1
|
Masek M, Bachmann-Gagescu R. Control of protein and lipid composition of photoreceptor outer segments-Implications for retinal disease. Curr Top Dev Biol 2023; 155:165-225. [PMID: 38043951 DOI: 10.1016/bs.ctdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.
Collapse
Affiliation(s)
- Markus Masek
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; University Research Priority Program AdaBD, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Fehlhaber KE, Majumder A, Boyd KK, Griffis KG, Artemyev NO, Fain GL, Sampath AP. A Novel Role for UNC119 as an Enhancer of Synaptic Transmission. Int J Mol Sci 2023; 24:8106. [PMID: 37175812 PMCID: PMC10178850 DOI: 10.3390/ijms24098106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mammalian UNC119 is a ciliary trafficking chaperone highly expressed in the inner segment of retinal photoreceptors. Previous research has shown that UNC119 can bind to transducin, the synaptic ribbon protein RIBEYE, and the calcium-binding protein CaBP4, suggesting that UNC119 may have a role in synaptic transmission. We made patch-clamp recordings from retinal slices in mice with the UNC119 gene deleted and showed that removal of even one gene of UNC119 has no effect on the rod outer segment photocurrent, but acted on bipolar cells much like background light: it depolarized membrane potential, decreased sensitivity, accelerated response decay, and decreased the Hill coefficient of the response-intensity relationship. Similar effects were seen on rod bipolar-cell current and voltage responses, and after exposure to bright light to translocate transducin into the rod inner segment. These findings indicate that UNC119 deletion reduces the steady-state glutamate release rate at rod synapses, though no change in the voltage dependence of the synaptic Ca current was detected. We conclude that UNC119, either by itself or together with transducin, can facilitate the release of glutamate at rod synapses, probably by some interaction with RIBEYE or other synaptic proteins rather than by binding to CaBP4 or calcium channels.
Collapse
Affiliation(s)
- Katherine E. Fehlhaber
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA (G.L.F.)
| | - Anurima Majumder
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA (N.O.A.)
| | - Kimberly K. Boyd
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA (N.O.A.)
| | - Khris G. Griffis
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA (G.L.F.)
| | - Nikolai O. Artemyev
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA (N.O.A.)
- Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Gordon L. Fain
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA (G.L.F.)
| | - Alapakkam P. Sampath
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA (G.L.F.)
| |
Collapse
|
3
|
Campla CK, Bocchero U, Strickland R, Nellissery J, Advani J, Ignatova I, Srivastava D, Aponte AM, Wang Y, Gumerson J, Martemyanov K, Artemyev NO, Pahlberg J, Swaroop A. Frmpd1 Facilitates Trafficking of G-Protein Transducin and Modulates Synaptic Function in Rod Photoreceptors of Mammalian Retina. eNeuro 2022; 9:ENEURO.0348-22.2022. [PMID: 36180221 PMCID: PMC9581579 DOI: 10.1523/eneuro.0348-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022] Open
Abstract
Trafficking of transducin (Gαt) in rod photoreceptors is critical for adaptive and modulatory responses of the retina to varying light intensities. In addition to fine-tuning phototransduction gain in rod outer segments (OSs), light-induced translocation of Gαt to the rod synapse enhances rod to rod bipolar synaptic transmission. Here, we show that the rod-specific loss of Frmpd1 (FERM and PDZ domain containing 1), in the retina of both female and male mice, results in delayed return of Gαt from the synapse back to outer segments in the dark, compromising the capacity of rods to recover from light adaptation. Frmpd1 directly interacts with Gpsm2 (G-protein signaling modulator 2), and the two proteins are required for appropriate sensitization of rod-rod bipolar signaling under saturating light conditions. These studies provide insight into how the trafficking and function of Gαt is modulated to optimize the photoresponse and synaptic transmission of rod photoreceptors in a light-dependent manner.
Collapse
Affiliation(s)
- Christie K Campla
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ulisse Bocchero
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ryan Strickland
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Irina Ignatova
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Angel M Aponte
- Proteomics Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yuchen Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Jessica Gumerson
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kirill Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Johan Pahlberg
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
4
|
Chaya T, Furukawa T. Post-translational modification enzymes as key regulators of ciliary protein trafficking. J Biochem 2021; 169:633-642. [PMID: 33681987 PMCID: PMC8423421 DOI: 10.1093/jb/mvab024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Primary cilia are evolutionarily conserved microtubule-based organelles that protrude from the surface of almost all cell types and decode a variety of extracellular stimuli. Ciliary dysfunction causes human diseases named ciliopathies, which span a wide range of symptoms, such as developmental and sensory abnormalities. The assembly, disassembly, maintenance and function of cilia rely on protein transport systems including intraflagellar transport (IFT) and lipidated protein intraflagellar targeting (LIFT). IFT is coordinated by three multisubunit protein complexes with molecular motors along the ciliary axoneme, while LIFT is mediated by specific chaperones that directly recognize lipid chains. Recently, it has become clear that several post-translational modification enzymes play crucial roles in the regulation of IFT and LIFT. Here, we review our current understanding of the roles of these post-translational modification enzymes in the regulation of ciliary protein trafficking as well as their regulatory mechanisms, physiological significance and involvement in human diseases.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Srivastava D, Yadav RP, Inamdar SM, Huang Z, Sokolov M, Boyd K, Artemyev NO. Transducin Partners Outside the Phototransduction Pathway. Front Cell Neurosci 2020; 14:589494. [PMID: 33173469 PMCID: PMC7591391 DOI: 10.3389/fncel.2020.589494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Transducin mediates signal transduction in a classical G protein-coupled receptor (GPCR) phototransduction cascade. Interactions of transducin with the receptor and the effector molecules had been extensively investigated and are currently defined at the atomic level. However, partners and functions of rod transducin α (Gαt 1) and βγ (Gβ1γ1) outside the visual pathway are not well-understood. In particular, light-induced redistribution of rod transducin from the outer segment to the inner segment and synaptic terminal (IS/ST) allows Gαt1 and/or Gβ1γ1 to modulate synaptic transmission from rods to rod bipolar cells (RBCs). Protein-protein interactions underlying this modulation are largely unknown. We discuss known interactors of transducin in the rod IS/ST compartment and potential pathways leading to the synaptic effects of light-dispersed Gαt1 and Gβ1γ1. Furthermore, we show that a prominent non-GPCR guanine nucleotide exchange factor (GEF) and a chaperone of Gα subunits, resistance to inhibitors of cholinesterase 8A (Ric-8A) protein, is expressed throughout the retina including photoreceptor cells. Recent structures of Ric-8A alone and in complexes with Gα subunits have illuminated the structural underpinnings of the Ric-8A activities. We generated a mouse model with conditional knockout of Ric-8A in rods in order to begin defining the functional roles of the protein in rod photoreceptors and the retina. Our analysis suggests that Ric-8A is not an obligate chaperone of Gαt1. Further research is needed to investigate probable roles of Ric-8A as a GEF, trafficking chaperone, or a mediator of the synaptic effects of Gαt1.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Shivangi M Inamdar
