1
|
Zhang T, Lin Y, Zhang Z, Wang Z, Zeng F, Wang Q. Roles and applications of autophagy in guarding against environmental stress and DNA damage in Saccharomyces cerevisiae. FEBS J 2025. [PMID: 40272088 DOI: 10.1111/febs.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/09/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Saccharomyces cerevisiae (S. cerevisiae), a famous chassis cell factory, often faces various environmental stress conditions like extreme temperature, osmolarity, and nutrient starvation during the fermentation process. Additionally, chromosomal replication and genome editing-assisted metabolic engineering may cause DNA damage to S. cerevisiae. S. cerevisiae has evolved multiple elaborate mechanisms to fend against these adverse conditions. One of these "self-repair" mechanisms is autophagy, a ubiquitous "self-eating" mechanism that transports intracellular components to the lysosome/vacuole for degradation. Here, we reviewed the current state of our knowledge about the role and application of autophagy regulation in S. cerevisiae in response to environmental stress and genome damage, which may provide new strategies for developing robust industrial yeast and accelerating genome engineering.
Collapse
Affiliation(s)
- Tong Zhang
- College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China
| | - Yuping Lin
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ziteng Zhang
- College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China
| | - Zhen Wang
- College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
2
|
Liu Z, Peng H, Liu P, Duan F, Yang Y, Li P, Li Z, Wu J, Chang J, Shang D, Tian Q, Zhang J, Xie Y, Liu Z, An Y. Deciphering significances of autophagy in the development and metabolism of adipose tissue. Exp Cell Res 2025; 446:114478. [PMID: 39978716 DOI: 10.1016/j.yexcr.2025.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The mechanisms of adipose tissue activation and inactivation have been a hot topic of research in the last decade, from which countermeasures have been attempted to be found against obesity as well as other lipid metabolism-related diseases, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. Autophagy has been shown to be closely related to the regulation of adipocyte activity, which is involved in the whole process including white adipocyte differentiation/maturation and brown or beige adipocyte generation/activation. Dysregulation of autophagy in adipose tissue has been demonstrated to be associated with obesity. On this basis, we summarize the pathways and mechanisms of autophagy involved in the regulation of lipid metabolism and present a review of its pathophysiological roles in lipid metabolism-related diseases, in the hope of providing ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Qiwen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiawei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yucheng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China; Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, Zhengzhou Health College, Zhengzhou, 450064, China.
| |
Collapse
|
3
|
Ding JL, Li L, Wei K, Zhang H, Keyhani NO, Feng MG, Ying SH. Alcohol dehydrogenase 1 acts as a scaffold protein in mitophagy essential for fungal pathogen adaptation to hypoxic niches within hosts. Int J Biol Macromol 2025; 295:139651. [PMID: 39793830 DOI: 10.1016/j.ijbiomac.2025.139651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Fungi have evolved diverse physiological adaptations to hypoxic environments. However, the mechanisms mediating such adaptations remain obscure for many filamentous pathogenic fungi. Here, we show that autophagy mediated mitophagy occurs in the insect pathogenic fungus Beauveria bassiana under hypoxic conditions induced by host cellular immune responses. Mitophagy was essential for fungal evasion from insect hemocyte encapsulation, allowing for fungal proliferation and colonization in the host hemocoel. Our data showed that B. bassiana autophagy-related protein 11 (Atg11) interacts with Atg8 as a scaffold mediating mitophagy. The mitochondrial protein Atg43 was demonstrated to act as a receptor for the selective mitophagy, directly interacting with Atg8 for the autophagosomal targeting. Alcohol dehydrogenase BbAdh1, as a novel scaffold protein, participates in mitophagy through interacting with Atg8 and Atg11 under hypoxic stress. BbAdh1 was critical for fungal intracellular redox homeostasis and energy metabolism under hypoxic conditions. These data provide a pathway for mitochondrial degradation via metabolism linked autophagosome- to-vacuole targeting during hypoxic stress. This mitophagy results in depletion of oxidative mitochondrial dependent functions as a cellular adaptation to the low oxygen levels.
Collapse
Affiliation(s)
- Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kang Wei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
García-Chávez D, Domínguez-Martín E, Kawasaki L, Ongay-Larios L, Ruelas-Ramírez H, Mendoza-Martinez AE, Pardo JP, Funes S, Coria R. Prohibitins, Phb1 and Phb2, function as Atg8 receptors to support yeast mitophagy and also play a negative regulatory role in Atg32 processing. Autophagy 2024; 20:2478-2489. [PMID: 38964378 PMCID: PMC11572199 DOI: 10.1080/15548627.2024.2371717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The prohibitins Phb1 and Phb2 assemble at the mitochondrial inner membrane to form a multi-dimeric complex. These scaffold proteins are highly conserved in eukaryotic cells, from yeast to mammals, and have been implicated in a variety of mitochondrial functions including aging, proliferation, and degenerative and metabolic diseases. In mammals, PHB2 regulates PINK1-PRKN mediated mitophagy by interacting with lipidated MAP1LC3B/LC3B. Despite their high conservation, prohibitins have not been linked to mitophagy in budding yeasts. In this study, we demonstrate that both Phb1 and Phb2 are required to sustain mitophagy in Saccharomyces cerevisiae. Prohibitin-dependent mitophagy requires formation of the Phb1-Phb2 complex and a conserved AIM/LIR-like motif identified in both yeast prohibitins. Furthermore, both Phb1 and Phb2 interact and exhibit mitochondrial colocalization with Atg8. Interestingly, we detected a basal C terminus processing of the mitophagy receptor Atg32 that depends on the presence of the i-AAA Yme1. In the absence of prohibitins this processing is highly enhanced but reverted by the inactivation of the rhomboid protease Pcp1. Together our results revealed a novel role of yeast prohibitins in mitophagy through its interaction with Atg8 and regulating an Atg32 proteolytic event. Abbreviation: AIM/LIR: Atg8-family interacting motif/LC3-interacting region; ANOVA: analysis of variance; ATG/Atg: autophagy related; C terminus/C-terminal: carboxyl terminus/carboxyl-terminal; GFP: green fluorescent protein; HA: human influenza hemagglutinin; Idh1: isocitrate dehydrogenase 1; MAP1C3B/LC3B: microtubule associated protein 1 light chain 3 beta; mCh: mCherry; MIM: mitochondrial inner membrane; MOM: mitochondrial outer membrane; N starvation: nitrogen starvation; N terminus: amino terminus; PARL: presenilin associated rhomboid like; Pcp1: processing of cytochrome c peroxidase 1; PCR: polymerase chain reaction; PGAM5: PGAM family member 5 mitochondrial serine/threonine protein phosphatase; PHBs/Phb: prohibitins; PINK1: PTEN induced kinase 1; PMSF: phenylmethylsulfonyl fluoride; PRKN: parkin RBR E3 ubiquitin protein ligase; SD: synthetic defined medium; SDS: sodium dodecyl sulfate; SMD-N: synthetic defined medium lacking nitrogen; WB: western blot; WT: wild type; Yme1: yeast mitochondrial escape 1; YPD: yeast extract-peptone-dextrose medium; YPLac: yeast extract-peptone-lactate medium.
Collapse
Affiliation(s)
- Diana García-Chávez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Mexico City, México
| | - Eunice Domínguez-Martín
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Laura Kawasaki
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Mexico City, México
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Mexico City, México
| | - Hilario Ruelas-Ramírez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Mexico City, México
| | | | - Juan P. Pardo
- Departamento de Bioquímica, Facultad de Medicina, Mexico City, México
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Mexico City, México
| | - Roberto Coria
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Mexico City, México
| |
Collapse
|
5
|
Chen S, Li Y, Wu E, Li Q, Xiang L, Qi J. Arctigenin from Fructus arctii Exhibits Antiaging Effects via Autophagy Induction, Antioxidative Stress, and Increase in Telomerase Activity in Yeast. Antioxidants (Basel) 2024; 13:684. [PMID: 38929123 PMCID: PMC11200627 DOI: 10.3390/antiox13060684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is often accompanied by irreversible decline in body function, which causes a large number of age-related diseases and brings a huge economic burden to society and families. Many traditional Chinese medicines have been known to extend lifespan, but it has still been a challenge to isolate a single active molecule from them and verify the mechanism of anti-aging action. Drugs that inhibit senescence-associated secretory phenotypes (SASPs) are called "senomorphics". In this study, arctigenin (ATG), a senomorphic, was screened from the Chinese medicine Fructus arctii using K6001 yeast replicative lifespan. Autophagy, oxidative stress, and telomerase activity are key mechanisms related to aging. We found that ATG may act through multiple mechanisms to become an effective anti-aging molecule. In exploring the effect of ATG on autophagy, it was clearly observed that ATG significantly enhanced autophagy in yeast. We further verified that ATG can enhance autophagy by targeting protein phosphatase 2A (PP2A), leading to an increased lifespan. Meanwhile, we evaluated the antioxidant capacity of ATG and found that ATG increased the activities of the antioxidant enzymes, thereby reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels to improve the survival of yeast under oxidative stress. In addition, ATG was able to increase telomerase activity by enhancing the expression of EST1, EST2, and EST3 genes in yeast. In conclusion, ATG exerts anti-aging effects through induction of autophagy, antioxidative stress, and enhancement of telomerase activity in yeast, which is recognized as a potential molecule with promising anti-aging effects, deserving in-depth research in the future.
