1
|
Lewis AM, Fallon T, Dittemore GA, Sheppard K. Evolution and variation in amide aminoacyl-tRNA synthesis. IUBMB Life 2024; 76:505-522. [PMID: 38391119 DOI: 10.1002/iub.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.
Collapse
Affiliation(s)
- Alexander M Lewis
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | - Trevor Fallon
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | | | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| |
Collapse
|
2
|
Guedes-Monteiro RF, Franco LV, Moda BS, Tzagoloff A, Barros MH. 5′ processing of Saccharomyces cerevisiae mitochondrial tRNAs requires expression of multiple genes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:806-818. [DOI: 10.1016/j.bbamcr.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 01/02/2023]
|
3
|
Franco LVR, Moda BS, Soares MAKM, Barros MH. Msc6p is required for mitochondrial translation initiation in the absence of formylated Met-tRNA fMet. FEBS J 2019; 286:1407-1419. [PMID: 30767393 DOI: 10.1111/febs.14785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/27/2018] [Accepted: 02/13/2019] [Indexed: 01/04/2023]
Abstract
Mitochondrial translation normally requires formylation of the initiator tRNA-met, a reaction catalyzed by the enzyme formyltransferase, Fmt1p and MTFMT in Saccharomyces cerevisiae and human mitochondria, respectively. Yeast fmt1 mutants devoid of Fmt1p, however, can synthesize all mitochondrial gene products by initiating translation with a non-formylated methionyl-tRNA. Yeast synthetic respiratory-deficient fmt1 mutants have uncovered several factors suggested to play a role in translation initiation with non-formylated methionyl-tRNA. Here, we present evidence that Msc6p, a member of the pentatricopeptide repeat (PPR) motif family, is another essential factor for mitochondrial translation in fmt1 mutants. The PPR motif is characteristic of RNA-binding proteins found in chloroplasts and plant and fungal mitochondria, and is generally involved in RNA stability and transport. Moreover, in the present study, we show that the respiratory deficiency of fmt1msc6 double mutants can be rescued by overexpression of the yeast mitochondrial initiation factor mIF-2, encoded by IFM1. The role of Msc6p in translational initiation is further supported by pull-down assays showing that it transiently interacts with mIF-2. Altogether, our data indicate that Msc6p is an important factor in mitochondrial translation with an auxiliary function related to the mIF-2-dependent formation of the initiation complex.
Collapse
Affiliation(s)
| | - Bruno S Moda
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Maria A K M Soares
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
4
|
Guedes-Monteiro RF, Ferreira-Junior JR, Bleicher L, Nóbrega FG, Barrientos A, Barros MH. Mitochondrial ribosome bL34 mutants present diminished translation of cytochrome c oxidase subunits. Cell Biol Int 2017; 42:630-642. [PMID: 29160602 DOI: 10.1002/cbin.10913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022]
Abstract
Saccharomyces cerevisiae mitoribosomes are specialized in the translation of a few number of highly hydrophobic membrane proteins, components of the oxidative phosphorylation system. Mitochondrial characteristics, such as the membrane system and its redox state driven mitoribosomes evolution through great diversion from their bacterial and cytosolic counterparts. Therefore, mitoribosome presents a considerable number of mitochondrial-specific proteins, as well as new protein extensions. In this work we characterize temperature sensitive mutants of the subunit bL34 present in the 54S large subunit. Although bL34 has bacterial homologs, in yeast it has a long 65 aminoacids mitochondrial N-terminal addressing sequence, here we demonstrate that it can be replaced by the mitochondrial addressing sequence of Neurospora crassa ATP9 gene. The bL34 temperature sensitive mutants present lowered translation of mitochondrial COX1 and COX3, which resulted in reduced cytochrome c oxidase activity and respiratory growth deficiency. The sedimentation properties of bL34 in sucrose gradients suggest that similarly to its bacterial homolog, bL34 is also a later participant in the process of mitoribosome biogenesis.