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zhen Huang
- Department of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Maxim Sokolov
- Department of Ophthalmology, Biochemistry and Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Department of Ophthalmology and Visual Sciences, Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
6
|
Shimizu T, Nakamura T, Inaba H, Iwasa H, Maruyama J, Arimoto-Matsuzaki K, Nakata T, Nishina H, Hata Y. The RAS-interacting chaperone UNC119 drives the RASSF6-MDM2-p53 axis and antagonizes RAS-mediated malignant transformation. J Biol Chem 2020; 295:11214-11230. [PMID: 32554467 DOI: 10.1074/jbc.ra120.012649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/16/2020] [Indexed: 11/06/2022] Open
Abstract
The gene encoding the proto-oncogene GTPase RAS is frequently mutated in human cancers. Mutated RAS proteins trigger antiapoptotic and cell-proliferative signals and lead to oncogenesis. However, RAS also induces apoptosis and senescence, which may contribute to the eradication of cells with RAS mutations. We previously reported that Ras association domain family member 6 (RASSF6) binds MDM2 and stabilizes the tumor suppressor p53 and that the active form of KRAS promotes the interaction between RASSF6 and MDM2. We also reported that Unc-119 lipid-binding chaperone (UNC119A), a chaperone of myristoylated proteins, interacts with RASSF6 and regulates RASSF6-mediated apoptosis. In this study, using several human cancer cell lines, quantitative RT-PCR, RNAi-based gene silencing, and immunoprecipitation/-fluorescence and cell biology assays, we report that UNC119A interacts with the active form of KRAS and that the C-terminal modification of KRAS is required for this interaction. We also noted that the hydrophobic pocket of UNC119A, which binds the myristoylated peptides, is not involved in the interaction. We observed that UNC119A promotes the binding of KRAS to RASSF6, enhances the interaction between RASSF6 and MDM2, and induces apoptosis. Conversely, UNC119A silencing promoted soft-agar colony formation, migration, and invasiveness in KRAS-mutated cancer cells. We conclude that UNC119A promotes KRAS-mediated p53-dependent apoptosis via RASSF6 and may play a tumor-suppressive role in cells with KRAS mutations.
Collapse
Affiliation(s)
- Takanobu Shimizu
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Nakamura
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hironori Inaba
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichi Maruyama
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Arimoto-Matsuzaki
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takao Nakata
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan .,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Chaya T, Tsutsumi R, Varner LR, Maeda Y, Yoshida S, Furukawa T. Cul3-Klhl18 ubiquitin ligase modulates rod transducin translocation during light-dark adaptation. EMBO J 2019; 38:e101409. [PMID: 31696965 DOI: 10.15252/embj.2018101409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/02/2023] Open
Abstract
Adaptation is a general feature of sensory systems. In rod photoreceptors, light-dependent transducin translocation and Ca2+ homeostasis are involved in light/dark adaptation and prevention of cell damage by light. However, the underlying regulatory mechanisms remain unclear. Here, we identify mammalian Cul3-Klhl18 ubiquitin ligase as a transducin translocation modulator during light/dark adaptation. Under dark conditions, Klhl18-/- mice exhibited decreased rod light responses and subcellular localization of the transducin α-subunit (Tα), similar to that observed in light-adapted Klhl18+/+ mice. Cul3-Klhl18 promoted ubiquitination and degradation of Unc119, a rod Tα-interacting protein. Unc119 overexpression phenocopied Tα mislocalization observed in Klhl18-/- mice. Klhl18 weakly recognized casein kinase-2-phosphorylated Unc119 protein, which is dephosphorylated by Ca2+ -dependent phosphatase calcineurin. Calcineurin inhibition increased Unc119 expression and Tα mislocalization in rods. These results suggest that Cul3-Klhl18 modulates rod Tα translocation during light/dark adaptation through Unc119 ubiquitination, which is affected by phosphorylation. Notably, inactivation of the Cul3-Klhl18 ligase and calcineurin inhibitors FK506 and cyclosporine A that are known immunosuppressant drugs repressed light-induced photoreceptor damage, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Leah Rie Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Satoyo Yoshida
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Abstract
Rods and cones are retinal photoreceptor neurons required for our visual sensation. Because of their highly polarized structures and well-characterized processes of G protein-coupled receptor-mediated phototransduction signaling, these photoreceptors have been excellent models for studying the compartmentalization and sorting of proteins. Rods and cones have a modified ciliary compartment called the outer segment (OS) as well as non-OS compartments. The distinct membrane protein compositions between OS and non-OS compartments suggest that the OS is separated from the rest of the cellular compartments by multiple barriers or gates that are selectively permissive to specific cargoes. This review discusses the mechanisms of protein sorting and compartmentalization in photoreceptor neurons. Proper sorting and compartmentalization of membrane proteins are required for signal transduction and transmission. This review also discusses the roles of compartmentalized signaling, which is compromised in various retinal ciliopathies.
Collapse
Affiliation(s)
- Yoshikazu Imanishi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| |
Collapse
|
9
|
Sokolov M, Yadav RP, Brooks C, Artemyev NO. Chaperones and retinal disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:85-117. [PMID: 30635087 DOI: 10.1016/bs.apcsb.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Defects in protein folding and trafficking are a common cause of photoreceptor degeneration, causing blindness. Photoreceptor cells present an unusual challenge to the protein folding and transport machinery due to the high rate of protein synthesis, trafficking and the renewal of the outer segment, a primary cilium that has been modified into a specialized light-sensing compartment. Phototransduction components, such as rhodopsin and cGMP-phosphodiesterase, and multimeric ciliary transport complexes, such as the BBSome, are hotspots for mutations that disrupt proteostasis and lead to the death of photoreceptors. In this chapter, we review recent studies that advance our understanding of the chaperone and transport machinery of phototransduction proteins.
