1
|
Peng X, Zhu Y, Wang T, Wang S, Sun J. Integrative analysis links autophagy to intrauterine adhesion and establishes autophagy-related circRNA-miRNA-mRNA regulatory network. Aging (Albany NY) 2023; 15:8275-8297. [PMID: 37616056 PMCID: PMC10497020 DOI: 10.18632/aging.204969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a troublesome complication characterized with endometrial fibrosis after endometrial trauma. Increasing number of investigations focused on autophagy and non-coding RNA in the pathogenesis of uterine adhesion, but the underlying mechanism needs to be further studied. METHODS mRNA expression profile and miRNA expression profile were obtained from Gene Expression Omnibus database. The autophagy related genes were low. Venn diagram was used to set the intersection of autophagy genes and DEGs to obtain ARDEGs. Circbank was used to select hub autophagy-related circRNAs based on ARDEMs. Then, the differentially expressed autophagy-related genes, miRNAs and circRNAs were analyzed by functional enrichment analysis, and protein-protein interaction network analysis. Finally, the expression levels of hub circRNAs and hub miRNAs were validated through RT-PCR of clinical intrauterine adhesion samples. In vitro experiments were investigated to explore the effect of hub ARCs on cell autophagy, myofibroblast transformation and collagen deposition. RESULTS 11 autophagy-related differentially expressed genes (ARDEGs) and 41 differentially expressed miRNA (ARDEMs) compared between normal tissues and IUA were identified. Subsequently, the autophagy-related miRNA-mRNA network was constructed and hub ARDEMs were selected. Furthermore, the autophagy-related circRNA-miRNA-mRNA network was established. According to the ranking of number of regulated ARDEMs, hsa-circ-0047959, hsa-circ-0032438, hsa-circ-0047301 were regarded as the hub ARCs. In comparison of normal endometrial tissue, all three hub ARCs were upregulated in IUA tissue. All hub ARDEMs were downregulated except has-miR-320c. CONCLUSIONS In the current study, we firstly constructed autophagy-related circRNA-miRNA-mRNA regulatory network and identified hub ARCs and ARDEMs had not been reported in IUA.
Collapse
Affiliation(s)
- Xiaotong Peng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yiping Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuo Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jing Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Tomic B, Smoljo T, Lalic H, Dembitz V, Batinic J, Batinic D, Bedalov A, Visnjic D. Cytarabine-induced differentiation of AML cells depends on Chk1 activation and shares the mechanism with inhibitors of DHODH and pyrimidine synthesis. Sci Rep 2022; 12:11344. [PMID: 35790845 PMCID: PMC9256737 DOI: 10.1038/s41598-022-15520-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/24/2022] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by arrested differentiation making differentiation therapy a promising treatment strategy. Recent success of inhibitors of mutated isocitrate dehydrogenase (IDH) invigorated interest in differentiation therapy of AML so that several new drugs have been proposed, including inhibitors of dihydroorotate dehydrogenase (DHODH), an enzyme in pyrimidine synthesis. Cytarabine, a backbone of standard AML therapy, is known to induce differentiation at low doses, but the mechanism is not completely elucidated. We have previously reported that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr) and brequinar, a DHODH inhibitor, induced differentiation of myeloid leukemia by activating the ataxia telangiectasia and Rad3-related (ATR)/checkpoint kinase 1 (Chk1) via pyrimidine depletion. In this study, using immunoblotting, flow cytometry analyses, pharmacologic inhibitors and genetic inactivation of Chk1 in myeloid leukemia cell lines, we show that low dose cytarabine induces differentiation by activating Chk1. In addition, cytarabine induces differentiation ex vivo in a subset of primary AML samples that are sensitive to AICAr and DHODH inhibitor. The results of our study suggest that leukemic cell differentiation stimulated by low doses of cytarabine depends on the activation of Chk1 and thus shares the same pathway as pyrimidine synthesis inhibitors.
