1
|
Kotsifaki A, Maroulaki S, Karalexis E, Stathaki M, Armakolas A. Decoding the Role of Insulin-like Growth Factor 1 and Its Isoforms in Breast Cancer. Int J Mol Sci 2024; 25:9302. [PMID: 39273251 PMCID: PMC11394947 DOI: 10.3390/ijms25179302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Insulin-like Growth Factor-1 (IGF-1) is a crucial mitogenic factor with important functions in the mammary gland, mainly through its interaction with the IGF-1 receptor (IGF-1R). This interaction activates a complex signaling network that promotes cell proliferation, epithelial to mesenchymal transition (EMT) and inhibits apoptosis. Despite extensive research, the precise molecular pathways and intracellular mechanisms activated by IGF-1, in cancer, remain poorly understood. Recent evidence highlights the essential roles of IGF-1 and its isoforms in breast cancer (BC) development, progression, and metastasis. The peptides that define the IGF-1 isoforms-IGF-1Ea, IGF-1Eb, and IGF-1Ec-act as key points of convergence for various signaling pathways that influence the growth, metastasis and survival of BC cells. The aim of this review is to provide a detailed exami-nation of the role of the mature IGF-1 and its isoforms in BC biology and their potential use as possible therapeutical targets.
Collapse
Affiliation(s)
- Amalia Kotsifaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sousanna Maroulaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthymios Karalexis
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Martha Stathaki
- Surgical Clinic, "Elena Venizelou" General Hospital, 11521 Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Vasileva ID, Samgina TY, Meng Z, Zubarev RA, Lebedev AT. EThcD Benefits for the Sequencing Inside Intramolecular Disulfide Cycles of Amphibian Intact Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1979-1988. [PMID: 37525119 DOI: 10.1021/jasms.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Disulfide bonds formed by a pair of cysteine residues in the peptides' backbone represent a certain problem for their sequencing by means of mass spectrometry. As a rule, in proteomics, disulfide bonds should be cleaved before the analysis followed by some sort of chemical derivatization. That step is time-consuming and may lead to losses of minor peptides of the analyzed mixtures due to incomplete reaction, adsorption on the walls of the vials, etc. Certain problems in the de novo top-down sequencing of amphibian skin peptides are caused by the C-terminal disulfide loop, called the Rana box. Its reduction with or without subsequent derivatization was considered to be an unavoidable step before mass spectrometry. In the present study, EThcD demonstrated its efficiency in sequencing intact disulfide-containing peptides without any preliminary derivatization. Applied to the secretion of three frog species, EThcD provided the full sequence inside the intramolecular disulfide cycle for all S-S-containing peptides found in the samples, with the only exception being diarginine species. Proteolytic fragments, which are shorter than the original peptides, were helpful in some cases. HCD should be mentioned as a complementary tool to the EThcD tool, being useful as a confirmation method for some sequence details.