Collapse
Affiliation(s)
- Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
10
|
Kaiser N, Mejuch T, Fedoryshchak R, Janning P, Tate EW, Waldmann H. Photoactivatable Myristic Acid Probes for UNC119-Cargo Interactions. Chembiochem 2018; 20:134-139. [DOI: 10.1002/cbic.201800406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Nadine Kaiser
- Department of Chemical Biology; Max-Planck-Institute of, Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Tom Mejuch
- Department of Chemical Biology; Max-Planck-Institute of, Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Roman Fedoryshchak
- Department of Chemistry; Imperial College London; Exhibition Road London SW7 2AZ UK
| | - Petra Janning
- Department of Chemical Biology; Max-Planck-Institute of, Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Edward W. Tate
- Department of Chemistry; Imperial College London; Exhibition Road London SW7 2AZ UK
| | - Herbert Waldmann
- Department of Chemical Biology; Max-Planck-Institute of, Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
11
|
Erwin N, Dwivedi M, Mejuch T, Waldmann H, Winter R. UNC119A Decreases the Membrane Binding of Myristoylated c-Src. Chembiochem 2018; 19:1482-1487. [PMID: 29700916 DOI: 10.1002/cbic.201800158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 12/26/2022]
Abstract
Plasma membrane localization of myristoylated c-Src, a proto-oncogene protein-tyrosine kinase, is required for its signaling activity. Recent studies proposed that UNC119 protein functions as a solubilizing factor for myristoylated proteins, thereby regulating their subcellular distribution and signaling. The underlying molecular mechanism by which UNC119 regulates the membrane binding of c-Src has remained elusive. By combining different biophysical techniques, we have found that binding of a myristoylated c-Src-derived N-terminal peptide (Myr-Src) by UNC119A results in a reduced membrane binding affinity of the peptide, due to the competition of binding to membranes. The dissociation of Myr-Src from membranes is facilitated in the presence of UNC119A, as a consequence of which the clustering propensity of this peptide on the membrane is partially impaired. By these means, UNC119A is able to regulate c-Src spatially in the cytoplasm and on cellular membranes, and this has important implications for its cellular signaling.
Collapse
Affiliation(s)
- Nelli Erwin
- Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Mridula Dwivedi
- Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Tom Mejuch
- Department of Chemical Biology, Max-Plank-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Plank-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
12
|
Brooks C, Murphy J, Belcastro M, Heller D, Kolandaivelu S, Kisselev O, Sokolov M. Farnesylation of the Transducin G Protein Gamma Subunit Is a Prerequisite for Its Ciliary Targeting in Rod Photoreceptors. Front Mol Neurosci 2018; 11:16. [PMID: 29410614 PMCID: PMC5787109 DOI: 10.3389/fnmol.2018.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
Primary cilia are microtubule-based organelles, which protrude from the plasma membrane and receive a wide range of extracellular signals. Various cilia use G protein-coupled receptors (GPCRs) for the detection of these signals. For instance, vertebrate rod photoreceptors use their cilia (also called outer segments) as antennae detecting photons by GPCR rhodopsin. Rhodopsin recognizes incoming light and activates its G protein, transducin, which is composed of three subunits α, β, and γ. Similar to all G protein γ subunits, the transducin Gγ1 subunit undergoes C-terminal prenylation resulting in the addition of an isoprenoid farnesyl; however, the significance of this posttranslational modification is unclear. To study the role of the farnesyl group, we genetically introduced a mutant Gγ1 that lacked the prenylation site into the retinal photoreceptors of mice. The biochemical and physiological analyses of these mice revealed that mutant Gγ1 dimerizes with the endogenous transducin Gβ1 subunit and that the resulting Gβγ dimers display reduced hydrophobicity. Although mutant Gβγ dimers could form a heterotrimeric G protein, they could not mediate phototransduction. This deficiency was due to a strong exclusion of non-farnesylated Gβγ complexes from the cilia (rod outer segments). Our results provide the first evidence that farnesylation is required for trafficking of G-protein βγ subunits to the cilium of rod photoreceptors.
Collapse
Affiliation(s)
- Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Joseph Murphy
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | | | - Daniel Heller
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | | | - Oleg Kisselev
- Department of Ophthalmology, Saint Louis University, St. Louis, MO, United States
| | - Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
13
|
Jean F, Pilgrim D. Coordinating the uncoordinated: UNC119 trafficking in cilia. Eur J Cell Biol 2017; 96:643-652. [PMID: 28935136 DOI: 10.1016/j.ejcb.2017.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/29/2022] Open
Abstract
Constructing the distinct subcellular environment of the cilium relies in a large part upon intraflagellar transport (IFT) proteins, which traffic cargo both to and within the cilium. However, evidence from the last 10 years suggests that IFT alone is not sufficient to generate the ciliary environment. One essential factor is UNC119, which interacts with known IFT molecular switches to transport ciliary cargos. Despite its apparent importance in ciliary trafficking though, human UNC119 mutations have only rarely been associated with diseases commonly linked with ciliopathies. This review will outline the trafficking pathways required for constructing the cilium by highlighting UNC119's role and the complexities involved in ciliary trafficking. Finally, despite important roles for UNC119 in cilia, UNC119 proteins also interact with non-ciliary proteins to affect other cellular processes.
Collapse
|
14
|
Kurtenbach S, Gießl A, Strömberg S, Kremers J, Atorf J, Rasche S, Neuhaus EM, Hervé D, Brandstätter JH, Asan E, Hatt H, Kilimann MW. The BEACH Protein LRBA Promotes the Localization of the Heterotrimeric G-protein G olf to Olfactory Cilia. Sci Rep 2017; 7:8409. [PMID: 28814779 PMCID: PMC5559528 DOI: 10.1038/s41598-017-08543-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
BEACH domain proteins are involved in membrane protein traffic and human diseases, but their molecular mechanisms are not understood. The BEACH protein LRBA has been implicated in immune response and cell proliferation, and human LRBA mutations cause severe immune deficiency. Here, we report a first functional and molecular phenotype outside the immune system of LRBA-knockout mice: compromised olfaction, manifesting in reduced electro-olfactogram response amplitude, impaired food-finding efficiency, and smaller olfactory bulbs. LRBA is prominently expressed in olfactory and vomeronasal chemosensory neurons of wild-type mice. Olfactory impairment in the LRBA-KO is explained by markedly reduced concentrations (20–40% of wild-type levels) of all three subunits αolf, β1 and γ13 of the olfactory heterotrimeric G-protein, Golf, in the sensory cilia of olfactory neurons. In contrast, cilia morphology and the concentrations of many other proteins of olfactory cilia are not or only slightly affected. LRBA is also highly expressed in photoreceptor cells, another cell type with a specialized sensory cilium and heterotrimeric G-protein-based signalling; however, visual function appeared unimpaired by the LRBA-KO. To our knowledge, this is the first observation that a BEACH protein is required for the efficient subcellular localization of a lipid-anchored protein, and of a ciliary protein.