Collapse
Affiliation(s)
- Siqi Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China;
| | - Yajing Li
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (E.W.)
| | - Enchan Wu
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (E.W.)
| | - Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China;
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (E.W.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.L.); (E.W.)
| |
Collapse
|
6
|
Tian Y, Okamoto K. The nascent polypeptide-associated complex subunit Egd1 is required for efficient selective mitochondrial degradation in budding yeast. Sci Rep 2024; 14:546. [PMID: 38177147 PMCID: PMC10767044 DOI: 10.1038/s41598-023-50245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024] Open
Abstract
Selective degradation of dysfunctional or excess mitochondria is a fundamental process crucial for cell homeostasis in almost all eukaryotes. This process relies on autophagy, an intracellular self-eating system conserved from yeast to humans and is thus called mitophagy. Detailed mechanisms of mitophagy remain to be fully understood. Here we show that mitochondrial degradation in budding yeast, which requires the pro-mitophagic protein Atg32, is strongly reduced in cells lacking Egd1, a beta subunit of the nascent polypeptide-associated complex acting in cytosolic ribosome attachment and protein targeting to mitochondria. By contrast, loss of the sole alpha subunit Egd2 or the beta subunit paralogue Btt1 led to only a partial or slight reduction in mitophagy. We also found that phosphorylation of Atg32, a crucial step for priming mitophagy, is decreased in the absence of Egd1. Forced Atg32 hyperphosphorylation almost completely restored mitophagy in egd1-null cells. Together, we propose that Egd1 acts in Atg32 phosphorylation to facilitate mitophagy.
Collapse
Affiliation(s)
- Yuan Tian
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Ma Y, Zhou X, Gui M, Yao L, Li J, Chen X, Wang M, Lu B, Fu D. Mitophagy in hypertension-mediated organ damage. Front Cardiovasc Med 2024; 10:1309863. [PMID: 38239871 PMCID: PMC10794547 DOI: 10.3389/fcvm.2023.1309863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Hypertension constitutes a pervasive chronic ailment on a global scale, frequently inflicting damage upon vital organs, such as the heart, blood vessels, kidneys, brain, and others. And this is a complex clinical dilemma that requires immediate attention. The mitochondria assume a crucial function in the generation of energy, and it is of utmost importance to eliminate any malfunctioning or surplus mitochondria to uphold intracellular homeostasis. Mitophagy is considered a classic example of selective autophagy, an important component of mitochondrial quality control, and is closely associated with many physiological and pathological processes. The ubiquitin-dependent pathway, facilitated by PINK1/Parkin, along with the ubiquitin-independent pathway, orchestrated by receptor proteins such as BNIP3, NIX, and FUNDC1, represent the extensively investigated mechanisms underlying mitophagy. In recent years, research has increasingly shown that mitophagy plays an important role in organ damage associated with hypertension. Exploring the molecular mechanisms of mitophagy in hypertension-mediated organ damage could represent a critical avenue for future research in the development of innovative therapeutic modalities. Therefore, this article provides a comprehensive review of the impact of mitophagy on organ damage due to hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Abeliovich H. Mitophagy in yeast: known unknowns and unknown unknowns. Biochem J 2023; 480:1639-1657. [PMID: 37850532 PMCID: PMC10586778 DOI: 10.1042/bcj20230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Mitophagy, the autophagic breakdown of mitochondria, is observed in eukaryotic cells under various different physiological circumstances. These can be broadly categorized into two types: mitophagy related to quality control events and mitophagy induced during developmental transitions. Quality control mitophagy involves the lysosomal or vacuolar degradation of malfunctioning or superfluous mitochondria within lysosomes or vacuoles, and this is thought to serve as a vital maintenance function in respiring eukaryotic cells. It plays a crucial role in maintaining physiological balance, and its disruption has been associated with the progression of late-onset diseases. Developmentally induced mitophagy has been reported in the differentiation of metazoan tissues which undergo metabolic shifts upon developmental transitions, such as in the differentiation of red blood cells and muscle cells. Although the mechanistic studies of mitophagy in mammalian cells were initiated after the initial mechanistic findings in Saccharomyces cerevisiae, our current understanding of the physiological role of mitophagy in yeast remains more limited, despite the presence of better-defined assays and tools. In this review, I present my perspective on our present knowledge of mitophagy in yeast, focusing on physiological and mechanistic aspects. I aim to focus on areas where our understanding is still incomplete, such as the role of mitochondrial dynamics and the phenomenon of protein-level selectivity.
Collapse
Affiliation(s)
- Hagai Abeliovich
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, 1 Hankin St, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Onishi M, Kubota M, Duan L, Tian Y, Okamoto K. The GET pathway serves to activate Atg32-mediated mitophagy by ER targeting of the Ppg1-Far complex. Life Sci Alliance 2023; 6:e202201640. [PMID: 36697253 PMCID: PMC9880027 DOI: 10.26508/lsa.202201640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Mitophagy removes defective or superfluous mitochondria via selective autophagy. In yeast, the pro-mitophagic protein Atg32 localizes to the mitochondrial surface and interacts with the scaffold protein Atg11 to promote degradation of mitochondria. Although Atg32-Atg11 interactions are thought to be stabilized by Atg32 phosphorylation, how this posttranslational modification is regulated remains obscure. Here, we show that cells lacking the guided entry of the tail-anchored protein (GET) pathway exhibit reduced Atg32 phosphorylation and Atg32-Atg11 interactions, which can be rescued by additional loss of the ER-resident Ppg1-Far complex, a multi-subunit phosphatase negatively acting in mitophagy. In GET-deficient cells, Ppg1-Far is predominantly localized to mitochondria. An artificial ER anchoring of Ppg1-Far in GET-deficient cells significantly ameliorates defects in Atg32-Atg11 interactions and mitophagy. Moreover, disruption of GET and Msp1, an AAA-ATPase that extracts non-mitochondrial proteins localized to the mitochondrial surface, elicits synthetic defects in mitophagy. Collectively, we propose that the GET pathway mediates ER targeting of Ppg1-Far, thereby preventing dysregulated suppression of mitophagy activation.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Mitsutaka Kubota
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Lan Duan
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuan Tian
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Wang J, Zhang Q, Bao Y, Bassham D. Autophagic degradation of membrane-bound organelles in plants. Biosci Rep 2023; 43:BSR20221204. [PMID: 36562332 PMCID: PMC9842949 DOI: 10.1042/bsr20221204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic cells have evolved membrane-bound organelles, including the endoplasmic reticulum (ER), Golgi, mitochondria, peroxisomes, chloroplasts (in plants and green algae) and lysosomes/vacuoles, for specialized functions. Organelle quality control and their proper interactions are crucial both for normal cell homeostasis and function and for environmental adaption. Dynamic turnover of organelles is tightly controlled, with autophagy playing an essential role. Autophagy is a programmed process for efficient clearing of unwanted or damaged macromolecules or organelles, transporting them to vacuoles for degradation and recycling and thereby enhancing plant environmental plasticity. The specific autophagic engulfment of organelles requires activation of a selective autophagy pathway, recognition of the organelle by a receptor, and selective incorporation of the organelle into autophagosomes. While some of the autophagy machinery and mechanisms for autophagic removal of organelles is conserved across eukaryotes, plants have also developed unique mechanisms and machinery for these pathways. In this review, we discuss recent progress in understanding autophagy regulation in plants, with a focus on autophagic degradation of membrane-bound organelles. We also raise some important outstanding questions to be addressed in the future.
