, have proved valuable to provide a more comprehensive view of the metabolic consequences caused by the identified mutations. In this review, we present results obtained with the yeast Saccharomyces cerevisiae to exemplify how a eukaryotic unicellular organism can offer highly relevant information for identifying the molecular basis of complex human diseases. Overall, purine metabolism illustrates a remarkable conservation of genes, functions and phenotypes between humans and yeast.
Collapse
Affiliation(s)
- Bertrand Daignan-Fornier
- Université de Bordeaux IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
- Centre National de la Recherche Scientifique IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
| | - Benoît Pinson
- Université de Bordeaux IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
- Centre National de la Recherche Scientifique IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
| |
Collapse
|
10
|
Douillet DC, Pinson B, Ceschin J, Hürlimann HC, Saint-Marc C, Laporte D, Claverol S, Konrad M, Bonneu M, Daignan-Fornier B. Metabolomics and proteomics identify the toxic form and the associated cellular binding targets of the anti-proliferative drug AICAR. J Biol Chem 2018; 294:805-815. [PMID: 30478173 DOI: 10.1074/jbc.ra118.004964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR, or acadesine) is a precursor of the monophosphate derivative 5-amino-4-imidazole carboxamide ribonucleoside 5'-phosphate (ZMP), an intermediate in de novo purine biosynthesis. AICAR proved to have promising anti-proliferative properties, although the molecular basis of its toxicity is poorly understood. To exert cytotoxicity, AICAR needs to be metabolized, but the AICAR-derived toxic metabolite was not identified. Here, we show that ZMP is the major toxic derivative of AICAR in yeast and establish that its metabolization to succinyl-ZMP, ZDP, or ZTP (di- and triphosphate derivatives of AICAR) strongly reduced its toxicity. Affinity chromatography identified 74 ZMP-binding proteins, including 41 that were found neither as AMP nor as AICAR or succinyl-ZMP binders. Overexpression of karyopherin-β Kap123, one of the ZMP-specific binders, partially rescued AICAR toxicity. Quantitative proteomic analyses revealed 57 proteins significantly less abundant on nuclei-enriched fractions from AICAR-fed cells, this effect being compensated by overexpression of KAP123 for 15 of them. These results reveal nuclear protein trafficking as a function affected by AICAR.
Collapse
Affiliation(s)
- Delphine C Douillet
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Benoît Pinson
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Johanna Ceschin
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Hans C Hürlimann
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Christelle Saint-Marc
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Damien Laporte
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Stéphane Claverol
- the University of Bordeaux, Bordeaux INP, Plateforme Proteome, F-33076 Bordeaux, France, and
| | - Manfred Konrad
- the Max-Planck-Institute for Biophysical Chemistry, D-37077 Goettingen, Germany
| | - Marc Bonneu
- the University of Bordeaux, Bordeaux INP, Plateforme Proteome, F-33076 Bordeaux, France, and
| | - Bertrand Daignan-Fornier
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France, .,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| |
Collapse
|
11
|
Fulghum K, Hill BG. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Front Cardiovasc Med 2018; 5:127. [PMID: 30255026 PMCID: PMC6141631 DOI: 10.3389/fcvm.2018.00127] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Exercise has a myriad of physiological benefits that derive in part from its ability to improve cardiometabolic health. The periodic metabolic stress imposed by regular exercise appears fundamental in driving cardiovascular tissue adaptation. However, different types, intensities, or durations of exercise elicit different levels of metabolic stress and may promote distinct types of tissue remodeling. In this review, we discuss how exercise affects cardiac structure and function and how exercise-induced changes in metabolism regulate cardiac adaptation. Current evidence suggests that exercise typically elicits an adaptive, beneficial form of cardiac remodeling that involves cardiomyocyte growth and proliferation; however, chronic levels of extreme exercise may increase the risk for pathological cardiac remodeling or sudden cardiac death. An emerging theme underpinning acute as well as chronic cardiac adaptations to exercise is metabolic periodicity, which appears important for regulating mitochondrial quality and function, for stimulating metabolism-mediated exercise gene programs and hypertrophic kinase activity, and for coordinating biosynthetic pathway activity. In addition, circulating metabolites liberated during exercise trigger physiological cardiac growth. Further understanding of how exercise-mediated changes in metabolism orchestrate cell signaling and gene expression could facilitate therapeutic strategies to maximize the benefits of exercise and improve cardiac health.