Collapse
Affiliation(s)
- Stefan Kurtenbach
- Department of Cell Physiology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Andreas Gießl
- Department of Biology, Animal Physiology, University of Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | - Siv Strömberg
- Department of Neuroscience, Uppsala University, S-75124, Uppsala, Sweden
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, D-91054, Erlangen, Germany.,Department of Anatomy II, Friedrich-Alexander University Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Jenny Atorf
- Department of Ophthalmology, University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Sebastian Rasche
- Department of Cell Physiology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Eva M Neuhaus
- Department of Pharmacology and Toxikology, University Hospital Jena, D-07747, Jena, Germany
| | - Denis Hervé
- Inserm UMR-S839, Institut du Fer a Moulin, Universite Pierre et Marie Curie, F-75005, Paris, France
| | | | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Würzburg, D-97070, Würzburg, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Manfred W Kilimann
- Department of Neuroscience, Uppsala University, S-75124, Uppsala, Sweden. .,Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, D-37075, Göttingen, Germany.
| |
Collapse
|
15
|
Gopalakrishna KN, Boyd K, Artemyev NO. Mechanisms of mutant PDE6 proteins underlying retinal diseases. Cell Signal 2017; 37:74-80. [PMID: 28583373 DOI: 10.1016/j.cellsig.2017.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022]
Abstract
Mutations in PDE6 genes encoding the effector enzymes in rods and cones underlie severe retinal diseases including retinitis pigmentosa (RP), autosomal dominant congenital stationary night blindness (adCSNB), and achromatopsia (ACHM). Here we examined a spectrum of pathogenic missense mutations in PDE6 using the system based on co-expression of cone PDE6C with its specialized chaperone AIPL1 and the regulatory Pγ subunit as a potent co-chaperone. We uncovered two mechanisms of PDE6C mutations underlying ACHM: (a) folding defects leading to expression of catalytically inactive proteins and (b) markedly diminished ability of Pγ to co-chaperone mutant PDE6C proteins thereby dramatically reducing the levels of functional enzyme. The mechanism of the Rambusch adCSNB associated with the H258N substitution in PDE6B was probed through the analysis of the model mutant PDE6C-H262N. We identified two interrelated deficits of PDE6C-H262N: disruption of the inhibitory interaction of Pγ with mutant PDE6C that markedly reduced the ability of Pγ to augment the enzyme folding. Thus, we conclude that the Rambusch adCSNB is triggered by low levels of the constitutively active PDE6. Finally, we examined PDE6C-L858V, which models PDE6B-L854V, an RP-linked mutation that alters the protein isoprenyl modification. This analysis suggests that the type of prenyl modifications does not impact the folding of PDE6, but it modulates the enzyme affinity for its trafficking partner PDE6D. Hence, the pathogenicity of PDE6B-L854V likely arises from its trafficking deficiency. Taken together, our results demonstrate the effectiveness of the PDE6C expression system to evaluate pathogenicity and elucidate the mechanisms of PDE6 mutations in retinal diseases.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Color Vision Defects/genetics
- Color Vision Defects/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 6/analysis
- Cyclic Nucleotide Phosphodiesterases, Type 6/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism
- Eye Diseases, Hereditary/genetics
- Eye Diseases, Hereditary/metabolism
- Eye Proteins/analysis
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Gene Expression
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- HEK293 Cells
- Humans
- Mice
- Models, Molecular
- Mutation, Missense
- Myopia/genetics
- Myopia/metabolism
- Night Blindness/genetics
- Night Blindness/metabolism
- Protein Folding
- Protein Prenylation
- Retinal Diseases/genetics
- Retinal Diseases/metabolism
Collapse
Affiliation(s)
- Kota N Gopalakrishna
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States.
| |
Collapse
|
16
|
Mejuch T, Garivet G, Hofer W, Kaiser N, Fansa EK, Ehrt C, Koch O, Baumann M, Ziegler S, Wittinghofer A, Waldmann H. Small-Molecule Inhibition of the UNC119-Cargo Interaction. Angew Chem Int Ed Engl 2017; 56:6181-6186. [DOI: 10.1002/anie.201701905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/30/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Tom Mejuch
- Department of Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Guillaume Garivet
- Department of Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Walter Hofer
- Department of Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Nadine Kaiser
- Department of Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Eyad K. Fansa
- Department of Structural Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Christiane Ehrt
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Oliver Koch
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Matthias Baumann
- Lead Discovery Center GmbH; Otto-Hahn-Strasse 15 44227 Dortmund Germany
| | - Slava Ziegler
- Department of Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Alfred Wittinghofer
- Department of Structural Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
17
|
Mejuch T, Garivet G, Hofer W, Kaiser N, Fansa EK, Ehrt C, Koch O, Baumann M, Ziegler S, Wittinghofer A, Waldmann H. Small-Molecule Inhibition of the UNC119-Cargo Interaction. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tom Mejuch
- Department of Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Guillaume Garivet
- Department of Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Walter Hofer
- Department of Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Nadine Kaiser
- Department of Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Eyad K. Fansa
- Department of Structural Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Christiane Ehrt
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Oliver Koch
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Matthias Baumann
- Lead Discovery Center GmbH; Otto-Hahn-Strasse 15 44227 Dortmund Germany
| | - Slava Ziegler
- Department of Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Alfred Wittinghofer
- Department of Structural Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
18
|
Mejuch T, van Hattum H, Triola G, Jaiswal M, Waldmann H. Specificity of Lipoprotein Chaperones for the Characteristic Lipidated Structural Motifs of their Cognate Lipoproteins. Chembiochem 2015; 16:2460-5. [PMID: 26503308 DOI: 10.1002/cbic.201500355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/08/2022]
Abstract
Lipoprotein-binding chaperones mediate intracellular transport of lipidated proteins and determine their proper localisation and functioning. Understanding of the exact structural parameters that determine recognition and transport by different chaperones is of major interest. We have synthesised several lipid-modified peptides, representative of different lipoprotein classes, and have investigated their binding to the relevant chaperones PDEδ, UNC119a, UNC119b, and galectins-1 and -3. Our results demonstrate that PDEδ recognises S-isoprenylated C-terminal peptidic structures but not N-myristoylated peptides. In contrast, UNC119 proteins bind only mono-N-myristoylated, but do not recognise doubly lipidated and S-isoprenylated peptides at the C terminus. For galectins-1 and -3, neither binding to N-acylated, nor to C-terminally prenylated peptides could be determined. These results shed light on the specificity of the chaperone-mediated cellular lipoprotein transport systems.