Collapse
Affiliation(s)
- Jiaojiao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Bao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, U.S.A
| |
Collapse
|
11
|
Liu Y, Wang M, Hou XO, Hu LF. Roles of microglial mitophagy in neurological disorders. Front Aging Neurosci 2022; 14:979869. [PMID: 36034136 PMCID: PMC9399802 DOI: 10.3389/fnagi.2022.979869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
Microglia are the resident innate immune cells in the central nervous system (CNS) that serve as the first line innate immunity in response to pathogen invasion, ischemia and other pathological stimuli. Once activated, they rapidly release a variety of inflammatory cytokines and phagocytose pathogens or cell debris (termed neuroinflammation), which is beneficial for maintaining brain homeostasis if appropriately activated. However, excessive or uncontrolled neuroinflammation may damage neurons and exacerbate the pathologies in neurological disorders. Microglia are highly dynamic cells, dependent on energy supply from mitochondria. Moreover, dysfunctional mitochondria can serve as a signaling platform to facilitate innate immune responses in microglia. Mitophagy is a means of clearing damaged or redundant mitochondria, playing a critical role in the quality control of mitochondrial homeostasis and turnover. Mounting evidence has shown that mitophagy not only limits the inflammatory response in microglia but also affects their phagocytosis, whereas mitochondria dysfunction and mitophagy defects are associated with aging and neurological disorders. Therefore, targeting microglial mitophagy is a promising therapeutic strategy for neurological disorders. This article reviews and highlights the role and regulation of mitophagy in microglia in neurological conditions, and the research progress in manipulating microglial mitophagy and future directions in this field are also discussed.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Miao Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiao-Ou Hou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- *Correspondence: Xiao-Ou Hou,
| | - Li-Fang Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Li-Fang Hu,
| |
Collapse
|
12
|
Schuster R, Okamoto K. An overview of the molecular mechanisms of mitophagy in yeast. Biochim Biophys Acta Gen Subj 2022; 1866:130203. [PMID: 35842014 DOI: 10.1016/j.bbagen.2022.130203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Autophagy-dependent selective degradation of excess or damaged mitochondria, termed mitophagy, is a tightly regulated process necessary for mitochondrial quality and quantity control. Mitochondria are highly dynamic and major sites for vital cellular processes such as ATP and iron‑sulfur cluster biogenesis. Due to their pivotal roles for immunity, apoptosis, and aging, the maintenance of mitochondrial function is of utmost importance for cellular homeostasis. In yeast, mitophagy is mediated by the receptor protein Atg32 that is localized to the outer mitochondrial membrane. Upon mitophagy induction, Atg32 expression is transcriptionally upregulated, which leads to its accumulation on the mitochondrial surface and to recruitment of the autophagic machinery via its direct interaction with Atg11 and Atg8. Importantly, post-translational modifications such as phosphorylation further fine-tune the mitophagic response. This review summarizes the current knowledge about mitophagy in yeast and its connection with mitochondrial dynamics and the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Ramona Schuster
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
Eldeeb MA, Thomas RA, Ragheb MA, Fallahi A, Fon EA. Mitochondrial quality control in health and in Parkinson's disease. Physiol Rev 2022; 102:1721-1755. [PMID: 35466694 DOI: 10.1152/physrev.00041.2021] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a central hub for cellular metabolism and intracellular signalling, the mitochondrion is a pivotal organelle, dysfunction of which has been linked to several human diseases including neurodegenerative disorders, and in particular Parkinson's disease. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to monitor, identify, repair and/or eliminate abnormal or misfolded proteins within the mitochondrion and/or the dysfunctional mitochondrion itself. Chaperones identify unstable or otherwise abnormal conformations in mitochondrial proteins and can promote their refolding to recover their correct conformation and stability. However, if repair is not possible, the abnormal protein is selectively degraded to prevent potentially damaging interactions with other proteins or its oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of such abnormal or misfolded protein species. Mitophagy (a specific kind of autophagy) mediates the selective elimination of dysfunctional mitochondria, in order to prevent the deleterious effects the dysfunctional organelles within the cell. Despite our increasing understanding of the molecular responses toward dysfunctional mitochondria, many key aspects remain relatively poorly understood. Herein, we review the emerging mechanisms of mitochondrial quality control including quality control strategies coupled to mitochondrial import mechanisms. In addition, we review the molecular mechanisms regulating mitophagy with an emphasis on the regulation of PINK1/PARKIN-mediated mitophagy in cellular physiology and in the context of Parkinson's disease cell biology.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rhalena A Thomas
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Armaan Fallahi
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Prasad A, Prasad M. Interaction of ToLCNDV TrAP with SlATG8f marks it susceptible to degradation by autophagy. Cell Mol Life Sci 2022; 79:241. [PMID: 35428912 PMCID: PMC11072827 DOI: 10.1007/s00018-022-04281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a devastating plant pathogen which causes significant losses in tomato yield. According to previous reports, proteins of geminiviruses like βC1 of Cotton leaf curl Multan virus and C1 of Tomato leaf curl Yunnan virus are degraded by the autophagy pathway. There are no reports on the role of autophagy in ToLCNDV pathogenesis. In this study, we have shown that SlATG8f interacts with the ToLCNDV Transcription activator protein (TrAP; AC2) to mediate its degradation by the autophagy pathway. Silencing of SlATG8f in a ToLCNDV tolerant tomato cultivar; H-88-78-1 resulted in enhanced viral symptoms and ToLCNDV accumulation suggesting an anti-viral role for SlATG8f against ToLCNDV. TrAP is a nucleus localized protein, but it interacts with SlATG8f in and outside the nucleus indicating its nuclear export. This export might be mediated by Exportin1 as treatment with Exportin1 inhibitor inhibits TrAP export outside the nucleus. ToLCNDV TrAP is known to possess host RNA silencing suppression (RSS) activity. Degradation of TrAP results in the attenuation of its RSS activity. To the best of our knowledge, we have shown for the first time that SlATG8f-TrAP interaction leads to TrAP degradation providing defence against ToLCNDV.
Collapse
Affiliation(s)
- Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
15
|
Guo J, Chiang WC. Mitophagy in aging and longevity. IUBMB Life 2021; 74:296-316. [PMID: 34889504 DOI: 10.1002/iub.2585] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022]
Abstract
The clearance of damaged or unwanted mitochondria by autophagy (also known as mitophagy) is a mitochondrial quality control mechanism postulated to play an essential role in cellular homeostasis, metabolism, and development and confers protection against a wide range of diseases. Proper removal of damaged or unwanted mitochondria is essential for organismal health. Defects in mitophagy are associated with Parkinson's, Alzheimer's disease, cancer, and other degenerative disorders. Mitochondria regulate organismal fitness and longevity via multiple pathways, including cellular senescence, stem cell function, inflammation, mitochondrial unfolded protein response (mtUPR), and bioenergetics. Thus, mitophagy is postulated to be pivotal for maintaining organismal healthspan and lifespan and the protection against aged-related degeneration. In this review, we will summarize recent understanding of the mechanism of mitophagy and aspects of mitochondrial functions. We will focus on mitochondria-related cellular processes that are linked to aging and examine current genetic evidence that supports the hypothesis that mitophagy is a pro-longevity mechanism.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
16
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
17
|
Lechado Terradas A, Zittlau KI, Macek B, Fraiberg M, Elazar Z, Kahle PJ. Regulation of mitochondrial cargo-selective autophagy by posttranslational modifications. J Biol Chem 2021; 297:101339. [PMID: 34688664 PMCID: PMC8591368 DOI: 10.1016/j.jbc.2021.101339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins. Clearance of bulk mitochondria occurs via a selective form of autophagy termed mitophagy. In yeast and some developing metazoan cells (e.g., oocytes and reticulocytes), mitochondria are largely removed by ubiquitin-independent mechanisms. In such cases, the regulation of mitophagy is mediated via phosphorylation of mitochondria-anchored autophagy receptors. On the other hand, ubiquitin-dependent recruitment of cytosolic autophagy receptors occurs in situations of cellular stress or disease, where dysfunctional mitochondria would cause oxidative damage. In mammalian cells, a well-studied ubiquitin-dependent mitophagy pathway induced by mitochondrial depolarization is regulated by the mitochondrial protein kinase PINK1, which upon activation recruits the ubiquitin ligase parkin. Here, we review mechanisms of mitophagy with an emphasis on posttranslational modifications that regulate various mitophagy pathways. We describe the autophagy components involved with particular emphasis on posttranslational modifications. We detail the phosphorylations mediated by PINK1 and parkin-mediated ubiquitylations of mitochondrial proteins that can be modulated by deubiquitylating enzymes. We also discuss the role of accessory factors regulating mitochondrial fission/fusion and the interplay with pro- and antiapoptotic Bcl-2 family members. Comprehensive knowledge of the processes of mitophagy is essential for the understanding of vital mitochondrial turnover in health and disease.
Collapse
Affiliation(s)
- Anna Lechado Terradas
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Milana Fraiberg
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Zvulun Elazar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
18
|
Guan Y, Wang Y, Li B, Shen K, Li Q, Ni Y, Huang L. Mitophagy in carcinogenesis, drug resistance and anticancer therapeutics. Cancer Cell Int 2021; 21:350. [PMID: 34225732 PMCID: PMC8256582 DOI: 10.1186/s12935-021-02065-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The mitochondrion is an organelle that plays a vital role in energy production, cytoplasmic protein degradation and cell death. Mitophagy is an autophagic procedure that specifically clears damaged mitochondria and maintains its homeostasis. Emerging evidence indicates that mitophagy is involved in many physiological processes, including cellular homeostasis, cellular differentiation and nerve protection. In this review, we describe the regulatory mechanisms of mitophagy in mammals and yeasts and highlight the recent advances relevant to its function in carcinogenesis and drug resistance. Finally, a section has been dedicated to describing the role of mitophagy in anticancer therapeutics, which is a new frontier that offers a precise and promising strategy.
Collapse
Affiliation(s)
- Yanjie Guan
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Yifei Wang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Bo Li
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Kai Shen
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Quanfu Li
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China.,Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, People's Republic of China
| | - Yingyin Ni
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China. .,Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, People's Republic of China.