Collapse
Affiliation(s)
- Barbara Tomic
- grid.4808.40000 0001 0657 4636Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 3, 10 000 Zagreb, Croatia ,grid.4808.40000 0001 0657 4636Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Smoljo
- grid.4808.40000 0001 0657 4636Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 3, 10 000 Zagreb, Croatia ,grid.4808.40000 0001 0657 4636Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Hrvoje Lalic
- grid.4808.40000 0001 0657 4636Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 3, 10 000 Zagreb, Croatia ,grid.4808.40000 0001 0657 4636Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vilma Dembitz
- grid.4808.40000 0001 0657 4636Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 3, 10 000 Zagreb, Croatia ,grid.4808.40000 0001 0657 4636Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Josip Batinic
- grid.412688.10000 0004 0397 9648Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Drago Batinic
- grid.4808.40000 0001 0657 4636Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia ,grid.412688.10000 0004 0397 9648Department of Laboratory Immunology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Antonio Bedalov
- grid.270240.30000 0001 2180 1622Clinical Research Division, Fred Hutchinson Cancer Research Centre, Seattle, WA USA
| | - Dora Visnjic
- grid.4808.40000 0001 0657 4636Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 3, 10 000 Zagreb, Croatia ,grid.4808.40000 0001 0657 4636Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
3
|
Wu Q, Zheng K, Huang X, Li L, Mei W. Tanshinone-IIA-Based Analogues of Imidazole Alkaloid Act as Potent Inhibitors To Block Breast Cancer Invasion and Metastasis in Vivo. J Med Chem 2018; 61:10488-10501. [DOI: 10.1021/acs.jmedchem.8b01018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qiong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Gaungzhou, 510006, China
| | - Kangdi Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Gaungzhou, 510006, China
| | - Xiaoting Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Gaungzhou, 510006, China
| | - Li Li
- School of Pharmacy, Guangdong Pharmaceutical University, Gaungzhou, 510006, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Gaungzhou, 510006, China
- Guangdong Province Engineering Technology Centre for molecular Probe & Bio-medicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
4
|
Goetzman ES, Prochownik EV. The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic Tissues. Front Endocrinol (Lausanne) 2018; 9:129. [PMID: 29706933 PMCID: PMC5907532 DOI: 10.3389/fendo.2018.00129] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/13/2018] [Indexed: 12/24/2022] Open
Abstract
That cancer cells show patterns of metabolism different from normal cells has been known for over 50 years. Yet, it is only in the past decade or so that an appreciation of the benefits of these changes has begun to emerge. Altered cancer cell metabolism was initially attributed to defective mitochondria. However, we now realize that most cancers do not have mitochondrial mutations and that normal cells can transiently adopt cancer-like metabolism during periods of rapid proliferation. Indeed, an encompassing, albeit somewhat simplified, conceptual framework to explain both normal and cancer cell metabolism rests on several simple premises. First, the metabolic pathways used by cancer cells and their normal counterparts are the same. Second, normal quiescent cells use their metabolic pathways and the energy they generate largely to maintain cellular health and organelle turnover and, in some cases, to provide secreted products necessary for the survival of the intact organism. By contrast, undifferentiated cancer cells minimize the latter functions and devote their energy to producing the anabolic substrates necessary to maintain high rates of unremitting cellular proliferation. Third, as a result of the uncontrolled proliferation of cancer cells, a larger fraction of the metabolic intermediates normally used by quiescent cells purely as a source of energy are instead channeled into competing proliferation-focused and energy-consuming anabolic pathways. Fourth, cancer cell clones with the most plastic and rapidly adaptable metabolism will eventually outcompete their less well-adapted brethren during tumor progression and evolution. This attribute becomes increasingly important as tumors grow and as their individual cells compete in a constantly changing and inimical environment marked by nutrient, oxygen, and growth factor deficits. Here, we review some of the metabolic pathways whose importance has gained center stage for tumor growth, particularly those under the control of the c-Myc (Myc) oncoprotein. We discuss how these pathways differ functionally between quiescent and proliferating normal cells, how they are kidnapped and corrupted during the course of transformation, and consider potential therapeutic strategies that take advantage of common features of neoplastic and metabolic disorders.