Collapse
Affiliation(s)
- Tom Mejuch
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Hilde van Hattum
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Gemma Triola
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Mamta Jaiswal
- Department of Structural Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany. .,Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany.
| |
Collapse
|
19
|
Baehr W. Membrane protein transport in photoreceptors: the function of PDEδ: the Proctor lecture. Invest Ophthalmol Vis Sci 2014; 55:8653-66. [PMID: 25550383 DOI: 10.1167/iovs.14-16066] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This lecture details the elucidation of cGMP phosphodiesterase (PDEδ), discovered 25 years ago by Joe Beavo at the University of Washington. PDEδ, once identified as a fourth PDE6 subunit, is now regarded as a promiscuous prenyl-binding protein and important chaperone of prenylated small G proteins of the Ras superfamily and prenylated proteins of phototransduction. Alfred Wittinghofer's group in Germany showed that PDEδ forms an immunoglobulin-like β-sandwich fold that is closely related in structure to other lipid-binding proteins, for example, Uncoordinated 119 (UNC119) and RhoGDI. His group cocrystallized PDEδ with ARL (Arf-like) 2(GTP), and later with farnesylated Rheb (ras homolog expressed in brain). PDEδ specifically accommodates farnesyl and geranylgeranyl moieties in the absence of bound protein. Germline deletion of the Pde6d gene encoding PDEδ impeded transport of rhodopsin kinase (GRK1) and PDE6 to outer segments, causing slowly progressing, recessive retinitis pigmentosa. A rare PDE6D null allele in human patients, discovered by Tania Attié-Bitach in France, specifically impeded trafficking of farnesylated phosphatidylinositol 3,4,5-trisphosphate (PIP3) 5-phosphatase (INPP5E) to cilia, causing severe syndromic ciliopathy (Joubert syndrome). Binding of cargo to PDEδ is controlled by Arf-like proteins, ARL2 and ARL3, charged with guanosine-5'-triphosphate (GTP). Arf-like proteins 2 and 3 are unprenylated small GTPases that serve as cargo displacement factors. The lifetime of ARL3(GTP) is controlled by its GTPase-activating protein, retinitis pigmentosa protein 2 (RP2), which accelerates GTPase activity up to 90,000-fold. RP2 null alleles in human patients are associated with severe X-linked retinitis pigmentosa (XLRP). Germline deletion of RP2 in mouse, however, causes only a mild form of XLRP. Absence of RP2 prolongs the activity of ARL3(GTP) that, in turn, impedes PDE6δ-cargo interactions and trafficking of prenylated protein to the outer segments. Hyperactive ARL3(GTP), acting as a hyperactive cargo displacement factor, is predicted to be key in the pathobiology of RP2-XLRP.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, University of Utah, Salt Lake City, Utah, United StatesDepartment of Neurobiology and Anatomy, University of Utah Health Science Center, University of Utah, Salt Lake City, Utah, United StatesDepartment of Biology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
20
|
Cheguru P, Majumder A, Yadav R, Gopalakrishna KN, Gakhar L, Artemyev NO. The solution structure of the transducin-α-uncoordinated 119 protein complex suggests occlusion of the Gβ₁γ₁-binding sites. FEBS J 2014; 282:550-61. [PMID: 25425538 DOI: 10.1111/febs.13161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 11/28/2022]
Abstract
Uncoordinated 119 protein (UNC119) is a partner of transducin-α subunit (Gαt ) that is essential for transducin trafficking in rod photoreceptors. The interaction is known to involve binding of the acylated N terminus of Gαt to the hydrophobic pocket of UNC119. To gain insights into the mechanism of transducin trafficking, we isolated a highly pure protein complex between myristoylated chimeric Gαt (Gαt *) and UNC119₅₀₋₂₄₀, and examined the solution structure by small angle X-ray scattering and chemical crosslinking. The solution structure of the Gαt -UNC119₅₀₋₂₄₀ complex was derived with rigid body/ab initio modeling against the small angle X-ray scattering data by use of known atomic structures of Gαt and UNC119, and a distance constraint based on the protein crosslinking with p-phenyldimaleimide. The model of the Gαt -UNC119₅₀₋₂₄₀ complex indicates rotation and bending of the N-terminal α-helix of Gαt from its position in the structure of the heterotrimeric G-protein transducin (Gt ). This allows a considerably more compact complex conformation, which also suggests a novel interface involving the switch II/α3-β5 surface of Gαt . Supporting a novel interface, UNC119 was found to bind full-length Gαt * more strongly than the Gαt N-terminal peptide. Furthermore, UNC119 competed with the effector molecule phosphodiesterase-6 γ-subunit, which is known to bind to the same surface of Gαt . The solution structure of the Gαt -UNC119 complex suggests that the ability of UNC119 to dissociate Gt subunits and release Gαt from the membrane is attributable to disruption and sterical occlusion of the Gβ₁γ₁-binding sites on Gαt .