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China. .,Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, People's Republic of China.
| |
Collapse
|
19
|
Abstract
Selective autophagy is the lysosomal degradation of specific intracellular components sequestered into autophagosomes, late endosomes, or lysosomes through the activity of selective autophagy receptors (SARs). SARs interact with autophagy-related (ATG)8 family proteins via sequence motifs called LC3-interacting region (LIR) motifs in vertebrates and Atg8-interacting motifs (AIMs) in yeast and plants. SARs can be divided into two broad groups: soluble or membrane bound. Cargo or substrate selection may be independent or dependent of ubiquitin labeling of the cargo. In this review, we discuss mechanisms of mammalian selective autophagy with a focus on the unifying principles employed in substrate recognition, interaction with the forming autophagosome via LIR-ATG8 interactions, and the recruitment of core autophagy components for efficient autophagosome formation on the substrate. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Trond Lamark
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway; ,
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway; ,
| |
Collapse
|
20
|
Kubota M, Okamoto K. The protein N-terminal acetyltransferase A complex contributes to yeast mitophagy via promoting expression and phosphorylation of Atg32. J Biochem 2021; 170:175-182. [PMID: 34115119 DOI: 10.1093/jb/mvab068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Mitophagy is an evolutionarily conserved catabolic process that selectively degrades damaged or superfluous mitochondria via autophagy. Although mitophagy is considered to be critical to maintain cellular homeostasis, detailed mechanisms of mitophagy remain largely unknown. In the budding yeast Saccharomyces cerevisiae, the protein N-terminal acetyltransferase A (NatA) complex is important for transcriptional induction of the pro-mitophagic factor Atg32 and efficient degradation of mitochondria under prolonged respiratory conditions. Overexpression of Atg32 only partially recovers mitophagy in cells lacking NatA, raising the possibility that NatA may contribute to mitophagy via additional mechanisms. Here we demonstrate that Atg32 phosphorylation, which is required for facilitating mitophagy, is altered in respiring NatA-deficient cells. Hyperphosphorylation of Atg32 partially rescues mitophagy in cells lacking NatA. Notably, mitophagy is mostly restored in NatA-null cells overexpressing hyperphosphorylated Atg32. Loss of NatA does not impair the interaction of phosphorylated Atg32 with Atg11, a scaffold protein critical for selective autophagy, suggesting that NatA-dependent Atg32 phosphorylation promotes mitophagy independently of Atg32-Atg11 interactions. We propose that NatA-mediated protein N-terminal acetylation acts in Atg32 expression and phosphorylation to drive mitophagy.
Collapse
Affiliation(s)
- Mitsutaka Kubota
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Onishi M, Okamoto K. Mitochondrial clearance: mechanisms and roles in cellular fitness. FEBS Lett 2021; 595:1239-1263. [PMID: 33615465 DOI: 10.1002/1873-3468.14060] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
Mitophagy is one of the selective autophagy pathways that catabolizes dysfunctional or superfluous mitochondria. Under mitophagy-inducing conditions, mitochondria are labeled with specific molecular landmarks that recruit the autophagy machinery to the surface of mitochondria, enclosed into autophagosomes, and delivered to lysosomes (vacuoles in yeast) for degradation. As damaged mitochondria are the major sources of reactive oxygen species, mitophagy is critical for mitochondrial quality control and cellular health. Moreover, appropriate control of mitochondrial quantity via mitophagy is vital for the energy supply-demand balance in cells and whole organisms, cell differentiation, and developmental programs. Thus, it seems conceivable that defects in mitophagy could elicit pleiotropic pathologies such as excess inflammation, tissue injury, neurodegeneration, and aging. In this review, we will focus on the molecular basis and physiological relevance of mitophagy, and potential of mitophagy as a therapeutic target to overcome such disorders.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
22
|
Qiu YH, Zhang TS, Wang XW, Wang MY, Zhao WX, Zhou HM, Zhang CH, Cai ML, Chen XF, Zhao WL, Shao RG. Mitochondria autophagy: a potential target for cancer therapy. J Drug Target 2021; 29:576-591. [PMID: 33554661 DOI: 10.1080/1061186x.2020.1867992] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitophagy is a selective form of macroautophagy in which dysfunctional and damaged mitochondria can be efficiently degraded, removed and recycled through autophagy. Selective removal of damaged or fragmented mitochondria is critical to the functional integrity of the entire mitochondrial network and cells. In past decades, numerous studies have shown that mitophagy is involved in various diseases; however, since the dual role of mitophagy in tumour development, mitophagy role in tumour is controversial, and further elucidation is needed. That is, although mitophagy has been demonstrated to contribute to carcinogenesis, cell migration, ferroptosis inhibition, cancer stemness maintenance, tumour immune escape, drug resistance, etc. during cancer progression, many research also shows that to promote cancer cell death, mitophagy can be induced physiologically or pharmacologically to maintain normal cellular metabolism and prevent cell stress responses and genome damage by diminishing mitochondrial damage, thus suppressing tumour development accompanying these changes. Signalling pathway-specific molecular mechanisms are currently of great biological significance in the identification of potential therapeutic targets. Here, we review recent progress of molecular pathways mediating mitophagy including both canonical pathways (Parkin/PINK1- and FUNDC1-mediated mitophagy) and noncanonical pathways (FKBP8-, Nrf2-, and DRP1-mediated mitophagy); and the regulation of these pathways, and abovementioned pro-cancer and pro-death roles of mitophagy. Finally, we summarise the role of mitophagy in cancer therapy. Mitophagy can potentially be acted as the target for cancer therapy by promotion or inhibition.
Collapse
Affiliation(s)
- Yu-Han Qiu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tian-Shu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Wei Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Meng-Yan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wen-Xia Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hui-Min Zhou
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cong-Hui Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mei-Lian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Fang Chen
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wu-Li Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rong-Guang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Liu Y, Okamoto K. Regulatory mechanisms of mitophagy in yeast. Biochim Biophys Acta Gen Subj 2021; 1865:129858. [PMID: 33545228 DOI: 10.1016/j.bbagen.2021.129858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria are dynamic organelles functioning in diverse reactions and processes such as energy metabolism, apoptosis, innate immunity, and aging, whose quality and quantity control is critical for cell homeostasis. Mitochondria-specific autophagy, termed mitophagy, is an evolutionarily conserved process that selectively degrades mitochondria via autophagy, thereby contributing to mitochondrial quality and quantity control. In the budding yeast Saccharomyces cerevisiae, the single-pass membrane protein Atg32 accumulates on the surface of mitochondria and recruit the autophagy machinery to initiate mitophagy. This catabolic process is elaborately regulated through transcriptional induction and post-translational modifications of Atg32. Notably, other factors acting in manifold pathways including protein N-terminal acetylation, phospholipid methylation, stress signaling, and endoplasmic reticulum-localized protein dephosphorylation and membrane protein insertion are also linked to mitophagy. Here we review recent discoveries of molecules regulating mitophagy in yeast.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
24
|
Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. Molecular mechanisms and physiological functions of mitophagy. EMBO J 2021; 40:e104705. [PMID: 33438778 PMCID: PMC7849173 DOI: 10.15252/embj.2020104705] [Citation(s) in RCA: 813] [Impact Index Per Article: 203.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Degradation of mitochondria via a selective form of autophagy, named mitophagy, is a fundamental mechanism conserved from yeast to humans that regulates mitochondrial quality and quantity control. Mitophagy is promoted via specific mitochondrial outer membrane receptors, or ubiquitin molecules conjugated to proteins on the mitochondrial surface leading to the formation of autophagosomes surrounding mitochondria. Mitophagy-mediated elimination of mitochondria plays an important role in many processes including early embryonic development, cell differentiation, inflammation, and apoptosis. Recent advances in analyzing mitophagy in vivo also reveal high rates of steady-state mitochondrial turnover in diverse cell types, highlighting the intracellular housekeeping role of mitophagy. Defects in mitophagy are associated with various pathological conditions such as neurodegeneration, heart failure, cancer, and aging, further underscoring the biological relevance. Here, we review our current molecular understanding of mitophagy, and its physiological implications, and discuss how multiple mitophagy pathways coordinately modulate mitochondrial fitness and populations.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Koji Yamano
- The Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Miyuki Sato
- Laboratory of Molecular Membrane BiologyInstitute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Noriyuki Matsuda
- The Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Koji Okamoto
- Laboratory of Mitochondrial DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| |
Collapse
|
25
|
Ren K, Feng L, Sun S, Zhuang X. Plant Mitophagy in Comparison to Mammals: What Is Still Missing? Int J Mol Sci 2021; 22:1236. [PMID: 33513816 PMCID: PMC7865480 DOI: 10.3390/ijms22031236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial homeostasis refers to the balance of mitochondrial number and quality in a cell. It is maintained by mitochondrial biogenesis, mitochondrial fusion/fission, and the clearance of unwanted/damaged mitochondria. Mitophagy represents a selective form of autophagy by sequestration of the potentially harmful mitochondrial materials into a double-membrane autophagosome, thus preventing the release of death inducers, which can trigger programmed cell death (PCD). Recent advances have also unveiled a close interconnection between mitophagy and mitochondrial dynamics, as well as PCD in both mammalian and plant cells. In this review, we will summarize and discuss recent findings on the interplay between mitophagy and mitochondrial dynamics, with a focus on the molecular evidence for mitophagy crosstalk with mitochondrial dynamics and PCD.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (K.R.); (L.F.); (S.S.)