Collapse
Affiliation(s)
- Eric S. Goetzman
- Division of Medical Genetics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Edward V. Prochownik
- Division of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
- Department of Microbiology and Molecular Genetics, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States
- *Correspondence: Edward V. Prochownik,
| |
Collapse
|
5
|
Huang R, Liao X, Li Q. Identification of key pathways and genes in TP53 mutation acute myeloid leukemia: evidence from bioinformatics analysis. Onco Targets Ther 2017; 11:163-173. [PMID: 29343974 PMCID: PMC5749383 DOI: 10.2147/ott.s156003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Tumor protein p53 (TP53) mutations are not only a risk factor in acute myeloid leukemia (AML) but also a potential biomarker for individualized treatment options. This study aimed to investigate potential pathways and genes associated with TP53 mutations in adult de novo AML. Methods An RNA sequencing dataset of adult de novo AML was downloaded from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) were identified by edgeR of the R platform. Key pathways and genes were identified using the following bioinformatics tools: gene set enrichment analysis (GSEA), gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), Search Tool for the Retrieval of Interacting Genes/Proteins, and Molecular Complex Detection. Results GSEA suggested that TP53 mutations were significantly associated with cell differentiation, proliferation, cell adhesion biological processes, and MAPK pathway. In total, 1,287 genes were identified as DEGs. GO and KEGG analysis suggested that upregulation of DEGs was significantly enriched in categories associated with cell adhesion biological processes, Ras-associated protein 1, PI3K-Akt pathway, and cell adhesion molecules. The top ten genes ranked by degree, CDH1, BMP2, KDR, LEP, CASR, ITGA2B, APOE, MNX1, NMU, and TRH, were identified as hub genes from the protein-protein interaction network. Survival analysis suggested that patients with TP53 mutations had a significantly increased risk of death, while the mRNA expression level in patients with TP53 mutation was similar to those carrying TP53 wild type. Conclusion Our findings have indicated that multiple genes and pathways may play a crucial role in TP53 mutation AML, offering candidate targets and strategies for TP53 mutation AML individualized treatment.
Collapse
Affiliation(s)
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | | |
Collapse
|
6
|
A Carotenoid Extract from a Southern Italian Cultivar of Pumpkin Triggers Nonprotective Autophagy in Malignant Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7468538. [PMID: 29430284 PMCID: PMC5752993 DOI: 10.1155/2017/7468538] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022]
Abstract
Carotenoids, including β-carotene, lycopene, and derivatives, such as retinoic acid, have been studied for their significant antiproliferative and differentiating activity on cancer cells in experimental models and in clinics. We are presenting here data on the mechanism of action of a carotenoid-enriched extract obtained from the pumpkin Cucurbita moschata, variety “long of Naples,” on two malignant human cell lines, Caco-2 and SAOs, derived from a colon adenocarcinoma and an osteosarcoma, respectively. The carotenoid extract has been obtained from pumpkin pulp and seeds by supercritical CO2 extraction and employed to prepare oil-in-water nanoemulsions. The nanoemulsions, applied at a final carotenoid concentration of 200–400 μg/ml, were not cytotoxic, but induced a delay in cell growth of about 40% in both SAOs and Caco-2 cell lines. This effect was associated with the activation of a “nonprotective” form of autophagy and, in SAOs cells, to the induction of cell differentiation via a mechanism that involved AMPK activation. Our data suggest the presence of a pool of bioactive compounds in the carotenoid-enriched extract, acting additively, or synergistically, to delay cell growth in cancer cells.