Collapse
Affiliation(s)
- Pallavi Cheguru
- Department of Molecular Physiology and Biophysics, University of Iowa, IA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Roosing S, Thiadens AAHJ, Hoyng CB, Klaver CCW, den Hollander AI, Cremers FPM. Causes and consequences of inherited cone disorders. Prog Retin Eye Res 2014; 42:1-26. [PMID: 24857951 DOI: 10.1016/j.preteyeres.2014.05.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 11/18/2022]
Abstract
Hereditary cone disorders (CDs) are characterized by defects of the cone photoreceptors or retinal pigment epithelium underlying the macula, and include achromatopsia (ACHM), cone dystrophy (COD), cone-rod dystrophy (CRD), color vision impairment, Stargardt disease (STGD) and other maculopathies. Forty-two genes have been implicated in non-syndromic inherited CDs. Mutations in the 5 genes implicated in ACHM explain ∼93% of the cases. On the contrary, only 21% of CRDs (17 genes) and 25% of CODs (8 genes) have been elucidated. The fact that the large majority of COD and CRD-associated genes are yet to be discovered hints towards the existence of unknown cone-specific or cone-sensitive processes. The ACHM-associated genes encode proteins that fulfill crucial roles in the cone phototransduction cascade, which is the most frequently compromised (10 genes) process in CDs. Another 7 CD-associated proteins are required for transport processes towards or through the connecting cilium. The remaining CD-associated proteins are involved in cell membrane morphogenesis and maintenance, synaptic transduction, and the retinoid cycle. Further novel genes are likely to be identified in the near future by combining large-scale DNA sequencing and transcriptomics technologies. For 31 of 42 CD-associated genes, mammalian models are available, 14 of which have successfully been used for gene augmentation studies. However, gene augmentation for CDs should ideally be developed in large mammalian models with cone-rich areas, which are currently available for only 11 CD genes. Future research will aim to elucidate the remaining causative genes, identify the molecular mechanisms of CD, and develop novel therapies aimed at preventing vision loss in individuals with CD in the future.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Roosing S, Collin RWJ, den Hollander AI, Cremers FPM, Siemiatkowska AM. Prenylation defects in inherited retinal diseases. J Med Genet 2014; 51:143-51. [DOI: 10.1136/jmedgenet-2013-102138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Transducin translocation contributes to rod survival and enhances synaptic transmission from rods to rod bipolar cells. Proc Natl Acad Sci U S A 2013; 110:12468-73. [PMID: 23836670 DOI: 10.1073/pnas.1222666110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In rod photoreceptors, several phototransduction components display light-dependent translocation between cellular compartments. Notably, the G protein transducin translocates from rod outer segments to inner segments/spherules in bright light, but the functional consequences of translocation remain unclear. We generated transgenic mice where light-induced transducin translocation is impaired. These mice exhibited slow photoreceptor degeneration, which was prevented if they were dark-reared. Physiological recordings showed that control and transgenic rods and rod bipolar cells displayed similar sensitivity in darkness. After bright light exposure, control rods were more strongly desensitized than transgenic rods. However, in rod bipolar cells, this effect was reversed; transgenic rod bipolar cells were more strongly desensitized than control. This sensitivity reversal indicates that transducin translocation in rods enhances signaling to rod bipolar cells. The enhancement could not be explained by modulation of inner segment conductances or the voltage sensitivity of the synaptic Ca(2+) current, suggesting interactions of transducin with the synaptic machinery.
Collapse
|
24
|
Toyama R, Kim MH, Rebbert ML, Gonzales J, Burgess H, Dawid IB. Habenular commissure formation in zebrafish is regulated by the pineal gland-specific gene unc119c. Dev Dyn 2013; 242:1033-42. [PMID: 23749482 DOI: 10.1002/dvdy.23994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pacemaker. Since it is located on the surface of the forebrain, it is accessible for manipulation and, therefore, is a useful model system to analyze pineal gland function and development. We previously analyzed the pineal transcriptome during development and showed that many genes exhibit a highly dynamic expression pattern in the pineal gland. RESULTS Among genes preferentially expressed in the zebrafish pineal gland, we identified a tissue-specific form of the unc119 gene family, unc119c, which is highly preferentially expressed in the pineal gland during day and night at all stages examined from embryo to adult. When expression of unc119c was inhibited, the formation of the habenular commissure (HC) was specifically compromised. The Unc119c interacting factors Arl3l1 and Arl3l2 as well as Wnt4a also proved indispensible for HC formation. CONCLUSIONS We suggest that Unc119c, together with Arl3l1/2, plays an important role in modulating Wnt4a production and secretion during HC formation in the forebrain of the zebrafish embryo.
Collapse
Affiliation(s)
- Reiko Toyama
- Program in Genomics of Development, NICHD, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
25
|
Majumder A, Gopalakrishna KN, Cheguru P, Gakhar L, Artemyev NO. Interaction of aryl hydrocarbon receptor-interacting protein-like 1 with the farnesyl moiety. J Biol Chem 2013; 288:21320-21328. [PMID: 23737531 DOI: 10.1074/jbc.m113.476242] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a photoreceptor specific chaperone of the visual effector enzyme phosphodiesterase-6 (PDE6). AIPL1 has been shown to bind the farnesylated PDE6A subunit. Mutations in AIPL1 are thought to destabilize PDE6 and thereby cause Leber congenital amaurosis type 4 (LCA4), a severe form of childhood blindness. Here, we examined the solution structure of AIPL1 by small angle x-ray scattering. A structural model of AIPL1 with the best fit to the scattering data features two independent FK506-binding protein (FKBP)-like and tetratricopeptide repeat domains. Guided by the model, we tested the hypothesis that AIPL1 directly binds the farnesyl moiety. Our studies revealed high affinity binding of the farnesylated-Cys probe to the FKBP-like domain of AIPL1, thus uncovering a novel function of this domain. Mutational analysis of the potential farnesyl-binding sites on AIPL1 identified two critical residues, Cys-89 and Leu-147, located in close proximity in the structure model. The L147A mutation and the LCA-linked C89R mutation prevented the binding of the farnesyl-Cys probe to AIPL1. Furthermore, Cys-89 and Leu-147 flank the unique insert region of AIPL1, deletion of which also abolished the farnesyl interaction. Our results suggest that the binding of PDE6A farnesyl is essential to normal function of AIPL1 and its disruption is one of the mechanisms underlying LCA.
Collapse
Affiliation(s)
| | | | | | - Lokesh Gakhar
- Department of Biochemistry,; Protein Crystallography Facility, and
| | - Nikolai O Artemyev
- From the Department of Molecular Physiology and Biophysics,; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
26
|
Pearring JN, Salinas RY, Baker SA, Arshavsky VY. Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 2013; 36:24-51. [PMID: 23562855 DOI: 10.1016/j.preteyeres.2013.03.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
Abstract
Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins.