Collapse
Affiliation(s)
- Kyle Fulghum
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
| | - Bradford G. Hill
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
| |
Collapse
|
12
|
2-[2-(4-(trifluoromethyl)phenylamino)thiazol-4-yl]acetic acid (Activator-3) is a potent activator of AMPK. Sci Rep 2018; 8:9599. [PMID: 29942003 PMCID: PMC6018554 DOI: 10.1038/s41598-018-27974-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/06/2018] [Indexed: 02/08/2023] Open
Abstract
AMPK is considered as a potential high value target for metabolic disorders. Here, we present the molecular modeling, in vitro and in vivo characterization of Activator-3, 2-[2-(4-(trifluoromethyl)phenylamino)thiazol-4-yl]acetic acid, an AMP mimetic and a potent pan-AMPK activator. Activator-3 and AMP likely share common activation mode for AMPK activation. Activator-3 enhanced AMPK phosphorylation by upstream kinase LKB1 and protected AMPK complex against dephosphorylation by PP2C. Molecular modeling analyses followed by in vitro mutant AMPK enzyme assays demonstrate that Activator-3 interacts with R70 and R152 of the CBS1 domain on AMPK γ subunit near AMP binding site. Activator-3 and C2, a recently described AMPK mimetic, bind differently in the γ subunit of AMPK. Activator-3 unlike C2 does not show cooperativity of AMPK activity in the presence of physiological concentration of ATP (2 mM). Activator-3 displays good pharmacokinetic profile in rat blood plasma with minimal brain penetration property. Oral treatment of High Sucrose Diet (HSD) fed diabetic rats with 10 mg/kg dose of Activator-3 once in a day for 30 days significantly enhanced glucose utilization, improved lipid profiles and reduced body weight, demonstrating that Activator-3 is a potent AMPK activator that can alleviate the negative metabolic impact of high sucrose diet in rat model.
Collapse
|
13
|
Albrecht D, Hürlimann HC, Ceschin J, Saint-Marc C, Pinson B, Daignan-Fornier B. Multiple chemo-genetic interactions between a toxic metabolite and the ubiquitin pathway in yeast. Curr Genet 2018; 64:1275-1286. [PMID: 29721631 DOI: 10.1007/s00294-018-0843-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
AICAR is the precursor of ZMP, a metabolite with antiproliferative properties in yeast and human. We aim at understanding how AICAR (and its active form ZMP) affects essential cellular processes. In this work, we found that ZMP accumulation is synthetic lethal with a hypomorphic allele of the ubiquitin-activating enzyme Uba1. A search for gene-dosage suppressors revealed that ubiquitin overexpression was sufficient to restore growth of the uba1 mutant upon AICAR treatment, suggesting that the ubiquitin pool is critical for cells to cope with AICAR. Accordingly, two mutants with constitutive low ubiquitin, ubp6 and doa1, were highly sensitive to AICAR, a phenotype that could be suppressed by ubiquitin overexpression. We established, by genetic means, that these new AICAR-sensitive mutants act in a different pathway from the rad6/bre1 mutants which were previously reported as sensitive to AICAR (Albrecht et al., Genetics 204:1447-1460, 2016). Two ubiquitin-conjugating enzymes (Ubc4 and Cdc34) and a ubiquitin ligase (Cdc4) were found to contribute to the ability of cells to cope with ZMP. This study illustrates the complexity of chemo-genetic interactions and shows how genetic analyses allow deciphering the implicated pathways, the individual gene effects, and their combined phenotypic contribution. Based on additivity and suppression patterns, we conclude that AICAR treatment shows synthetic interactions with distinct branches of the yeast ubiquitin pathway.
Collapse
Affiliation(s)
- Delphine Albrecht
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Hans C Hürlimann
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Institut für Biologie, Martin-Luther Universität, Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Johanna Ceschin
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Christelle Saint-Marc
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Benoît Pinson
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Bertrand Daignan-Fornier
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue C. Saint-Saëns CS 61390, 33077, Bordeaux, France.