| |
Collapse
|
26
|
Camougrand N, Vigié P, Gonzalez C, Manon S, Bhatia-Kiššová I. The yeast mitophagy receptor Atg32 is ubiquitinated and degraded by the proteasome. PLoS One 2020; 15:e0241576. [PMID: 33362225 PMCID: PMC7757876 DOI: 10.1371/journal.pone.0241576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
Mitophagy, the process that degrades mitochondria selectively through autophagy, is involved in the quality control of mitochondria in cells grown under respiratory conditions. In yeast, the presence of the Atg32 protein on the outer mitochondrial membrane allows for the recognition and targeting of superfluous or damaged mitochondria for degradation. Post-translational modifications such as phosphorylation are crucial for the execution of mitophagy. In our study we monitor the stability of Atg32 protein in the yeast S. cerevisiae and show that Atg32 is degraded under normal growth conditions, upon starvation or rapamycin treatment. The Atg32 turnover can be prevented by inhibition of the proteasome activity, suggesting that Atg32 is also ubiquitinated. Mass spectrometry analysis of purified Atg32 protein revealed that at least lysine residue in position 282 is ubiquitinated. Interestingly, the replacement of lysine 282 with alanine impaired Atg32 degradation only partially in the course of cell growth, suggesting that additional lysine residues on Atg32 might also be ubiquitinated. Our results provide the foundation to further elucidate the physiological significance of Atg32 turnover and the interplay between mitophagy and the proteasome.
Collapse
Affiliation(s)
- Nadine Camougrand
- CNRS and Université de Bordeaux, IBGC, UMR5095, Bordeaux, France
- * E-mail:
| | - Pierre Vigié
- CNRS and Université de Bordeaux, IBGC, UMR5095, Bordeaux, France
| | - Cécile Gonzalez
- CNRS and Université de Bordeaux, IBGC, UMR5095, Bordeaux, France
| | - Stéphen Manon
- CNRS and Université de Bordeaux, IBGC, UMR5095, Bordeaux, France
| | - Ingrid Bhatia-Kiššová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
27
|
Fukuda T, Ebi Y, Saigusa T, Furukawa K, Yamashita SI, Inoue K, Kobayashi D, Yoshida Y, Kanki T. Atg43 tethers isolation membranes to mitochondria to promote starvation-induced mitophagy in fission yeast. eLife 2020; 9:61245. [PMID: 33138913 PMCID: PMC7609059 DOI: 10.7554/elife.61245] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022] Open
Abstract
Degradation of mitochondria through mitophagy contributes to the maintenance of mitochondrial function. In this study, we identified that Atg43, a mitochondrial outer membrane protein, serves as a mitophagy receptor in the model organism Schizosaccharomyces pombe to promote the selective degradation of mitochondria. Atg43 contains an Atg8-family-interacting motif essential for mitophagy. Forced recruitment of Atg8 to mitochondria restores mitophagy in Atg43-deficient cells, suggesting that Atg43 tethers expanding isolation membranes to mitochondria. We found that the mitochondrial import factors, including the Mim1–Mim2 complex and Tom70, are crucial for mitophagy. Artificial mitochondrial loading of Atg43 bypasses the requirement of the import factors, suggesting that they contribute to mitophagy through Atg43. Atg43 not only maintains growth ability during starvation but also facilitates vegetative growth through its mitophagy-independent function. Thus, Atg43 is a useful model to study the mechanism and physiological roles, as well as the origin and evolution, of mitophagy in eukaryotes.
Collapse
Affiliation(s)
- Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuki Ebi
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tetsu Saigusa
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kentaro Furukawa
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keiichi Inoue
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daiki Kobayashi
- Omics Unit, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
28
|
Mochida K, Yamasaki A, Matoba K, Kirisako H, Noda NN, Nakatogawa H. Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes. Nat Commun 2020; 11:3306. [PMID: 32620754 PMCID: PMC7335187 DOI: 10.1038/s41467-020-17163-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) is selectively degraded by autophagy (ER-phagy) through proteins called ER-phagy receptors. In Saccharomyces cerevisiae, Atg40 acts as an ER-phagy receptor to sequester ER fragments into autophagosomes by binding Atg8 on forming autophagosomal membranes. During ER-phagy, parts of the ER are morphologically rearranged, fragmented, and loaded into autophagosomes, but the mechanism remains poorly understood. Here we find that Atg40 molecules assemble in the ER membrane concurrently with autophagosome formation via multivalent interaction with Atg8. Atg8-mediated super-assembly of Atg40 generates highly-curved ER regions, depending on its reticulon-like domain, and supports packing of these regions into autophagosomes. Moreover, tight binding of Atg40 to Atg8 is achieved by a short helix C-terminal to the Atg8-family interacting motif, and this feature is also observed for mammalian ER-phagy receptors. Thus, this study significantly advances our understanding of the mechanisms of ER-phagy and also provides insights into organelle fragmentation in selective autophagy of other organelles.
Collapse
Affiliation(s)
- Keisuke Mochida
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akinori Yamasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazuaki Matoba
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Hiromi Kirisako
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan.
| | - Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
29
|
Sora V, Kumar M, Maiani E, Lambrughi M, Tiberti M, Papaleo E. Structure and Dynamics in the ATG8 Family From Experimental to Computational Techniques. Front Cell Dev Biol 2020; 8:420. [PMID: 32587856 PMCID: PMC7297954 DOI: 10.3389/fcell.2020.00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a conserved and essential intracellular mechanism for the removal of damaged components. Since autophagy deregulation is linked to different kinds of pathologies, it is fundamental to gain knowledge on the fine molecular and structural details related to the core proteins of the autophagy machinery. Among these, the family of human ATG8 proteins plays a central role in recruiting other proteins to the different membrane structures involved in the autophagic pathway. Several experimental structures are available for the members of the ATG8 family alone or in complex with their different biological partners, including disordered regions of proteins containing a short linear motif called LC3 interacting motif. Recently, the first structural details of the interaction of ATG8 proteins with biological membranes came into light. The availability of structural data for human ATG8 proteins has been paving the way for studies on their structure-function-dynamic relationship using biomolecular simulations. Experimental and computational structural biology can help to address several outstanding questions on the mechanism of human ATG8 proteins, including their specificity toward different interactors, their association with membranes, the heterogeneity of their conformational ensemble, and their regulation by post-translational modifications. We here summarize the main results collected so far and discuss the future perspectives within the field and the knowledge gaps. Our review can serve as a roadmap for future structural and dynamics studies of the ATG8 family members in health and disease.
Collapse
Affiliation(s)
- Valentina Sora
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mukesh Kumar
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Emiliano Maiani
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Wang Y, Liu HH, Cao YT, Zhang LL, Huang F, Yi C. The Role of Mitochondrial Dynamics and Mitophagy in Carcinogenesis, Metastasis and Therapy. Front Cell Dev Biol 2020; 8:413. [PMID: 32587855 PMCID: PMC7297908 DOI: 10.3389/fcell.2020.00413] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are key cellular organelles and play vital roles in energy metabolism, apoptosis regulation and cellular homeostasis. Mitochondrial dynamics refers to the varying balance between mitochondrial fission and mitochondrial fusion that plays an important part in maintaining mitochondrial homeostasis and quality. Mitochondrial malfunction is involved in aging, metabolic disease, neurodegenerative disorders, and cancers. Mitophagy, a selective autophagy of mitochondria, can efficiently degrade, remove and recycle the malfunctioning or damaged mitochondria, and is crucial for quality control. In past decades, numerous studies have identified a series of factors that regulate mitophagy and are also involved in carcinogenesis, cancer cell migration and death. Therefore, it has become critically important to analyze signal pathways that regulate mitophagy to identify potential therapeutic targets. Here, we review recent progresses in mitochondrial dynamics, the mechanisms of mitophagy regulation, and the implications for understanding carcinogenesis, metastasis, treatment, and drug resistance.