Collapse
Affiliation(s)
- Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
27
|
Lee Y, Chung S, Baek IK, Lee TH, Paik SY, Lee J. UNC119a bridges the transmission of Fyn signals to Rab11, leading to the completion of cytokinesis. Cell Cycle 2013; 12:1303-15. [PMID: 23535298 PMCID: PMC3674094 DOI: 10.4161/cc.24404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Src family kinases (SFKs) regulate the completion of cytokinesis through signal transduction pathways that lead to the Rab11-dependent phosphorylation of ERK and its localization to the midbody of cytokinetic cells. We find that UNC119a, a known activator of SFKs, plays essential roles in this signaling pathway. UNC119a localizes to the centrosome in interphase cells and begins to translocate from the spindle pole to the spindle midzone after the onset of mitosis; it then localizes to the intercellular bridge in telophase cells and to the midbody in cytokinetic cells. We show that the midbody localization of UNC119a is dependent on Rab11, and that knocking down UNC119a inhibits the Rab11-dependent phosphorylation and midbody localization of ERK and cytokinesis. Moreover, we demonstrate that UNC119a interacts with a Src family kinase, Fyn and is required for the activation of this kinase. These results suggest that UNC119a plays a key role in the Fyn signal transduction pathway, which regulates the completion of cytokinesis via Rab11.
Collapse
Affiliation(s)
- YuKyung Lee
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Fuchs T, Saunders-Pullman R, Masuho I, Luciano MS, Raymond D, Factor S, Lang AE, Liang TW, Trosch RM, White S, Ainehsazan E, Hervé D, Sharma N, Ehrlich ME, Martemyanov KA, Bressman SB, Ozelius LJ. Mutations in GNAL cause primary torsion dystonia. Nat Genet 2012; 45:88-92. [PMID: 23222958 PMCID: PMC3530620 DOI: 10.1038/ng.2496] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/16/2012] [Indexed: 12/12/2022]
Abstract
Dystonia is a movement disorder characterized by repetitive twisting muscle contractions and postures1,2. Its molecular pathophysiology is poorly understood, in part due to limited knowledge of the genetic basis of the disorder. Only three genes for primary torsion dystonia (PTD), TOR1A (DYT1)3, THAP1 (DYT6)4, and CIZ15 have been identified. Using exome sequencing in two PTD families we identified a novel causative gene, GNAL, with a nonsense p.S293X mutation resulting in premature stop codon in one family and a missense p.V137M mutation in the other. Screening of GNAL in 39 PTD families, revealed six additional novel mutations in this gene. Impaired function of several of the mutations was shown by bioluminescence resonance energy transfer (BRET) assays.
Collapse
Affiliation(s)
- Tania Fuchs
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sinha S, Majumder A, Belcastro M, Sokolov M, Artemyev NO. Expression and subcellular distribution of UNC119a, a protein partner of transducin α subunit in rod photoreceptors. Cell Signal 2012; 25:341-8. [PMID: 23072788 DOI: 10.1016/j.cellsig.2012.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
A recently discovered interaction of rod transducin α subunit (Gα(t1)) with UNC119a is thought to be important for transducin trafficking in photoreceptors. In this study, we analyzed the subcellular distribution of UNC119a under different conditions of illumination in vivo. Analyses by immunofluorescence and Western blotting of retina serial tangential sections demonstrated that UNC119a resides predominantly in the rod inner segment, with a small fraction of UNC119a also appearing to infiltrate the rod outer segment. Such a distribution is consistent with the proposed role of UNC119a in facilitating transducin transport from the rod inner segment to the outer segment in the dark. In addition, UNC119a was present in smaller amounts in the cell body and synaptic region of rods. The profile of UNC119a subcellular distribution remained largely unchanged under all tested conditions of illumination, and correlated with the profile of Gα(t1) following its light-dependent translocation. Quantification by Western blotting suggested that mouse retina contains ~17 pmol of UNC119a, giving a ~1 to 4 molar ratio of UNC119a to Gα(t1). Hence, light-translocated Gα(t1) can serve as a major partner of UNC119a. Supporting this role, the levels of UNC119a were downregulated by about 2-fold in mouse retina lacking Gα(t1). As a dominant partner, Gα(t1) may potentially modulate the function of other known UNC119a-interacting proteins involved in photoreceptor ciliary trafficking and synaptic regulation, in a light-dependent manner.
Collapse
Affiliation(s)
- Satyabrata Sinha
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA
| | | | | | | | | |
Collapse
|
30
|
Constantine R, Zhang H, Gerstner CD, Frederick JM, Baehr W. Uncoordinated (UNC)119: coordinating the trafficking of myristoylated proteins. Vision Res 2012; 75:26-32. [PMID: 23000199 DOI: 10.1016/j.visres.2012.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 01/06/2023]
Abstract
The mechanism by which myristoylated proteins are targeted to specific subcellular membrane compartments is poorly understood. Two novel acyl-binding proteins, UNC119A and UNC119B, have been shown recently to function as chaperones/co-factors in the transport of myristoylated G protein α-subunits and src-type tyrosine kinases. UNC119 polypeptides feature an immunoglobulin-like β-sandwich fold that forms a hydrophobic pocket capable of binding lauroyl (C12) and myristoyl (C14) side chains. UNC119A in rod photoreceptors facilitates the transfer of transducin α subunits (Tα) from inner segment to outer segment membranes by forming an intermediate diffusible UNC119-Tα complex. Similar complexes are formed in other sensory neurons, as the G proteins ODR-3 and GPA-13 in Caenorhabditis elegans unc-119 mutants traffic inappropriately. UNC119B knockdown in IMCD3 cells prevents trafficking ofmyristoylated nephrocystin-3 (NPHP3), a protein associated with nephronophthisis, to cilia. Further, UNC119A was shown to transport myristoylated src-type tyrosine kinases to cell membranes and to affect T-cell receptor (TCR) and interleukin-5 receptor (IL-5R) activities. These interactions establish UNC119 polypeptides as novel lipid-binding chaperones with specificity for a diverse subset of myristoylated proteins.