| |
Collapse
|
14
|
Malykh EA, Butov IA, Ravcheeva AB, Krylov AA, Mashko SV, Stoynova NV. Specific features of L-histidine production by Escherichia coli concerned with feedback control of AICAR formation and inorganic phosphate/metal transport. Microb Cell Fact 2018; 17:42. [PMID: 29544475 PMCID: PMC5852967 DOI: 10.1186/s12934-018-0890-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/08/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In the L-histidine (His) biosynthetic pathway of Escherichia coli, the first key enzyme, ATP-phosphoribosyltransferase (ATP-PRT, HisG), is subject to different types of inhibition. Eliminating the feedback inhibition of HisG by the His end product is an important step that enables the oversynthesis of His in breeding strains. However, the previously reported feedback inhibition-resistant mutant enzyme from E. coli, HisGE271K, is inhibited by purine nucleotides, particularly ADP and AMP, via competitive inhibition with its ATP substrate. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), which is formed not only during His biosynthesis but also during de novo purine biosynthesis, acts as a natural analog of AMP and substitutes for it in some enzymatic reactions. We hypothesized that AICAR could control its own formation, particularly through the His biosynthetic pathway, by negatively influencing HisG enzymatic activity, which would make preventing ATP-PRT transferase inhibition by AICAR crucial for His overproduction. RESULTS For the first time, both the native E. coli HisG and the previously described feedback-resistant mutant HisGE271K enzymes were shown to be sensitive to inhibition by AICAR, a structural analog of AMP. To circumvent the negative effect that AICAR has on His synthesis, we constructed the new His-producing strain EA83 and demonstrated its improved histidine production. This increased production was particularly associated with the improved conversion of AICAR to ATP due to purH and purA gene overexpression; additionally, the PitA-dependent phosphate/metal (Me2+-Pi) transport system was modified by a pitA gene deletion. This His-producing strain unexpectedly exhibited decreased alkaline phosphatase activity at low Pi concentrations. AICAR was consequently hypothesized inhibit the two-component PhoBR system, which controls Pho regulon gene expression. CONCLUSIONS Inhibition of a key enzyme in the His biosynthetic pathway, HisG, by AICAR, which is formed in this pathway, generates a serious bottleneck during His production. The constructed His-producing strain demonstrated the enhanced expression of genes that encode enzymes involved in the metabolism of AICAR to ATP, which is a substrate of HisG, and thus led to improved His accumulation.
Collapse
Affiliation(s)
- Evgeniya A Malykh
- Ajinomoto-Genetika Research Institute, 1-st Dorozny pr., 1-1, Moscow, 117545, Russian Federation
| | - Ivan A Butov
- Ajinomoto-Genetika Research Institute, 1-st Dorozny pr., 1-1, Moscow, 117545, Russian Federation
| | - Anna B Ravcheeva
- Ajinomoto-Genetika Research Institute, 1-st Dorozny pr., 1-1, Moscow, 117545, Russian Federation
| | - Alexander A Krylov
- Ajinomoto-Genetika Research Institute, 1-st Dorozny pr., 1-1, Moscow, 117545, Russian Federation
| | - Sergey V Mashko
- Ajinomoto-Genetika Research Institute, 1-st Dorozny pr., 1-1, Moscow, 117545, Russian Federation
| | - Nataliya V Stoynova
- Ajinomoto-Genetika Research Institute, 1-st Dorozny pr., 1-1, Moscow, 117545, Russian Federation.
| |
Collapse
|
15
|
Chemo-Genetic Interactions Between Histone Modification and the Antiproliferation Drug AICAR Are Conserved in Yeast and Humans. Genetics 2016; 204:1447-1460. [PMID: 27707786 PMCID: PMC5161278 DOI: 10.1534/genetics.116.192518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Identifying synthetic lethal interactions has emerged as a promising new therapeutic approach aimed at targeting cancer cells directly. Here, we used the yeast Saccharomyces cerevisiae as a simple eukaryotic model to screen for mutations resulting in a synthetic lethality with 5-amino-4-imidazole carboxamide ribonucleoside (AICAR) treatment. Indeed, AICAR has been reported to inhibit the proliferation of multiple cancer cell lines. Here, we found that loss of several histone-modifying enzymes, including Bre1 (histone H2B ubiquitination) and Set1 (histone H3 lysine 4 methylation), greatly enhanced AICAR inhibition on growth via the combined effects of both the drug and mutations on G1 cyclins. Our results point to AICAR impacting on Cln3 subcellular localization and at the Cln1 protein level, while the bre1 or set1 deletion affected CLN1 and CLN2 expression. As a consequence, AICAR and bre1/set1 deletions jointly affected all three G1 cyclins (Cln1, Cln2, and Cln3), leading to a condition known to result in synthetic lethality. Significantly, these chemo-genetic synthetic interactions were conserved in human HCT116 cells. Indeed, knock-down of RNF40, ASH2L, and KMT2D/MLL2 induced a highly significant increase in AICAR sensitivity. Given that KMT2D/MLL2 is mutated at high frequency in a variety of cancers, this synthetic lethal interaction has an interesting therapeutic potential.