Collapse
|
7
|
Ashraf R, Hamidullah, Hasanain M, Pandey P, Maheshwari M, Singh LR, Siddiqui MQ, Konwar R, Sashidhara KV, Sarkar J. Coumarin-chalcone hybrid instigates DNA damage by minor groove binding and stabilizes p53 through post translational modifications. Sci Rep 2017; 7:45287. [PMID: 28349922 PMCID: PMC5368660 DOI: 10.1038/srep45287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/21/2017] [Indexed: 01/26/2023] Open
Abstract
S009-131, a coumarin-chalcone hybrid, had been shown to possess anti-proliferative and anti-tumour effect by triggering apoptosis. In this report, we investigated role of DNA damage signalling pathway in S009-131 induced cancer cell death. Here we show that S009-131 causes DNA damage by potential binding to the minor groove which led to the phosphorylation and activation of ATM and DNA-PK, but not ATR, at earlier time points in order to initiate repair process. S009-131 induced DNA damage response triggered activation of p53 through phosphorylation at its key residues. Pharmacological inhibition of PIKKs abrogated S009-131 induced phosphorylation of p53 at Ser 15. DNA damage induced phosphorylation resulted in reduced proteasomal degradation of p53 by disrupting p53-MDM2 interaction. Additionally, our docking studies revealed that S009-131 might also contribute to increased cellular p53 level by occupying p53 binding pocket of MDM2. Posttranslational modifications of p53 upon S009-131 treatment led to enhanced affinity of p53 towards responsive elements (p53-RE) in the promoter regions of target genes and increased transcriptional efficiency. Together, the results suggest that S009-131 cleaves DNA through minor groove binding and eventually activates PIKKs associated DNA damage response signalling to promote stabilization and enhanced transcriptional activity of p53 through posttranslational modifications at key residues.
Collapse
Affiliation(s)
- Raghib Ashraf
- Biochemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India
| | - Hamidullah
- Endocrinology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India
| | - Mohammad Hasanain
- Biochemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India
| | - Praveen Pandey
- Biochemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India
| | - Mayank Maheshwari
- Biochemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India
| | - L Ravithej Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India
| | - M Quadir Siddiqui
- KS # 101, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, 410 210, India
| | - Rituraj Konwar
- Endocrinology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India.,Academy of Scientific and Innovative Research, Chennai, 600113, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India.,Academy of Scientific and Innovative Research, Chennai, 600113, India
| | - Jayanta Sarkar
- Biochemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India.,Academy of Scientific and Innovative Research, Chennai, 600113, India
| |
Collapse
|
8
|
Chwastek J, Jantas D, Lasoń W. The ATM kinase inhibitor KU-55933 provides neuroprotection against hydrogen peroxide-induced cell damage via a γH2AX/p-p53/caspase-3-independent mechanism: Inhibition of calpain and cathepsin D. Int J Biochem Cell Biol 2017; 87:38-53. [PMID: 28341201 DOI: 10.1016/j.biocel.2017.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The role of the kinase ataxia-telangiectasia mutated (ATM), a well-known protein engaged in DNA damage repair, in the regulation of neuronal responses to oxidative stress remains unexplored. Thus, the neuroprotective efficacy of KU-55933, a potent inhibitor of ATM, against cell damage evoked by oxidative stress (hydrogen peroxide, H2O2) has been studied in human neuroblastoma SH-SY5Y cells and compared with the efficacy of this agent in models of doxorubicin (Dox)- and staurosporine (St)-evoked cell death. KU-55933 inhibited the cell death induced by H2O2 or Dox but not by St in undifferentiated (UN-) and retinoic acid-differentiated (RA)-SH-SY5Y cells, with a more pronounced effect in the latter cell phenotype. Furthermore, this ATM inhibitor attenuated the Dox- but not H2O2-induced caspase-3 activity in both UN- and RA-SH-SY5Y cells. Although KU-55933 inhibited the H2O2- and Dox-induced activation of ATM, it attenuated the toxin-induced phosphorylation of the proteins H2AX and p53 only in the latter model of cell damage. Moreover, the ATM inhibitor prevented the H2O2-evoked increases in calpain and cathepsin D activity and attenuated cell damage to a similar degree as inhibitors of calpain (MDL28170) and cathepsin D (pepstatin A). Finally, we confirmed the neuroprotective potential of KU-55933 against the H2O2- and Dox-evoked cell damage in primary mouse cerebellar granule cells and in the mouse hippocampal HT-22 cell line. Altogether, our results extend the neuroprotective portfolio of KU-55933 to a model of oxidative stress, with this effect not involving inhibition of the γH2AX/p-p53/caspase-3 pathway and instead associated with the attenuation of calpain and cathepsin D activity.