Collapse
Affiliation(s)
- Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hui-Hui Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yu-Ting Cao
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lei-Lei Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Cong Yi
- Department of Biochemistry, Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Murakawa T, Okamoto K, Omiya S, Taneike M, Yamaguchi O, Otsu K. A Mammalian Mitophagy Receptor, Bcl2-L-13, Recruits the ULK1 Complex to Induce Mitophagy. Cell Rep 2020; 26:338-345.e6. [PMID: 30625316 PMCID: PMC6326162 DOI: 10.1016/j.celrep.2018.12.050] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 01/10/2023] Open
Abstract
Degradation of mitochondria by selective autophagy, termed mitophagy, contributes to the control of mitochondrial quality. Bcl2-L-13 is a mammalian homolog of Atg32, which is an essential mitophagy receptor in yeast. However, the molecular machinery involved in Bcl2-L-13-mediated mitophagy remains to be elucidated. Here, we show that the ULK1 (unc-51-like kinase) complex is required for Bcl2-L-13 to process mitophagy. Screening of a series of yeast Atg mutants revealed that a different set of ATG genes is used for Bcl2-L-13- and Atg32-mediated mitophagy in yeast. The components of the Atg1 complex essential for starvation-induced autophagy were indispensable in Bcl2-L-13-, but not Atg32-mediated, mitophagy. The ULK1 complex, a counterpart of the Atg1 complex, is necessary for Bcl2-L-13-mediated mitophagy in mammalian cells. We propose a model where, upon mitophagy induction, Bcl2-L-13 recruits the ULK1 complex to process mitophagy and the interaction of LC3B with ULK1, as well as Bcl2-L-13, is important for the mitophagy. Atg32 and Bcl2-L-13 are yeast and mammalian mitophagy receptors, respectively Atg1 complex is essential for Bcl2-L-13- but not Atg32-mediated yeast mitophagy ULK1 complex is necessary for Bcl2-L-13-mediated mitophagy in mammalian cells
Collapse
Affiliation(s)
- Tomokazu Murakawa
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Manabu Taneike
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK.
| |
Collapse
|
32
|
Jiang Y, Zhao Y, Zhu X, Liu Y, Wu B, Guo Y, Liu B, Zhang X. Effects of autophagy on macrophage adhesion and migration in diabetic nephropathy. Ren Fail 2020; 41:682-690. [PMID: 31352855 PMCID: PMC6711118 DOI: 10.1080/0886022x.2019.1632209] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: Macrophage infiltration in kidney is a major pathological feature of diabetic nephropathy (DN), which has been demonstrated associate with macrophages autophagy homeostasis. However, the relationships between autophagy and the infiltration response related of macrophages adhesion and migration are unknown. This study aims to investigate the impact of macrophages adhesion and migration by modulating autophagy. Methods: In vivo, rats were randomly distributed into control (NC) and DN groups. The pathological changes in renal tissue were assessed, and expression of CD68, LC3, P62 were analyzed. In vitro, RAW264.7 cells were divided into NC and high glucose (HG) groups. The capacity of macrophages adhesion migration and the expression of autophagy markers were observed with and without autophagy modulators (rapamycin, 3-methyladenine, chloroquine, and bafilomycin A1 for RAPA, 3-MA, CQ, BAFA). The macrophages autophagosome and the process of degradation and fusion of autophagosome-lysosome were observed by electron microscopy. Results: In vivo, renal injury is aggravated in diabetic rat compared with NC group. The autophagy level is inhibited in renal tissues of DN group with the increasing expression of CD68 and P62, while expression level of LC3 decreased (p < .05). In vitro, HG and 3-MA reduce the numbers of autophagosome of macrophages to inhibit autophagy level with decrease expression of LC3 and Beclin-1, but increase expression of P62, which promote the adhesion and migration capacity of macrophages (p < .05). Moreover, CQ and BAFA suppress autophagy level by inhibiting the process of autophagosome-lysosome degradation and fusion of macrophages, as well as the expression of LC3 and Beclin-1. We notice an increase expression of P62 by CQ and BAFA stimulation (p < .05). CQ and BAFA further facilitate the adhesion and migration capacity of macrophages. However, RAPA increases the numbers of macrophages autophagosome that inhibited by HG, resulting in a recovery of autophagy level with increase expression of LC3 and Beclin-1, whereas a reduction expression of P62, which lead to inhibition of adhesion and migration of macrophages induced by HG (p < .05) Conclusions: High glucose efficiently reduced the level of macrophage autophagy, following macrophages adhesion and migration enhanced when autophagy is suppressed. Activation of autophagosome improve the level of autophagy, but leading to a reduction of the macrophages adhesion and migration. While, inhibiting the process of degradation and fusion of autophagosome-lysosome suppress the level of autophagy and promote the macrophages adhesion and migration. These results indicate that high glucose may play an important role in macrophages adhesion and migration through modulating autophagy activities in diabetic nephropathy.
Collapse
Affiliation(s)
- Yuteng Jiang
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Yu Zhao
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Xiaodong Zhu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Yuqiu Liu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Beibei Wu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Yinfeng Guo
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Bicheng Liu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Xiaoliang Zhang
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| |
Collapse
|
33
|
Calvelli H, Krigman J, Onishi M, Narendra DP, Sun N, Okamoto K. Detection of mitophagy in mammalian cells, mice, and yeast. Methods Cell Biol 2020; 155:557-579. [DOI: 10.1016/bs.mcb.2019.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Mechanisms of Autophagy in Metabolic Stress Response. J Mol Biol 2020; 432:28-52. [DOI: 10.1016/j.jmb.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
|
35
|
Plummer JD, Johnson JE. Extension of Cellular Lifespan by Methionine Restriction Involves Alterations in Central Carbon Metabolism and Is Mitophagy-Dependent. Front Cell Dev Biol 2019; 7:301. [PMID: 31850341 PMCID: PMC6892753 DOI: 10.3389/fcell.2019.00301] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 11/08/2019] [Indexed: 01/01/2023] Open
Abstract
Methionine restriction (MR) is one of only a few dietary manipulations known to robustly extend healthspan in mammals. For example, rodents fed a methionine-restricted diet are up to 45% longer-lived than control-fed animals. Tantalizingly, ongoing studies suggest that humans could enjoy similar benefits from this intervention. While the benefits of MR are likely due, at least in part, to improved cellular stress tolerance, it remains to be determined exactly how MR extends organismal healthspan. In previous work, we made use of the yeast chronological lifespan (CLS) assay to model the extension of cellular lifespan conferred by MR and explore the genetic requirements for this extension. In these studies, we demonstrated that both dietary MR (D-MR) and genetic MR (G-MR) (i.e., impairment of the cell’s methionine biosynthetic machinery) significantly extend the CLS of yeast. This extension was found to require the mitochondria-to-nucleus retrograde (RTG) stress signaling pathway, and was associated with a multitude of gene expression changes, a significant proportion of which was also dependent on RTG signaling. Here, we show work aimed at understanding how a subset of the observed expression changes are causally related to MR-dependent CLS extension. Specifically, we find that multiple autophagy-related genes are upregulated by MR, likely resulting in an increased autophagic capacity. Consistent with activated autophagy being important for the benefits of MR, we also find that loss of any of several core autophagy factors abrogates the extended CLS observed for methionine-restricted cells. In addition, epistasis analyses provide further evidence that autophagy activation underlies the benefits of MR to yeast. Strikingly, of the many types of selective autophagy known, our data clearly demonstrate that MR-mediated CLS extension requires only the autophagic recycling of mitochondria (i.e., mitophagy). Indeed, we find that functional mitochondria are required for the full benefit of MR to CLS. Finally, we observe substantial alterations in carbon metabolism for cells undergoing MR, and provide evidence that such changes are directly responsible for the extended lifespan of methionine-restricted yeast. In total, our data indicate that MR produces changes in carbon metabolism that, together with the oxidative metabolism of mitochondria, result in extended cellular lifespan.
Collapse
Affiliation(s)
- Jason D Plummer
- Department of Biology, Orentreich Foundation for the Advancement of Science, Cold Spring, NY, United States
| | - Jay E Johnson
- Department of Biology, Orentreich Foundation for the Advancement of Science, Cold Spring, NY, United States
| |
Collapse
|
36
|
Abstract
The maintenance of a healthy and functional mitochondrial network is critical during development as well as throughout life in the response to physiological adaptations and stress conditions. Owing to their role in energy production, mitochondria are exposed to high levels of reactive oxygen species, making them particularly vulnerable to mitochondrial DNA mutations and protein misfolding. Given that mitochondria are formed from proteins encoded by both nuclear and mitochondrial genomes, an additional layer of complexity is inherent in the coordination of protein synthesis and the mitochondrial import of nuclear-encoded proteins. For these reasons, mitochondria have evolved multiple systems of quality control to ensure that the requisite number of functional mitochondria are present to meet the demands of the cell. These pathways work to eliminate damaged mitochondrial proteins or parts of the mitochondrial network by mitophagy and renew components by adding protein and lipids through biogenesis, collectively resulting in mitochondrial turnover. Mitochondrial quality control mechanisms are multi-tiered, operating at the protein, organelle and cell levels. Herein, we discuss mitophagy in different physiological contexts and then relate it to other quality control pathways, including the unfolded protein response, shedding of vesicles, proteolysis, and degradation by the ubiquitin-proteasome system. Understanding how these pathways contribute to the maintenance of mitochondrial homeostasis could provide insights into the development of targeted treatments when these systems fail in disease.