Collapse
|
16
|
A paralogue of the phosphomutase-like gene family in Candida glabrata, CgPmu2, gained broad-range phosphatase activity due to a small number of clustered substitutions. Biochem J 2015; 471:187-98. [PMID: 26268557 DOI: 10.1042/bj20150611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/12/2015] [Indexed: 11/17/2022]
Abstract
Inorganic phosphate is required for a range of cellular processes, such as DNA/RNA synthesis and intracellular signalling. The phosphate starvation-inducible phosphatase activity of Candida glabrata is encoded by the gene CgPMU2 (C. glabrata phosphomutase-like protein). CgPMU2 is part of a three-gene family (∼75% identical) created through gene duplication in the C. glabrata clade; only CgPmu2 is a PHO-regulated broad range acid phosphatase. We identified amino acids that confer broad range phosphatase activity on CgPmu2 by creating fusions of sections of CgPMU2 with CgPMU1, a paralogue with little broad range phosphatase activity. We used site-directed mutagenesis on various fusions to sequentially convert CgPmu1 to CgPmu2. Based on molecular modelling of the Pmu proteins on to a histidine phosphatase crystal structure, clusters of amino acids were found in two distinct regions that were able to confer phosphatase activity. Substitutions in these two regions together conferred broad phosphatase activity on CgPmu1. Interestingly, one change is a histidine adjacent to the active site histidine of CgPmu2 and it exhibits a novel ability to partially replace the conserved active site histidine in CgPmu2. Additionally, a second amino acid change was able to confer nt phosphatase activity to CgPmu1, suggesting single amino acid changes neofunctionalize CgPmu2.
Collapse
|
17
|
Ceschin J, Hürlimann HC, Saint-Marc C, Albrecht D, Violo T, Moenner M, Daignan-Fornier B, Pinson B. Disruption of Nucleotide Homeostasis by the Antiproliferative Drug 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside Monophosphate (AICAR). J Biol Chem 2015; 290:23947-59. [PMID: 26283791 DOI: 10.1074/jbc.m115.656017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/06/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside monophosphate (AICAR) is a natural metabolite with potent anti-proliferative and low energy mimetic properties. At high concentration, AICAR is toxic for yeast and mammalian cells, but the molecular basis of this toxicity is poorly understood. Here, we report the identification of yeast purine salvage pathway mutants that are synthetically lethal with AICAR accumulation. Genetic suppression revealed that this synthetic lethality is in part due to low expression of adenine phosphoribosyl transferase under high AICAR conditions. In addition, metabolite profiling points to the AICAR/NTP balance as crucial for optimal utilization of glucose as a carbon source. Indeed, we found that AICAR toxicity in yeast and human cells is alleviated when glucose is replaced by an alternative carbon source. Together, our metabolic analyses unveil the AICAR/NTP balance as a major factor of AICAR antiproliferative effects.
Collapse
Affiliation(s)
- Johanna Ceschin
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Hans Caspar Hürlimann
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Christelle Saint-Marc
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Delphine Albrecht
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Typhaine Violo
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Michel Moenner
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Bertrand Daignan-Fornier
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Benoît Pinson
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| |
Collapse
|
18
|
Wierman MB, Matecic M, Valsakumar V, Li M, Smith DL, Bekiranov S, Smith JS. Functional genomic analysis reveals overlapping and distinct features of chronologically long-lived yeast populations. Aging (Albany NY) 2015; 7:177-94. [PMID: 25769345 PMCID: PMC4394729 DOI: 10.18632/aging.100729] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Yeast chronological lifespan (CLS) is extended by multiple genetic and environmental manipulations, including caloric restriction (CR). Understanding the common changes in molecular pathways induced by such manipulations could potentially reveal conserved longevity mechanisms. We therefore performed gene expression profiling on several long-lived yeast populations, including an ade4∆ mutant defective in de novo purine (AMP) biosynthesis, and a calorie restricted WT strain. CLS was also extended by isonicotinamide (INAM) or expired media derived from CR cultures. Comparisons between these diverse long-lived conditions revealed a common set of differentially regulated genes, several of which were potential longevity biomarkers. There was also enrichment for genes that function in CLS regulation, including a long-lived adenosine kinase mutant (ado1∆) that links CLS regulation to the methyl cycle and AMP. Genes co-regulated between the CR and ade4∆ conditions were dominated by GO terms related to metabolism of alternative carbon sources, consistent with chronological longevity requiring efficient acetate/acetic acid utilization. Alternatively, treating cells with isonicotinamide (INAM) or the expired CR media resulted in GO terms predominantly related to cell wall remodeling, consistent with improved stress resistance and protection against external insults like acetic acid. Acetic acid therefore has both beneficial and detrimental effects on CLS.