Collapse
Affiliation(s)
- Irina D Vasileva
- Lomonosov Moscow State University, Department of Organic Chemistry, 119991 Moscow, Russia
| | - Tatiana Yu Samgina
- Lomonosov Moscow State University, Department of Organic Chemistry, 119991 Moscow, Russia
| | - Zhaowei Meng
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Roman A Zubarev
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Albert T Lebedev
- Lomonosov Moscow State University, Department of Organic Chemistry, 119991 Moscow, Russia
| |
Collapse
|
3
|
Li H, Luo X, Li N, Liu T, Zhang J. Insulin-like peptide 8 (Ilp8) regulates female fecundity in flies. Front Cell Dev Biol 2023; 11:1103923. [PMID: 36743416 PMCID: PMC9890075 DOI: 10.3389/fcell.2023.1103923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction: Insulin-like peptides (Ilps) play crucial roles in nearly all life stages of insects. Ilp8 is involved in developmental stability, stress resistance and female fecundity in several insect species, but the underlying mechanisms are not fully understood. Here we report the functional characterization of Ilp8s in three fly species, including Bactrocera dorsalis, Drosophila mercatorum and Drosophila melanogaster. Methods: Phylogenetic analyses were performed to identify and characterize insect Ilp8s. The amino acid sequences of fly Ilp8s were aligned and the three-dimensional structures of fly Ilp8s were constructed and compared. The tissue specific expression pattern of fly Ilp8s were examined by qRT-PCR. In Bactrocera dorsalis and Drosophila mercatorum, dsRNAs were injected into virgin females to inhibit the expression of Ilp8 and the impacts on female fecundity were examined. In Drosophila melanogaster, the female fecundity of Ilp8 loss-of-function mutant was compared with wild type control flies. The mutant fruit fly strain was also used for sexual behavioral analysis and transcriptomic analysis. Results: Orthologs of Ilp8s are found in major groups of insects except for the lepidopterans and coleopterans, and Ilp8s are found to be well separated from other Ilps in three fly species. The key motif and the predicted three-dimensional structure of fly Ilp8s are well conserved. Ilp8 are specifically expressed in the ovary and are essential for female fecundity in three fly species. Behavior analysis demonstrates that Ilp8 mutation impairs female sexual attractiveness in fruit fly, which results in decreased mating success and is likely the cause of fecundity reduction. Further transcriptomic analysis indicates that Ilp8 might influence metabolism, immune activity, oocyte development as well as hormone homeostasis to collectively regulate female fecundity in the fruit fly. Discussion: Our findings support a universal role of insect Ilp8 in female fecundity, and also provide novel clues for understanding the modes of action of Ilp8.
Collapse
Affiliation(s)
- Haomiao Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xi Luo
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Na Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tao Liu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Junzheng Zhang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China,*Correspondence: Junzheng Zhang,
| |
Collapse
|
4
|
Waters JA, Urbano I, Robinson M, House CD. Insulin-like growth factor binding protein 5: Diverse roles in cancer. Front Oncol 2022; 12:1052457. [PMID: 36465383 PMCID: PMC9714447 DOI: 10.3389/fonc.2022.1052457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) and the associated signaling components in the insulin-like growth factor (IGF) pathway regulate cell differentiation, proliferation, apoptosis, and adhesion. Of the IGFBPs, insulin-like growth factor binding protein 5 (IGFBP5) is the most evolutionarily conserved with a dynamic range of IGF-dependent and -independent functions, and studies on the actions of IGFBP5 in cancer have been somewhat paradoxical. In cancer, the IGFBPs respond to external stimuli to modulate disease progression and therapeutic responsiveness in a context specific manner. This review discusses the different roles of IGF signaling and IGFBP5 in disease with an emphasis on discoveries within the last twenty years, which underscore a need to clarify the IGF-independent actions of IGFBP5, the impact of its subcellular localization, the differential activities of each of the subdomains, and the response to elements of the tumor microenvironment (TME). Additionally, recent advances addressing the role of IGFBP5 in resistance to cancer therapeutics will be discussed. A better understanding of the contexts in which IGFBP5 functions will facilitate the discovery of new mechanisms of cancer progression that may lead to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jennifer A. Waters
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Ixchel Urbano
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Mikella Robinson
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA, United States,Moore’s Cancer Center, University of California, San Diego, San Diego, CA, United States,*Correspondence: Carrie D. House,
| |
Collapse
|
5
|
Kline CD, Anderson M, Bassett JW, Kent G, Berryman R, Honeggar M, Ito S, Wakamatsu K, Indra AK, Moos PJ, Leachman SA, Cassidy PB. MITF Is Regulated by Redox Signals Controlled by the Selenoprotein Thioredoxin Reductase 1. Cancers (Basel) 2022; 14:5011. [PMID: 36291795 PMCID: PMC9600194 DOI: 10.3390/cancers14205011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
TR1 and other selenoproteins have paradoxical effects in melanocytes and melanomas. Increasing selenoprotein activity with supplemental selenium in a mouse model of UV-induced melanoma prevents oxidative damage to melanocytes and delays melanoma tumor formation. However, TR1 itself is positively associated with progression in human melanomas and facilitates metastasis in melanoma xenografts. Here, we report that melanocytes expressing a microRNA directed against TR1 (TR1low) grow more slowly than control cell lines and contain significantly less melanin. This phenotype is associated with lower tyrosinase (TYR) activity and reduced transcription of tyrosinase-like protein-1 (TYRP1). Melanoma cells in which the TR1 gene (TXNRD1) was disrupted using Crispr/Cas9 showed more dramatic effects including the complete loss of the melanocyte-specific isoform of MITF; other MITF isoforms were unaffected. We provide evidence that TR1 depletion results in oxidation of MITF itself. This newly discovered mechanism for redox modification of MITF has profound implications for controlling both pigmentation and tumorigenesis in cells of the melanocyte lineage.