Collapse
Affiliation(s)
- Ryan Constantine
- Graduate Program in Neuroscience, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
31
|
Belcastro M, Song H, Sinha S, Song C, Mathers PH, Sokolov M. Phosphorylation of phosducin accelerates rod recovery from transducin translocation. Invest Ophthalmol Vis Sci 2012; 53:3084-91. [PMID: 22491418 DOI: 10.1167/iovs.11-8798] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE In rods saturated by light, the G protein transducin undergoes translocation from the outer segment compartment, which results in the uncoupling of transducin from its innate receptor, rhodopsin. We measured the kinetics of recovery from this adaptive cellular response, while also investigating the role of phosducin, a phosphoprotein binding transducin βγ subunits in its de-phosphorylated state, in regulating this process. METHODS Mice were exposed to a moderate rod-saturating light triggering transducin translocation, and then allowed to recover in the dark while free running. The kinetics of the return of the transducin subunits to the outer segments were compared in transgenic mouse models expressing full-length phosducin, and phosducin lacking phosphorylation sites serine 54 and 71, using Western blot analysis of serial tangential sections of the retina. RESULTS In mice expressing normal phosducin, transducin α and βγ subunits returned to the outer segments with a half-time (t(1/2)) of ∼24 and 29 minutes, respectively. In the phosducin phosphorylation mutants, the transducin α subunit moved four times slower, with t(1/2) ∼95 minutes, while the movement of transducin βγ was less affected. CONCLUSIONS We demonstrate that the recovery of rod photoreceptors from the ambient saturating levels of illumination, in terms of the return of the light-dispersed transducin subunits to the rod outer segments, occurs six times faster than reported previously. Our data also support the notion that the accumulation of transducin α subunit in the outer segment is driven by its re-binding to the transducin βγ dimer, because this process is accelerated significantly by phosducin phosphorylation.
Collapse
|
32
|
Gopalakrishna KN, Boyd KK, Artemyev NO. Comparative analysis of cone and rod transducins using chimeric Gα subunits. Biochemistry 2012; 51:1617-24. [PMID: 22324825 DOI: 10.1021/bi3000935] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular nature of transducin-α subunits (Gα(t)) may contribute to the distinct physiology of cone and rod photoreceptors. Biochemical properties of mammalian cone Gα(t2) subunits and their differences with rod Gα(t1) are largely unknown. Here, we examined properties of chimeric Gα(t2) in comparison with its rod counterpart. The key biochemical difference between the rod- and cone-like Gα(t) was ~10-fold higher intrinsic nucleotide exchange on the chimeric Gα(t2). Presented mutational analysis suggests that weaker interdomain interactions between the GTPase (Ras-like) domain and the helical domain in Gα(t2) are in part responsible for its increased spontaneous nucleotide exchange. However, the rates of R*-dependent nucleotide exchange of chimeric Gα(t2) and Gα(t1) were equivalent. Furthermore, chimeric Gα(t2) and Gα(t1) exhibited similar rates of intrinsic GTPase activity as well as similar acceleration of GTP hydrolysis by the RGS domain of RGS9. Our results suggest that the activation and inactivation properties of cone and rod Gα(t) subunits in an in vitro reconstituted system are comparable.
Collapse
Affiliation(s)
- Kota N Gopalakrishna
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, United States
| | | | | |
Collapse
|
33
|
Abstract
The classical view of heterotrimeric G protein signaling places G -proteins at the cytoplasmic surface of the cell's plasma membrane where they are activated by an appropriate G protein-coupled receptor. Once activated, the GTP-bound Gα and the free Gβγ are able to regulate plasma membrane-localized effectors, such as adenylyl cyclase, phospholipase C-β, RhoGEFs and ion channels. Hydrolysis of GTP by the Gα subunit returns the G protein to the inactive Gαβγ heterotrimer. Although all of these events in the G protein cycle can be restricted to the cytoplasmic surface of the plasma membrane, G protein localization is dynamic. Thus, it has become increasingly clear that G proteins are able to move to diverse subcellular locations where they perform non-canonical signaling functions. This chapter will highlight our current understanding of trafficking pathways that target newly synthesized G proteins to the plasma membrane, activation-induced and reversible translocation of G proteins from the plasma membrane to intracellular locations, and constitutive trafficking of G proteins.
Collapse
|
34
|
Arshavsky VY, Burns ME. Photoreceptor signaling: supporting vision across a wide range of light intensities. J Biol Chem 2011; 287:1620-6. [PMID: 22074925 DOI: 10.1074/jbc.r111.305243] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For decades, photoreceptors have been an outstanding model system for elucidating basic principles in sensory transduction and biochemistry and for understanding many facets of neuronal cell biology. In recent years, new knowledge of the kinetics of signaling and the large-scale movements of proteins underlying signaling has led to a deeper appreciation of the photoreceptor's unique challenge in mediating the first steps in vision over a wide range of light intensities.
Collapse
Affiliation(s)
- Vadim Y Arshavsky
- Departments of Ophthalmology and Pharmacology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
35
|
Schwarz N, Novoselova TV, Wait R, Hardcastle AJ, Cheetham ME. The X-linked retinitis pigmentosa protein RP2 facilitates G protein traffic. Hum Mol Genet 2011; 21:863-73. [PMID: 22072390 DOI: 10.1093/hmg/ddr520] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The X-linked retinitis pigmentosa protein RP2 is a GTPase activating protein (GAP) for the small GTPase Arl3 and both proteins are implicated in the traffic of proteins to the primary cilia. Here, we show that RP2 can facilitate the traffic of the Gβ subunit of transducin (Gβ1). Glutathione S-transferase (GST)-RP2 pulled down Gβ from retinal lysates and the interaction was specific to Gβ1, as Gβ3 or Gβ5L did not bind RP2. RP2 did not appear to interact with the Gβ:Gγ heterodimer, in contrast Gγ1 competed with RP2 for Gβ binding. Overexpression of Gβ1 in SK-N-SH cells led to a cytoplasmic accumulation of Gβ1, while co-expression of RP2 or Gγ1 with Gβ1 restored membrane association of Gβ1. Furthermore, RP2 small interfering RNA in ARPE19 cells resulted in a reduction in Gβ1 membrane association that was rescued by Gγ1 overexpression. The interaction of RP2 with Gβ1 required RP2 N-terminal myristolyation and the co-factor C (TBCC) homology domain. The interaction was also disrupted by the pathogenic mutation R118H, which blocks Arl3 GAP activity. Interestingly, Arl3-Q71L competed with Gβ1 for RP2 binding, suggesting that Arl3-GTP binding by RP2 would release Gβ1. RP2 also stimulated the association of Gβ1 with Rab11 vesicles. Collectively, the data support a role for RP2 in facilitating the membrane association and traffic of Gβ1, potentially prior to the formation of the obligate Gβ:Gγ heterodimer. Combined with other recent evidence, this suggests that RP2 may co-operate with Arl3 and its effectors in the cilia-associated traffic of G proteins.
Collapse
Affiliation(s)
- Nele Schwarz
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | | | | | | |
Collapse
|