Collapse
Affiliation(s)
- Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mirela Matecic
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Veena Valsakumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mingguang Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 5233, USA.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 5233, USA.,Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 5233, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
19
|
Laporte D, Courtout F, Pinson B, Dompierre J, Salin B, Brocard L, Sagot I. A stable microtubule array drives fission yeast polarity reestablishment upon quiescence exit. J Cell Biol 2015; 210:99-113. [PMID: 26124291 PMCID: PMC4494004 DOI: 10.1083/jcb.201502025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/01/2015] [Indexed: 11/22/2022] Open
Abstract
Cells perpetually face the decision to proliferate or to stay quiescent. Here we show that upon quiescence establishment, Schizosaccharomyces pombe cells drastically rearrange both their actin and microtubule (MT) cytoskeletons and lose their polarity. Indeed, while polarity markers are lost from cell extremities, actin patches and cables are reorganized into actin bodies, which are stable actin filament-containing structures. Astonishingly, MTs are also stabilized and rearranged into a novel antiparallel bundle associated with the spindle pole body, named Q-MT bundle. We have identified proteins involved in this process and propose a molecular model for Q-MT bundle formation. Finally and importantly, we reveal that Q-MT bundle elongation is involved in polarity reestablishment upon quiescence exit and thereby the efficient return to the proliferative state. Our work demonstrates that quiescent S. pombe cells assemble specific cytoskeleton structures that improve the swiftness of the transition back to proliferation.
Collapse
Affiliation(s)
- Damien Laporte
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Fabien Courtout
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Benoît Pinson
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Jim Dompierre
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Bénédicte Salin
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, Pôle d'imagerie du végétal, Institut National de la Recherche Agronomique, 33140 Villenave d'Ornon, France
| | - Isabelle Sagot
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| |
Collapse
|
20
|
Saint-Marc C, Hürlimann HC, Daignan-Fornier B, Pinson B. Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae. Curr Genet 2015; 61:633-40. [PMID: 25893566 DOI: 10.1007/s00294-015-0489-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/18/2015] [Accepted: 04/02/2015] [Indexed: 01/14/2023]
Abstract
Previous genetic analyses showed phenotypic interactions between 5-amino-4-imidazole carboxamide ribonucleotide 5'-phosphate (AICAR) produced from the purine and histidine pathways and methionine biosynthesis. Here, we revisited the effect of AICAR on methionine requirement due to AICAR accumulation in the presence of the fau1 mutation invalidating folinic acid remobilization. We found that this methionine auxotrophy could be suppressed by overexpression of the methionine synthase Met6 or by deletion of the serine hydroxymethyltransferase gene SHM2. We propose that in a fau1 background, AICAR, by stimulating the transcriptional expression of SHM2, leads to a folinic acid accumulation inhibiting methionine synthesis by Met6. In addition, we uncovered a new methionine auxotrophy for the ade3 bas1 double mutant that can be rescued by overexpressing the SHM2 gene. We propose that methionine auxotrophy in this mutant is the result of a competition for 5,10-methylenetetrahydrofolate between methionine and deoxythymidine monophosphate synthesis. Altogether, our data show intricate genetic interactions between one-carbon units, purine and methionine metabolism through fine-tuning of serine hydroxymethyltransferase by AICAR and the transcription factor Bas1.
Collapse
Affiliation(s)
- Christelle Saint-Marc
- UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.,UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Centre National de la Recherche Scientifique (CNRS), 1 rue Camille Saint-Saëns CS 61390, 33077, Bordeaux, France
| | - Hans C Hürlimann
- UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.,UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Centre National de la Recherche Scientifique (CNRS), 1 rue Camille Saint-Saëns CS 61390, 33077, Bordeaux, France.,Institut für Biologie, Martin-Luther Universität, Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Bertrand Daignan-Fornier
- UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France. .,UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Centre National de la Recherche Scientifique (CNRS), 1 rue Camille Saint-Saëns CS 61390, 33077, Bordeaux, France.