Collapse
Affiliation(s)
- Chelsey D. Kline
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Madeleine Anderson
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - John W. Bassett
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gail Kent
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rachel Berryman
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Matthew Honeggar
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Philip J. Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sancy A. Leachman
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Pamela B. Cassidy
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
6
|
Dittmer J. Biological effects and regulation of IGFBP5 in breast cancer. Front Endocrinol (Lausanne) 2022; 13:983793. [PMID: 36093095 PMCID: PMC9453429 DOI: 10.3389/fendo.2022.983793] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The insulin-like growth factor receptor (IGF1R) pathway plays an important role in cancer progression. In breast cancer, the IGF1R pathway is linked to estrogen-dependent signaling. Regulation of IGF1R activity is complex and involves the actions of its ligands IGF1 and IGF2 and those of IGF-binding proteins (IGFBPs). Six IGFBPs are known that share the ability to form complexes with the IGFs, by which they control the bioavailability of these ligands. Besides, each of the IGFBPs have specific features. In this review, the focus lies on the biological effects and regulation of IGFBP5 in breast cancer. In breast cancer, estrogen is a critical regulator of IGFBP5 transcription. It exerts its effect through an intergenic enhancer loop that is part of the chromosomal breast cancer susceptibility region 2q35. The biological effects of IGFBP5 depend upon the cellular context. By inhibiting or promoting IGF1R signaling, IGFBP5 can either act as a tumor suppressor or promoter. Additionally, IGFBP5 possesses IGF-independent activities, which contribute to the complexity by which IGFBP5 interferes with cancer cell behavior.
Collapse
|
7
|
Wen D, Xiao Y, Vecchi MM, Gong BJ, Dolnikova J, Pepinsky RB. Determination of the Disulfide Structure of Murine Meteorin, a Neurotrophic Factor, by LC–MS and Electron Transfer Dissociation-High-Energy Collisional Dissociation Analysis of Proteolytic Fragments. Anal Chem 2017; 89:4021-4030. [DOI: 10.1021/acs.analchem.6b04600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dingyi Wen
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yongsheng Xiao
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Malgorzata M. Vecchi
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bang Jian Gong
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jana Dolnikova
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - R. Blake Pepinsky
- Department of Protein Drug
Discovery, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
8
|
Rombouts I, Lagrain B, Scherf KA, Koehler P, Delcour JA. Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Sci Rep 2015; 5:12210. [PMID: 26193081 PMCID: PMC4507448 DOI: 10.1038/srep12210] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/18/2015] [Indexed: 12/28/2022] Open
Abstract
Thermolysin hydrolyzates of freshly isolated, extensively stored (6 years, 6 °C, dry) and heated (60 min, 90 °C, in excess water) bovine serum albumin (BSA) samples were analyzed with liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using alternating electron-transfer dissociation (ETD) and collision-induced dissociation (CID). The positions of disulfide bonds and free thiol groups in the different samples were compared to those deduced from the crystal structure of native BSA. Results revealed non-enzymatic posttranslational modifications of cysteine during isolation, extensive dry storage, and heating. Heat-induced extractability loss of BSA was linked to the impact of protein unfolding on the involvement of specific cysteine residues in intermolecular and intramolecular thiol-disulfide interchange and thiol oxidation reactions. The here developed approach holds promise for exploring disulfide bond formation and reshuffling in various proteins under conditions relevant for chemical, biochemical, pharmaceutical and food processing.