Collapse
|
37
|
|
38
|
Nuta GC, Gilad Y, Gershoni M, Sznajderman A, Schlesinger T, Bialik S, Eisenstein M, Pietrokovski S, Kimchi A. A cancer associated somatic mutation in LC3B attenuates its binding to E1-like ATG7 protein and subsequent lipidation. Autophagy 2019; 15:438-452. [PMID: 30238850 PMCID: PMC6351123 DOI: 10.1080/15548627.2018.1525476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/30/2018] [Accepted: 09/14/2018] [Indexed: 02/01/2023] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic process that maintains cellular homeostasis under basal growth and stress conditions. In cancer, autophagy can either prevent or promote tumor growth, at early or advanced stages, respectively. We screened public databases to identify autophagy-related somatic mutations in cancer, using a computational approach to identify cancer mutational target sites, employing exact statistics. The top significant hit was a missense mutation (Y113C) in the MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) protein, which occurred at a significant frequency in cancer, and was detected in early stages in primary tumors of patients with known tumor lineage. The mutation reduced the formation of GFP-LC3B puncta and attenuated LC3B lipidation during Torin1-induced autophagy. Its effect on the direct physical interaction of LC3B with each of the 4 proteins that control its maturation or lipidation was tested by applying a protein-fragment complementation assay and co-immunoprecipitation experiments. Interactions with ATG4A and ATG4B proteases were reduced, yet without perturbing the cleavage of mutant LC3B. Most importantly, the mutation significantly reduced the interaction with the E1-like enzyme ATG7, but not the direct interaction with the E2-like enzyme ATG3, suggesting a selective perturbation in the binding of LC3B to some of its partner proteins. Structure analysis and molecular dynamics simulations of LC3B protein and its mutant suggest that the mutation changes the conformation of a loop that has several contact sites with ATG4B and the ATG7 homodimer. We suggest that this loss-of-function mutation, which attenuates autophagy, may promote early stages of cancer development.
Collapse
Affiliation(s)
- Gal Chaim Nuta
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Gilad
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Moran Gershoni
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Arielle Sznajderman
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Schlesinger
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Bialik
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Miriam Eisenstein
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Kimchi
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
39
|
Palmisano NJ, Meléndez A. Autophagy in C. elegans development. Dev Biol 2019; 447:103-125. [PMID: 29709599 PMCID: PMC6204124 DOI: 10.1016/j.ydbio.2018.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autophagy involves the sequestration of cytoplasmic contents in a double-membrane structure referred to as the autophagosome and the degradation of its contents upon delivery to lysosomes. Autophagy activity has a role in multiple biological processes during the development of the nematode Caenorhabditis elegans. Basal levels of autophagy are required to remove aggregate prone proteins, paternal mitochondria, and spermatid-specific membranous organelles. During larval development, autophagy is required for the remodeling that occurs during dauer development, and autophagy can selectively degrade components of the miRNA-induced silencing complex, and modulate miRNA-mediated silencing. Basal levels of autophagy are important in synapse formation and in the germ line, to promote the proliferation of proliferating stem cells. Autophagy activity is also required for the efficient removal of apoptotic cell corpses by promoting phagosome maturation. Finally, autophagy is also involved in lipid homeostasis and in the aging process. In this review, we first describe the molecular complexes involved in the process of autophagy, its regulation, and mechanisms for cargo recognition. In the second section, we discuss the developmental contexts where autophagy has been shown to be important. Studies in C. elegans provide valuable insights into the physiological relevance of this process during metazoan development.
Collapse
Affiliation(s)
- Nicholas J Palmisano
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA
| | - Alicia Meléndez
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA; Biochemistry Ph.D. Program, The Graduate Center of the City University of New York, NY, USA.
| |
Collapse
|
40
|
Furukawa K, Innokentev A, Kanki T. Regulatory Mechanisms of Mitochondrial Autophagy: Lessons From Yeast. FRONTIERS IN PLANT SCIENCE 2019; 10:1479. [PMID: 31803214 PMCID: PMC6872543 DOI: 10.3389/fpls.2019.01479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/25/2019] [Indexed: 05/20/2023]
Abstract
Mitochondria produce the majority of ATP required by cells via oxidative phosphorylation. Therefore, regulation of mitochondrial quality and quantity is important for maintaining cellular activities. Mitophagy, the selective degradation of mitochondria, is thought to contribute to control of mitochondrial quality and quantity. In recent years, the molecular mechanism of mitophagy has been extensively studied in yeast and mammalian cells. In particular, identification of the mitophagy receptor Atg32 has contributed to substantial progress in understanding of mitophagy in yeast. This review summarizes the molecular mechanism of mitophagy in yeast and compares it to the mechanism of mitophagy in mammals. We also discuss the current understanding of mitophagy in plants.
Collapse
|
41
|
Gustafsson ÅB, Dorn GW. Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process. Physiol Rev 2019; 99:853-892. [PMID: 30540226 PMCID: PMC6442924 DOI: 10.1152/physrev.00005.2018] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/10/2018] [Accepted: 09/29/2018] [Indexed: 02/07/2023] Open
Abstract
The central functions fulfilled by mitochondria as both energy generators essential for tissue homeostasis and gateways to programmed apoptotic and necrotic cell death mandate tight control over the quality and quantity of these ubiquitous endosymbiotic organelles. Mitophagy, the targeted engulfment and destruction of mitochondria by the cellular autophagy apparatus, has conventionally been considered as the mechanism primarily responsible for mitochondrial quality control. However, our understanding of how, why, and under what specific conditions mitophagy is activated has grown tremendously over the past decade. Evidence is accumulating that nonmitophagic mitochondrial quality control mechanisms are more important to maintaining normal tissue homeostasis whereas mitophagy is an acute tissue stress response. Moreover, previously unrecognized mitophagic regulation of mitochondrial quantity control, metabolic reprogramming, and cell differentiation suggests that the mechanisms linking genetic or acquired defects in mitophagy to neurodegenerative and cardiovascular diseases or cancer are more complex than simple failure of normal mitochondrial quality control. Here, we provide a comprehensive overview of mitophagy in cellular homeostasis and disease and examine the most revolutionary concepts in these areas. In this context, we discuss evidence that atypical mitophagy and nonmitophagic pathways play central roles in mitochondrial quality control, functioning that was previously considered to be the primary domain of mitophagy.
Collapse
Affiliation(s)
- Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California ; and Washington University School of Medicine, St. Louis, Missouri
| | - Gerald W Dorn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California ; and Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
42
|
Fan P, Xie XH, Chen CH, Peng X, Zhang P, Yang C, Wang YT. Molecular Regulation Mechanisms and Interactions Between Reactive Oxygen Species and Mitophagy. DNA Cell Biol 2018; 38:10-22. [PMID: 30556744 DOI: 10.1089/dna.2018.4348] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The generation of reactive oxygen species (ROS) in response to oxidative stress has important effects on cell development, normal function, and survival. It may cause oxidative damage to intracellular macromolecular substances and mitochondria through several signaling pathways. However, the damaged mitochondria promote further ROS generation, creating a vicious cycle that can cause cellular injury. In addition, excessive ROS produced by damaged mitochondria can trigger mitophagy, a process that can scavenge impaired mitochondria and reduce ROS level to maintain stable mitochondrial function in cells. Therefore, mitophagy heaps maintain cellular homeostasis under oxidative stress. In this article, we review recent advances in cellular damage caused by excessive ROS, the mechanism of mitophagy, and the close relationship between ROS and mitophagy. This review provides a new perspective on therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Pan Fan
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Xing-Hui Xie
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Chang-Hong Chen
- 2 Department of Orthopaedic Surgery, Jiangyin Hospital of Traditional Chinese Medicine , Wuxi, Jiangsu, China
| | - Xin Peng
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Po Zhang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Cheng Yang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Yun-Tao Wang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Moparthi SB, Wollert T. Reconstruction of destruction – in vitro reconstitution methods in autophagy research. J Cell Sci 2018; 132:132/4/jcs223792. [DOI: 10.1242/jcs.223792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
ABSTRACT
Autophagy is one of the most elaborative membrane remodeling systems in eukaryotic cells. Its major function is to recycle cytoplasmic material by delivering it to lysosomes for degradation. To achieve this, a membrane cisterna is formed that gradually captures cargo such as organelles or protein aggregates. The diversity of cargo requires autophagy to be highly versatile to adapt the shape of the phagophore to its substrate. Upon closure of the phagophore, a double-membrane-surrounded autophagosome is formed that eventually fuses with lysosomes. In response to environmental cues such as cytotoxicity or starvation, bulk cytoplasm can be captured and delivered to lysosomes. Autophagy thus supports cellular survival under adverse conditions. During the past decades, groundbreaking genetic and cell biological studies have identified the core machinery involved in the process. In this Review, we are focusing on in vitro reconstitution approaches to decipher the details and spatiotemporal control of autophagy, and how such studies contributed to our current understanding of the pathways in yeast and mammals. We highlight studies that revealed the function of the autophagy machinery at a molecular level with respect to its capacity to remodel membranes.