| | - Benoît Pinson
- UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.,UMR 5095, Institut de Biochimie et Génétique Cellulaires (IBGC), Centre National de la Recherche Scientifique (CNRS), 1 rue Camille Saint-Saëns CS 61390, 33077, Bordeaux, France
| |
Collapse
|
21
|
Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 2014; 81:1601-9. [PMID: 25527558 DOI: 10.1128/aem.03474-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The haloacid dehalogenase (HAD) superfamily is one of the largest enzyme families, consisting mainly of phosphatases. Although intracellular phosphate plays important roles in many cellular activities, the biological functions of HAD enzymes are largely unknown. Pho13 is 1 of 16 putative HAD enzymes in Saccharomyces cerevisiae. Pho13 has not been studied extensively, but previous studies have identified PHO13 to be a deletion target for the generation of industrially attractive phenotypes, namely, efficient xylose fermentation and high tolerance to fermentation inhibitors. In order to understand the molecular mechanisms underlying the improved xylose-fermenting phenotype produced by deletion of PHO13 (pho13Δ), we investigated the response of S. cerevisiae to pho13Δ at the transcriptomic level when cells were grown on glucose or xylose. Transcriptome sequencing analysis revealed that pho13Δ resulted in upregulation of the pentose phosphate (PP) pathway and NADPH-producing enzymes when cells were grown on glucose or xylose. We also found that the transcriptional changes induced by pho13Δ required the transcription factor Stb5, which is activated specifically under NADPH-limiting conditions. Thus, pho13Δ resulted in the upregulation of the PP pathway and NADPH-producing enzymes as a part of an oxidative stress response mediated by activation of Stb5. Because the PP pathway is the primary pathway for xylose, its upregulation by pho13Δ might explain the improved xylose metabolism. These findings will be useful for understanding the biological function of S. cerevisiae Pho13 and the HAD superfamily enzymes and for developing S. cerevisiae strains with industrially attractive phenotypes.
Collapse
|
22
|
Tocco A, Pinson B, Thiébaud P, Thézé N, Massé K. Comparative genomic and expression analysis of the adenosine signaling pathway members in Xenopus. Purinergic Signal 2014; 11:59-77. [PMID: 25319637 DOI: 10.1007/s11302-014-9431-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/30/2014] [Indexed: 12/13/2022] Open
Abstract
Adenosine is an endogenous molecule that regulates many physiological processes via the activation of four specific G-protein-coupled ADORA receptors. Extracellular adenosine may originate either from the hydrolysis of released ATP by the ectonucleotidases or from cellular exit via the equilibrative nucleoside transporters (SLC29A). Adenosine extracellular concentration is also regulated by its successive hydrolysis into uric acid by membrane-bound enzymes or by cell influx via the concentrative nucleoside transporters (SLC28A). All of these members constitute the adenosine signaling pathway and regulate adenosine functions. Although the roles of this pathway are quite well understood in adults, little is known regarding its functions during vertebrate embryogenesis. We have used Xenopus laevis as a model system to provide a comparative expression map of the different members of this pathway during vertebrate development. We report the characterization of the different enzymes, receptors, and nucleoside transporters in both X. laevis and X. tropicalis, and we demonstrate by phylogenetic analyses the high level of conservation of these members between amphibians and mammals. A thorough expression analysis of these members during development and in the adult frog reveals that each member displays distinct specific expression patterns. These data suggest potentially different developmental roles for these proteins and therefore for extracellular adenosine. In addition, we show that adenosine levels during amphibian embryogenesis are very low, confirming that they must be tightly controlled for normal development.
Collapse
Affiliation(s)
- Alice Tocco
- Université de Bordeaux, CIRID UMR 5164, F-33000, Bordeaux, France
| | | | | | | | | |
Collapse
|
23
|
Ceschin J, Saint-Marc C, Laporte J, Labriet A, Philippe C, Moenner M, Daignan-Fornier B, Pinson B. Identification of yeast and human 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) transporters. J Biol Chem 2014; 289:16844-54. [PMID: 24778186 DOI: 10.1074/jbc.m114.551192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) is the precursor of the active monophosphate form (AICAR), a small molecule with potent anti-proliferative and low energy mimetic properties. The molecular bases for AICAR toxicity at the cellular level are poorly understood. Here, we report the isolation and characterization of several yeast AICAr-hypersensitive mutants. Identification of the cognate genes allowed us to establish that thiamine transporters Thi7 and Thi72 can efficiently take up AICAr under conditions where they are overexpressed. We establish that, under standard growth conditions, Nrt1, the nicotinamide riboside carrier, is the major AICAr transporter in yeast. A study of AICAR accumulation in human cells revealed substantial disparities among cell lines and confirmed that AICAr enters cells via purine nucleoside transporters. Together, our results point to significant differences between yeast and human cells for both AICAr uptake and AICAR accumulation.