Collapse
Affiliation(s)
| | | | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia - Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mario H Barros
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Barros MH, Tzagoloff A. Aep3p-dependent translation of yeast mitochondrial ATP8. Mol Biol Cell 2017; 28:1426-1434. [PMID: 28404747 PMCID: PMC5449143 DOI: 10.1091/mbc.e16-11-0775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022] Open
Abstract
Yeast Aep3p, previously reported to stabilize mitochondrial ATP8 mRNA, also activates its translation. Temperature-sensitive aep3 mutants are specifically defective in translating ATP8 at the restrictive temperature. The respiratory deficiency of aep3 mutants is rescued by expression in the cytoplasm of allotopic ATP8. Translation of mitochondrial gene products in Saccharomyces cerevisiae depends on mRNA-specific activators that bind to the 5’ untranslated regions and promote translation on mitochondrial ribosomes. Here we find that Aep3p, previously shown to stabilize the bicistronic ATP8-ATP6 mRNA and facilitate initiation of translation from unformylated methionine, also activates specifically translation of ATP8. This is supported by several lines of evidence. Temperature-sensitive aep3 mutants are selectively blocked in incorporating [35S]methionine into Atp8p at nonpermissive but not at the permissive temperature. This phenotype is not a consequence of defective transcription or processing of the pre-mRNA. Neither is it explained by turnover of Aep3p, as evidenced by the failure of aep3 mutants to express a recoded ARG8m when this normally nuclear gene is substituted for ATP8 in mitochondrial DNA. Finally, translational of ATP8 mRNA in aep3 mutants is partially rescued by recoded allotopic ATP8 (nATP8) in a high-expression plasmid or in a CEN plasmid in the presence of recessive mutations in genes involved in stability and polyadenylation of RNA.
Collapse
Affiliation(s)
- Mario H Barros
- Departamento de Microbiologia, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil
| | | |
Collapse
|
6
|
Partial suppression of the respiratory defect of qrs1/her2 glutamyl-tRNA amidotransferase mutants by overexpression of the mitochondrial pentatricopeptide Msc6p. Curr Genet 2016; 62:607-17. [PMID: 26780366 DOI: 10.1007/s00294-016-0566-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
Recently, a large body of evidences indicates the existence in the mitochondrial matrix of foci that contain different proteins involved in mitochondrial RNA metabolism. Some of these proteins have a pentatricopeptide repeat motif that constitutes their RNA-binding structures. Here we report that MSC6, a mitochondrial pentatricopeptide protein of unknown function, is a multi copy suppressor of mutations in QRS1/HER2 a component of the trimeric complex that catalyzes the transamidation of glutamyl-tRNAQ to glutaminyl-tRNAQ. This is an essential step in mitochondrial translation because of the lack of a specific mitochondrial aminoacyl glutaminyl-tRNA synthetase. MSC6 over-expression did not abolish translation of an aberrant variant form of Cox2p detected in QRS1/HER2 mutants, arguing against a suppression mechanism that bypasses Qrs1p function. A slight decrement of the mitochondrial translation capacity as well as diminished growth on respiratory carbon sources media for respiratory activity was observed in the msc6 null mutant. Additionally, the msc6 null mutant did not display any impairment in RNA transcription, processing or turnover. We concluded that Msc6p is a mitochondrial matrix protein and further studies are required to indicate the specific function of Msc6p in mitochondrial translation.
Collapse
|
7
|
Busso C, Ferreira-Júnior JR, Paulela JA, Bleicher L, Demasi M, Barros MH. Coq7p relevant residues for protein activity and stability. Biochimie 2015; 119:92-102. [DOI: 10.1016/j.biochi.2015.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 10/19/2015] [Indexed: 11/27/2022]
|
8
|
Frechin M, Enkler L, Tetaud E, Laporte D, Senger B, Blancard C, Hammann P, Bader G, Clauder-Münster S, Steinmetz L, Martin R, di Rago JP, Becker H. Expression of Nuclear and Mitochondrial Genes Encoding ATP Synthase Is Synchronized by Disassembly of a Multisynthetase Complex. Mol Cell 2014; 56:763-76. [DOI: 10.1016/j.molcel.2014.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 09/04/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
|
9
|
Glutamyl-tRNAGln amidotransferase is essential for mammalian mitochondrial translation in vivo. Biochem J 2014; 460:91-101. [DOI: 10.1042/bj20131107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have demonstrated that in mitochondria of mammalian cells the aminoacylation of tRNAGln is produced by an indirect pathway involving the enzyme glutamyl-tRNAGln amidotransferase. Misaminoacylated Glu-tRNAGln is rejected from the ribosomes maintaining the fidelity of the mitochondrial protein synthesis.