Collapse
Affiliation(s)
- Ine Rombouts
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, box 2463, B-3001 Leuven, Belgium
| | - Bert Lagrain
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, box 2463, B-3001 Leuven, Belgium
| | - Katharina A. Scherf
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straβe 34, D-85354 Freising, Germany
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straβe 34, D-85354 Freising, Germany
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, box 2463, B-3001 Leuven, Belgium
| |
Collapse
|
9
|
Borges CR, Sherma ND. Techniques for the analysis of cysteine sulfhydryls and oxidative protein folding. Antioxid Redox Signal 2014; 21:511-31. [PMID: 24383618 PMCID: PMC4076987 DOI: 10.1089/ars.2013.5559] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Modification of cysteine thiols dramatically affects protein function and stability. Hence, the abilities to quantify specific protein sulfhydryl groups within complex biological samples and map disulfide bond structures are crucial to gaining greater insights into how proteins operate in human health and disease. RECENT ADVANCES Many different molecular probes are now commercially available to label and track cysteine residues at great sensitivity. Coupled with mass spectrometry, stable isotope-labeled sulfhydryl-specific reagents can provide previously unprecedented molecular insights into the dynamics of cysteine modification. Likewise, the combined application of modern mass spectrometers with improved sample preparation techniques and novel data mining algorithms is beginning to routinize the analysis of complex protein disulfide structures. CRITICAL ISSUES Proper application of these modern tools and techniques, however, still requires fundamental understanding of sulfhydryl chemistry as well as the assumptions that accompany sample preparation and underlie effective data interpretation. FUTURE DIRECTIONS The continued development of tools, technical approaches, and corresponding data processing algorithms will, undoubtedly, facilitate site-specific protein sulfhydryl quantification and disulfide structure analysis from within complex biological mixtures with ever-improving accuracy and sensitivity. Fully routinizing disulfide structure analysis will require an equal but balanced focus on sample preparation and corresponding mass spectral dataset reproducibility.
Collapse
Affiliation(s)
- Chad R Borges
- Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University , Tempe, Arizona
| | | |
Collapse
|
10
|
Lund J, Søndergaard MT, Conover CA, Overgaard MT. Heparin-binding mechanism of the IGF2/IGF-binding protein 2 complex. J Mol Endocrinol 2014; 52:345-55. [PMID: 24604839 DOI: 10.1530/jme-13-0184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
IGF1 and IGF2 are potent stimulators of diverse cellular activities such as differentiation and mitosis. Six IGF-binding proteins (IGFBP1-IGFBP6) are primary regulators of IGF half-life and receptor availability. Generally, the binding of IGFBPs inhibits IGF receptor activation. However, it has been shown that IGFBP2 in complex with IGF2 (IGF2/IGFBP2) stimulates osteoblast function in vitro and increases skeletal mass in vivo. IGF2 binding to IGFBP2 greatly increases the affinity for 2- or 3-carbon O-sulfated glycosaminoglycans (GAGs), e.g. heparin and heparan sulfate, which is hypothesized to preferentially and specifically target the IGF2/IGFBP2 complex to the bone matrix. In order to obtain a more detailed understanding of the interactions between the IGF2/IGFBP2 complex and GAGs, we investigated heparin-binding properties of IGFBP2 and the IGF2/IGFBP2 complex in a quantitative manner. For this study, we mutated key positively charged residues within the two heparin-binding domains (HBDs) in IGFBP2 and in one potential HBD in IGF2. Using heparin affinity chromatography, we demonstrate that the two IGFBP2 HBDs contribute differentially to GAG binding in free IGFBP2 and the IGF2/IGFBP2 protein complex. Moreover, we identify a significant contribution from the HBD in IGF2 to the increased IGF2/IGFBP2 heparin affinity. Using molecular modeling, we present a novel model for the IGF2/IGFBP2 interaction with heparin where all three proposed HBDs constitute a positively charged and surface-exposed area that would serve to promote the increased heparin affinity of the complex compared with free intact IGFBP2.