Collapse
Affiliation(s)
- Johanna Ceschin
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Christelle Saint-Marc
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Jean Laporte
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Adrien Labriet
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Chloé Philippe
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Michel Moenner
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Bertrand Daignan-Fornier
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Benoît Pinson
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| |
Collapse
|
24
|
A pharmaco-epistasis strategy reveals a new cell size controlling pathway in yeast. Mol Syst Biol 2013; 9:707. [PMID: 24217298 PMCID: PMC4039374 DOI: 10.1038/msb.2013.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/27/2013] [Indexed: 01/03/2023] Open
Abstract
Pharmaco-epistasis analyses using drugs mimicking cell size mutations in yeast uncovered a novel pathway in cell size homeostasis regulation. This pathway involves the sirtuin Sir2, the large ribosomal subunit (60S) and the Swi4/Swi6 transcription factors. ![]()
Drug–gene epistatic interactions with nicotinamide and diazaborine were analyzed using 189 previously identified small and 155 large mutants, showing that cell size homeostasis is the result of signals emanating from several independent pathways. Ribosome biogenesis affects cell size homeostasis in different ways. Modulation of cell size by Sir2 correlates with NAD+ intracellular variation. No simple causal relationship was found between cell size and replicative aging even though both Sir2 and the 60S ribosomal subunit are contributing to these two complex traits.
Cell size is a complex quantitative trait resulting from interactions between intricate genetic networks and environmental conditions. Here, taking advantage of previous studies that uncovered hundreds of genes affecting budding yeast cell size homeostasis, we performed a wide pharmaco-epistasis analysis using drugs mimicking cell size mutations. Simple epistasis relationship emerging from this approach allowed us to characterize a new cell size homeostasis pathway comprising the sirtuin Sir2, downstream effectors including the large ribosomal subunit (60S) and the transcriptional regulators Swi4 and Swi6. We showed that this Sir2/60S signaling route acts independently of other previously described cell size controlling pathways and may integrate the metabolic status of the cell through NAD+ intracellular concentration. Finally, although Sir2 and the 60S subunits regulate both cell size and replicative aging, we found that there is no clear causal relationship between these two complex traits. This study sheds light on a pathway of >50 genes and illustrates how pharmaco-epistasis applied to yeast offers a potent experimental framework to explore complex genotype/phenotype relationships.
Collapse
|
25
|
Ray SP, Duval N, Wilkinson TG, Shaheen SE, Ghosh K, Patterson D. Inherent properties of adenylosuccinate lyase could explain S-Ado/SAICAr ratio due to homozygous R426H and R303C mutations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1545-53. [PMID: 23714113 DOI: 10.1016/j.bbapap.2013.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022]
Abstract
Adenylosuccinate lyase (ADSL) is a homotetrameric enzyme involved in the de novo purine biosynthesis pathway and purine nucleotide cycle. Missense mutations in the protein lead to ADSL deficiency, an inborn error of purine metabolism characterized by neurological and physiological symptoms. ADSL deficiency is biochemically diagnosed by elevated levels of succinylaminoimidazolecarboxamide riboside (SAICAr) and succinyladenosine (S-Ado), the dephosphorylated derivatives of the substrates. S-Ado/SAICAr ratios have been associated with three phenotypic groups. Different hypotheses to explain these ratios have been proposed. Recent studies have focused on measuring activity on the substrates independently. However, it is important to examine mixtures of the substrates to determine if mutations affect enzyme activity on both substrates similarly in these conditions. The two substrates may experience an indirect communication due to being acted upon by the same enzyme, altering their activities from the non-competitive case. In this study, we investigate this hidden coupling between the two substrates. We chose two mutations that represent extremes of the phenotype, R426H and R303C. We describe a novel electrochemical-detection method of measuring the kinetic activity of ADSL in solution with its two substrates at varying concentration ratios. Furthermore, we develop an enzyme kinetic model to predict substrate activity from a given ratio of substrate concentrations. Our findings indicate a non-linear dependence of the activities on the substrate ratios due to competitive binding, distinct differences in the behaviors of the different mutations, and S-Ado/SAICAr ratios in patients could be explained by inherent properties of the mutant enzyme.