Collapse
|
10
|
Araiso Y, Huot JL, Sekiguchi T, Frechin M, Fischer F, Enkler L, Senger B, Ishitani R, Becker HD, Nureki O. Crystal structure of Saccharomyces cerevisiae mitochondrial GatFAB reveals a novel subunit assembly in tRNA-dependent amidotransferases. Nucleic Acids Res 2014; 42:6052-63. [PMID: 24692665 PMCID: PMC4027206 DOI: 10.1093/nar/gku234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Yeast mitochondrial Gln-mtRNAGln is synthesized by the transamidation of mischarged Glu-mtRNAGln by a non-canonical heterotrimeric tRNA-dependent amidotransferase (AdT). The GatA and GatB subunits of the yeast AdT (GatFAB) are well conserved among bacteria and eukaryota, but the GatF subunit is a fungi-specific ortholog of the GatC subunit found in all other known heterotrimeric AdTs (GatCAB). Here we report the crystal structure of yeast mitochondrial GatFAB at 2.0 Å resolution. The C-terminal region of GatF encircles the GatA–GatB interface in the same manner as GatC, but the N-terminal extension domain (NTD) of GatF forms several additional hydrophobic and hydrophilic interactions with GatA. NTD-deletion mutants displayed growth defects, but retained the ability to respire. Truncation of the NTD in purified mutants reduced glutaminase and transamidase activities when glutamine was used as the ammonia donor, but increased transamidase activity relative to the full-length enzyme when the donor was ammonium chloride. Our structure-based functional analyses suggest the NTD is a trans-acting scaffolding peptide for the GatA glutaminase active site. The positive surface charge and novel fold of the GatF–GatA interface, shown in this first crystal structure of an organellar AdT, stand in contrast with the more conventional, negatively charged bacterial AdTs described previously.
Collapse
Affiliation(s)
- Yuhei Araiso
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Jonathan L Huot
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Takuya Sekiguchi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Mathieu Frechin
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Frédéric Fischer
- Unité Propre de Recherche Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg, France
| | - Ludovic Enkler
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Bruno Senger
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Ryuichiro Ishitani
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Hubert D Becker
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Osamu Nureki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 113-0033 Tokyo, Japan
| |
Collapse
|
11
|
Ferreira-Júnior JR, Bleicher L, Barros MH. Her2p molecular modeling, mutant analysis and intramitochondrial localization. Fungal Genet Biol 2013; 60:133-9. [DOI: 10.1016/j.fgb.2013.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/07/2013] [Accepted: 06/22/2013] [Indexed: 02/05/2023]
|
12
|
Paul MF, Alushin GM, Barros MH, Rak M, Tzagoloff A. The putative GTPase encoded by MTG3 functions in a novel pathway for regulating assembly of the small subunit of yeast mitochondrial ribosomes. J Biol Chem 2012; 287:24346-55. [PMID: 22621929 PMCID: PMC3397861 DOI: 10.1074/jbc.m112.363309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/22/2012] [Indexed: 11/06/2022] Open
Abstract
Very little is known about biogenesis of mitochondrial ribosomes. The GTPases encoded by the nuclear MTG1 and MTG2 genes of Saccharomyces cerevisiae have been reported to play a role in assembly of the ribosomal 54 S subunit. In the present study biochemical screens of a collection of respiratory deficient yeast mutants have enabled us to identify a third gene essential for expression of mitochondrial ribosomes. This gene codes for a member of the YqeH family of GTPases, which we have named MTG3 in keeping with the earlier convention. Mutations in MTG3 cause the accumulation of the 15 S rRNA precursor, previously shown to have an 80-nucleotide 5' extension. Sucrose gradient sedimentation of mitochondrial ribosomes from temperature-sensitive mtg3 mutants grown at the permissive and restrictive temperatures, combined with immunobloting with subunit-specific antibodies, indicate that Mtg3p is required for assembly of the 30 S but not 54 S ribosomal subunit. The respiratory deficient growth phenotype of an mtg3 null mutant is partially rescued by overexpression of the Mrpl4p constituent located at the peptide exit site of the 54 S subunit. The rescue is accompanied by an increase in processed 15 S rRNA. This suggests that Mtg3p and Mrpl4p jointly regulate assembly of the small subunit by modulating processing of the 15 S rRNA precursor.
Collapse
Affiliation(s)
- Marie-Françoise Paul
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Gregory M. Alushin
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Mario H. Barros
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Malgorzata Rak
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Alexander Tzagoloff
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
13
|
Fischer F, Huot JL, Lorber B, Diss G, Hendrickson TL, Becker HD, Lapointe J, Kern D. The asparagine-transamidosome from Helicobacter pylori: a dual-kinetic mode in non-discriminating aspartyl-tRNA synthetase safeguards the genetic code. Nucleic Acids Res 2012; 40:4965-76. [PMID: 22362756 PMCID: PMC3367201 DOI: 10.1093/nar/gks167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori catalyzes Asn-tRNA(Asn) formation by use of the indirect pathway that involves charging of Asp onto tRNA(Asn) by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNA(Asn) binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNA(Asn) is bound by ND-AspRS which releases the Asp-tRNA(Asn) product much slower than the cognate Asp-tRNA(Asp); this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNA(Asn) before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn.
Collapse
Affiliation(s)
- Frédéric Fischer
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 du CNRS, Architecture et Réactivité de l'ARN, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|