Collapse
Affiliation(s)
- Jacob Lund
- Department of BiotechnologyChemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, DenmarkDivision of EndocrinologyEndocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Mads T Søndergaard
- Department of BiotechnologyChemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, DenmarkDivision of EndocrinologyEndocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Cheryl A Conover
- Department of BiotechnologyChemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, DenmarkDivision of EndocrinologyEndocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael T Overgaard
- Department of BiotechnologyChemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, DenmarkDivision of EndocrinologyEndocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Samgina TY, Vorontsov EA, Gorshkov VA, Artemenko KA, Zubarev RA, Ytterberg JA, Lebedev AT. Collision-induced dissociation fragmentation inside disulfide C-terminal loops of natural non-tryptic peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1037-1044. [PMID: 23633018 DOI: 10.1007/s13361-013-0632-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 06/02/2023]
Abstract
Collision-induced dissociation (CID) spectra of long non-tryptic peptides are usually quite complicated and rather difficult to interpret. Disulfide bond formed by two cysteine residues at C-terminus of frog skin peptides precludes one to determine sequence inside the forming loop. Thereby, chemical modification of S-S bonds is often used in "bottom up" sequencing approach. However, low-energy CID spectra of natural non-tryptic peptides with C-terminal disulfide cycle demonstrate an unusual fragmentation route, which may be used to elucidate the "hidden" C-terminal sequence. Low charge state protonated molecules experience peptide bond cleavage at the N-terminus of C-terminal cysteine. The forming isomeric acyclic ions serve as precursors for a series of b-type ions revealing sequence inside former disulfide cycle. The reaction is preferable for peptides with basic lysine residues inside the cycle. It may also be activated by acidic protons of Asp and Glu residues neighboring the loop. The observed cleavages may be quite competitive, revealing the sequence inside disulfide cycle, although S-S bond rupture does not occur in this case.
Collapse
Affiliation(s)
- Tatiana Y Samgina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
12
|
Nili M, David L, Elferich J, Shinde U, Rotwein P. Proteomic analysis and molecular modelling characterize the iron-regulatory protein haemojuvelin/repulsive guidance molecule c. Biochem J 2013; 452:87-95. [PMID: 23464809 PMCID: PMC3890427 DOI: 10.1042/bj20121845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
HJV (haemojuvelin) plays a key role in iron metabolism in mammals by regulating expression of the liver-derived hormone hepcidin, which controls systemic iron uptake and release. Mutations in HJV cause juvenile haemochromatosis, a rapidly progressing iron overload disorder in humans. HJV, also known as RGMc (repulsive guidance molecule c), is a member of the three-protein RGM family. RGMs are GPI (glycosylphosphatidylinositol)-linked glycoproteins that share ~50% amino acid identity and several structural motifs, including the presence of 14 cysteine residues in analogous locations. Unlike RGMa and RGMb, HJV/RGMc is composed of both single-chain and two-chain isoforms. To date there is no structural information for any member of the RGM family. In the present study we have mapped the disulfide bonds in mouse HJV/RGMc using a proteomics strategy combining sequential MS steps composed of ETD (electron transfer dissociation) and CID (collision-induced dissociation), in which ETD induces cleavage of disulfide linkages, and CID establishes disulfide bond assignments between liberated peptides. The results of the present study identified an HJV/RGMc molecular species containing four disulfide linkages. We predict using ab initio modelling that this molecule is a single-chain HJV/RGMc isoform. Our observations outline a general approach using tandem MS and ab initio molecular modelling to define unknown structural features in proteins.
Collapse
Affiliation(s)
- Mahta Nili
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|