Collapse
Affiliation(s)
- Satish Babu Moparthi
- Membrane Biochemistry and Transport, Institute Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institute Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
44
|
Ying SH, Feng MG. Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes. Virulence 2018; 10:429-437. [PMID: 30257619 PMCID: PMC6550541 DOI: 10.1080/21505594.2018.1518089] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a conserved self-degradation mechanism that governs a large array of cellular processes in filamentous fungi. Filamentous insect and nematode mycopthogens function in the natural control of host populations and have been widely applied for biological control of insect and nematode pests. Entomopathogenic and nematophagous fungi have conserved “core” autophagy machineries that are analogous to those found in yeast but also feature several proteins involved in specific aspects of the autophagic pathways. Here, we review the functions of autophagy in protecting fungal cells from starvation and stress cues and sustaining cell differentiation, asexual development and virulence. An emphasis is placed upon the regulatory mechanisms involved in autophagic and non-autophagic roles of some autophagy-related genes. Methods used for monitoring conserved or specific autophagic events in fungal pathogens are also discussed.
Collapse
Affiliation(s)
- Sheng-Hua Ying
- a Institute of Microbiology, College of Life Sciences , Zhejiang University , Hangzhou , China
| | - Ming-Guang Feng
- a Institute of Microbiology, College of Life Sciences , Zhejiang University , Hangzhou , China
| |
Collapse
|
45
|
Xia X, Katzenell S, Reinhart EF, Bauer KM, Pellegrini M, Ragusa MJ. A pseudo-receiver domain in Atg32 is required for mitophagy. Autophagy 2018; 14:1620-1628. [PMID: 29909755 DOI: 10.1080/15548627.2018.1472838] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Mitochondria are targeted for degradation by mitophagy, a selective form of autophagy. In Saccharomyces cerevisiae, mitophagy is dependent on the autophagy receptor, Atg32, an outer mitochondrial membrane protein. Once activated, Atg32 recruits the autophagy machinery to mitochondria, facilitating mitochondrial capture in phagophores, the precursors to autophagosomes. However, the mechanism of Atg32 activation remains poorly understood. To investigate this crucial step in mitophagy regulation, we examined the structure of Atg32. We have identified a structured domain in Atg32 that is essential for the initiation of mitophagy, as it is required for the proteolysis of the C-terminal domain of Atg32 and the subsequent recruitment of Atg11. The solution structure of this domain was determined by NMR spectroscopy, revealing that Atg32 contains a previously undescribed pseudo-receiver (PsR) domain. Our data suggests that the PsR domain of Atg32 regulates Atg32 activation and the initiation of mitophagy. ABBREVIATIONS AIM: Atg8-interacting motif; GFP: green fluorescent protein; LIR: LC3-interacting region; NMR: nuclear magnetic resonance; NOESY: nuclear Overhauser effect spectroscopy; PDB: protein data bank; PsR: pseudo-receiver; RMSD: root-mean-square deviation.
Collapse
Affiliation(s)
- Xue Xia
- a Department of Biochemistry & Cell Biology , Geisel School of Medicine at Dartmouth , Hanover , NH , USA
| | - Sarah Katzenell
- b Department of Chemistry , Dartmouth College , Hanover , NH , USA
| | - Erin F Reinhart
- b Department of Chemistry , Dartmouth College , Hanover , NH , USA
| | - Katherine M Bauer
- a Department of Biochemistry & Cell Biology , Geisel School of Medicine at Dartmouth , Hanover , NH , USA
| | - Maria Pellegrini
- b Department of Chemistry , Dartmouth College , Hanover , NH , USA
| | - Michael J Ragusa
- a Department of Biochemistry & Cell Biology , Geisel School of Medicine at Dartmouth , Hanover , NH , USA.,b Department of Chemistry , Dartmouth College , Hanover , NH , USA
| |
Collapse
|
46
|
Liu Y, Okamoto K. The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast. Biochem Biophys Res Commun 2018; 502:76-83. [DOI: 10.1016/j.bbrc.2018.05.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/02/2023]
|
47
|
Markaki M, Palikaras K, Tavernarakis N. Novel Insights Into the Anti-aging Role of Mitophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:169-208. [PMID: 30072091 DOI: 10.1016/bs.ircmb.2018.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging is a complex biological process affecting almost all living organisms. Although its detrimental effects on animals' physiology have been extensively documented, several aspects of the biology of aging are insufficiently understood. Mitochondria, the central energy producers of the cell, play vital roles in a wide range of cellular processes, including regulation of bioenergetics, calcium signaling, metabolic responses, and cell death, among others. Thus, proper mitochondrial function is a prerequisite for the maintenance of cellular and organismal homeostasis. Several mitochondrial quality control mechanisms have evolved to allow adaptation to different metabolic conditions, thereby preserving cellular homeostasis and survival. A tight coordination between mitochondrial biogenesis and mitochondrial selective autophagy, known as mitophagy, is a common characteristic of healthy biological systems. The balanced interplay between these two opposing cellular processes dictates stress resistance, healthspan, and lifespan extension. Mitochondrial biogenesis and mitophagy efficiency decline with age, leading to progressive accumulation of damaged and/or unwanted mitochondria, deterioration of cellular function, and ultimately death. Several regulatory factors that contribute to energy homeostasis have been implicated in the development and progression of many pathological conditions, such as neurodegenerative, metabolic, and cardiovascular disorders, among others. Therefore, mitophagy modulation may serve as a novel potential therapeutic approach to tackle age-associated pathologies. Here, we review the molecular signaling pathways that regulate and coordinate mitophagy with mitochondrial biogenesis, highlighting critical factors that hold promise for the development of pharmacological interventions toward enhancing human health and quality of life throughout aging.
Collapse
Affiliation(s)
- Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas
| | - Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas; Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
48
|
Williams JA, Ding WX. Mechanisms, pathophysiological roles and methods for analyzing mitophagy - recent insights. Biol Chem 2018; 399:147-178. [PMID: 28976892 DOI: 10.1515/hsz-2017-0228] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
In 2012, we briefly summarized the mechanisms, pathophysiological roles and methods for analyzing mitophagy. As then, the mitophagy field has continued to grow rapidly, and many new molecular mechanisms regulating mitophagy and molecular tools for monitoring mitophagy have been discovered and developed. Therefore, the purpose of this review is to update information regarding these advances in mitophagy while focusing on basic molecular mechanisms of mitophagy in different organisms and its pathophysiological roles. We also discuss the advantage and limitations of current methods to monitor and quantify mitophagy in cultured cells and in vivo mouse tissues.
Collapse
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
49
|
Cargo recognition and degradation by selective autophagy. Nat Cell Biol 2018; 20:233-242. [PMID: 29476151 DOI: 10.1038/s41556-018-0037-z] [Citation(s) in RCA: 816] [Impact Index Per Article: 116.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
Macroautophagy, initially described as a non-selective nutrient recycling process, is essential for the removal of multiple cellular components. In the past three decades, selective autophagy has been characterized as a highly regulated and specific degradation pathway for removal of unwanted cytosolic components and damaged and/or superfluous organelles. Here, we discuss different types of selective autophagy, emphasizing the role of ligand receptors and scaffold proteins in providing cargo specificity, and highlight unanswered questions in the field.
Collapse
|
50
|
Barve G, Sridhar S, Aher A, Sahani MH, Chinchwadkar S, Singh S, K N L, McMurray MA, Manjithaya R. Septins are involved at the early stages of macroautophagy in S. cerevisiae. J Cell Sci 2018; 131:jcs209098. [PMID: 29361537 PMCID: PMC5868950 DOI: 10.1242/jcs.209098] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/10/2018] [Indexed: 12/29/2022] Open
Abstract
Autophagy is a conserved cellular degradation pathway wherein double-membrane vesicles called autophagosomes capture long-lived proteins, and damaged or superfluous organelles, and deliver them to the lysosome for degradation. Septins are conserved GTP-binding proteins involved in many cellular processes, including phagocytosis and the autophagy of intracellular bacteria, but no role in general autophagy was known. In budding yeast, septins polymerize into ring-shaped arrays of filaments required for cytokinesis. In an unbiased genetic screen and in subsequent targeted analysis, we found autophagy defects in septin mutants. Upon autophagy induction, pre-assembled septin complexes relocalized to the pre-autophagosomal structure (PAS) where they formed non-canonical septin rings at PAS. Septins also colocalized with autophagosomes, where they physically interacted with the autophagy proteins Atg8 and Atg9. When autophagosome degradation was blocked in septin-mutant cells, fewer autophagic structures accumulated, and an autophagy mutant defective in early stages of autophagosome biogenesis (atg1Δ), displayed decreased septin localization to the PAS. Our findings support a role for septins in the early stages of budding yeast autophagy, during autophagosome formation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gaurav Barve
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Shreyas Sridhar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Amol Aher
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Mayurbhai H Sahani
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sarika Chinchwadkar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sunaina Singh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Lakshmeesha K N
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Michael A McMurray
- University of Colorado, Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, CO 80045, USA
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|