Collapse
Affiliation(s)
- Stephen P Ray
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Namgaladze D, Kemmerer M, von Knethen A, Brüne B. AICAR inhibits PPARγ during monocyte differentiation to attenuate inflammatory responses to atherogenic lipids. Cardiovasc Res 2013; 98:479-87. [PMID: 23531513 DOI: 10.1093/cvr/cvt073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Transcriptional regulation through peroxisome proliferator-activated receptor γ (PPARγ) is critical for an altered lipid metabolism during monocyte to macrophage differentiation. Here, we investigated how 5-aminoimidazole-4-carboxamide riboside (AICAR), an activator of AMP-dependent protein kinase (AMPK), affects PPARγ during monocyte differentiation. METHODS AND RESULTS During the differentiation of THP-1 monocytic cells or primary human monocytes to macrophages, we observed that AICAR inhibited the expression of PPARγ target genes, such as fatty acid-binding protein 4 or CD36. This effect was independent of AICAR conversion to AICAR ribotide and AMPK activation. While AICAR increased PPARγ mRNA expression that paralleled differentiation, it inhibited PPARγ protein synthesis without affecting PPARγ protein stability. Monocytes differentiated to macrophages in the presence of AICAR revealed an attenuated uptake of oxidized low-density lipoprotein (oxLDL) and reduced oxLDL-triggered c-Jun N-terminal kinase (JNK) activation. JNK and endoplasmic reticulum stress responses to the saturated fatty acid palmitate were attenuated as well, an effect mimicked by the knockdown of PPARγ. Although PPARγ has been reported to support alternative macrophage activation, AICAR did not inhibit interleukin-4-induced gene expression in differentiating monocytes. CONCLUSION Inhibition of PPARγ-dependent gene expression during monocyte differentiation may contribute to an AICAR-elicited macrophage phenotype characterized by reduced inflammatory responses to modified lipoproteins and saturated fatty acids.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I/ZAFES, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590 Germany
| | | | | | | |
Collapse
|
27
|
Ray SP, Deaton MK, Capodagli GC, Calkins LAF, Sawle L, Ghosh K, Patterson D, Pegan SD. Structural and biochemical characterization of human adenylosuccinate lyase (ADSL) and the R303C ADSL deficiency-associated mutation. Biochemistry 2012; 51:6701-13. [PMID: 22812634 DOI: 10.1021/bi300796y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal recessive disorder, which causes a defect in purine metabolism resulting in neurological and physiological symptoms. ADSL executes two nonsequential steps in the de novo synthesis of AMP: the conversion of phosphoribosylsuccinyl-aminoimidazole carboxamide (SAICAR) to phosphoribosylaminoimidazole carboxamide, which occurs in the de novo synthesis of IMP, and the conversion of adenylosuccinate to AMP, which occurs in the de novo synthesis of AMP and also in the purine nucleotide cycle, using the same active site. Mutation of ADSL's arginine 303 to a cysteine is known to lead to ADSL deficiency. Interestingly, unlike other mutations leading to ADSL deficiency, the R303C mutation has been suggested to more significantly affect the enzyme's ability to catalyze the conversion of succinyladenosine monophosphate than that of SAICAR to their respective products. To better understand the causation of disease due to the R303C mutation, as well as to gain insights into why the R303C mutation potentially has a disproportional decrease in activity toward its substrates, the wild type (WT) and the R303C mutant of ADSL were investigated enzymatically and thermodynamically. Additionally, the X-ray structures of ADSL in its apo form as well as with the R303C mutation were elucidated, providing insight into ADSL's cooperativity. By utilizing this information, a model for the interaction between ADSL and SAICAR is proposed.
Collapse
Affiliation(s)
- Stephen P Ray
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208-0183, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
29
|
5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-Monophosphate (AICAR), a Highly Conserved Purine Intermediate with Multiple Effects. Metabolites 2012; 2:292-302. [PMID: 24957512 PMCID: PMC3901205 DOI: 10.3390/metabo2020292] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 12/25/2022] Open
Abstract
AICAR (5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate) is a natural metabolic intermediate of purine biosynthesis that is present in all organisms. In yeast, AICAR plays important regulatory roles under physiological conditions, notably through its direct interactions with transcription factors. In humans, AICAR accumulates in several metabolic diseases, but its contribution to the symptoms has not yet been elucidated. Further, AICAR has highly promising properties which have been recently revealed. Indeed, it enhances endurance of sedentary mice. In addition, it has antiproliferative effects notably by specifically inducing apoptosis of aneuploid cells. Some of the effects of AICAR are due to its ability to stimulate the AMP-activated protein kinase but some others are not. It is consequently clear that AICAR affects multiple targets although only few of them have been identified so far. This review proposes an overview of the field and suggests future directions.
Collapse
|