Collapse
Affiliation(s)
- Jakub Chwastek
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland
| | - Danuta Jantas
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland.
| | - Władysław Lasoń
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland
| |
Collapse
|
9
|
Vy Tran AH, Hahm SH, Han SH, Chung JH, Park GT, Han YS. Functional interaction between hMYH and hTRADD in the TNF-α-mediated survival and death pathways of HeLa cells. Mutat Res 2015; 777:11-19. [PMID: 25912078 DOI: 10.1016/j.mrfmmm.2015.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED The tumor necrosis factor (TNF) signaling pathway is a classical immune system pathway that plays a key role in regulating cell survival and apoptosis. The TNF receptor-associated death domain (TRADD) protein is recruited to the death domain of TNF receptor 1 (TNFR1), where it interacts with TNF receptor-associated factor 2 (TRAF2) and receptor-interacting protein (RIP) for the induction of apoptosis, necrosis, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and mitogen-activated protein (MAP) kinase activation. In this study, we found that the human MutY homolog (hMYH) interacted with human TRADD (hTRADD) via the C-terminal domain of hMYH. Moreover, under conditions promoting TNF-α-induced cell death or survival in HeLa cells, this interaction was weakened or enhanced, respectively. The interaction between hMYH and hTRADD was important for signaling pathways mediated by TNF-α. Our results also suggested that the hTRADD-hMYH association was involved in the nuclear translocation of NFκB and formation of the TNFR1-TRADD complex. Thus, this study identified a novel mechanism through which the hMYH-hTRADD interaction may affect the TNF-α signaling pathway. IMPLICATIONS In HeLa cells, the hTRADD-hMYH interaction functioned in both cell survival and apoptosis pathways following TNF-α stimulation.
Collapse
Affiliation(s)
- An Hue Vy Tran
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Soo-Hyun Hahm
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Se Hee Han
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, College of Life Science, CHA University, Gyeonggi-do 463-836, Republic of Korea
| | | | - Ye Sun Han
- College of Global Integrated Studies, Division of Interdisciplinary Studies, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
10
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
11
|
Lalic H, Dembitz V, Lukinovic-Skudar V, Banfic H, Visnjic D. 5-Aminoimidazole-4-carboxamide ribonucleoside induces differentiation of acute myeloid leukemia cells. Leuk Lymphoma 2014; 55:2375-83. [PMID: 24359245 DOI: 10.3109/10428194.2013.876633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adenosine monophosphate (AMP)-activated kinase (AMPK) modulators have been shown to exert cytotoxic activity in hematological malignancies, but their role in the differentiation of acute myeloid leukemia (AML) is less explored. In this study, the effects of AMPK agonists on all-trans retinoic acid (ATRA)-mediated differentiation of acute promyelocytic leukemia (APL) and non-APL AML cell lines were investigated. The results show that AMPK agonists inhibit the growth of myeloblastic HL-60, promyelocytic NB4 and monocytic U937 cells. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator, enhances ATRA-mediated differentiation of NB4 cells. In U937 cells, AICAR alone induces the expression of cell surface markers associated with mature monocytes and macrophages. In both cell lines, AICAR increases the activity of mitogen-activated protein kinase (MAPK), and the presence of a MAPK inhibitor reduces the expression of differentiation markers. These results reveal beneficial effects of AICAR in AML, including differentiation of non-APL AML cells.
Collapse
Affiliation(s)
- Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb , Croatia
| | | | | | | | | |
Collapse
|