1
|
Durán-Cristiano SC, de Diego-García L, Martín-Gil A, Carracedo G. The Role of the Ubiquitin System in Eye Diseases. Life (Basel) 2025; 15:504. [PMID: 40141848 PMCID: PMC11943997 DOI: 10.3390/life15030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental process that regulates various biological functions, including immune response, cell cycle, oxidative stress, migration, and cellular proliferation. This system is responsible for the degradation of proteins, while proteasomes play a significant role in mechanisms involved in health and human diseases. The participation of the UPS in immune response is particularly relevant, leading to the involvement of immunoproteasomes. This specialized proteasome is involved in the processing and presentation of antigenic peptides, making it crucial for proper immune function. Moreover, the impact of the UPS is considered essential in understanding several diseases, such as neurodegenerative disorders, infections, and vascular diseases. The dysregulation of the UPS may contribute to the pathogenesis of these conditions, highlighting its importance as a potential therapeutic target. Interestingly, the UPS is also related to ocular structures, playing a role in visual perception and ocular homeostasis. This involvement in the regulation of various ocular processes suggests its potential impact on both anterior and posterior eye pathologies. This review aims to discuss the general considerations of the UPS and provide information about its participation in anterior and posterior eye pathologies. By understanding its role in ocular health and disease, researchers and clinicians may explore novel therapeutic strategies targeting the UPS for the treatment of various eye conditions. In conclusion, the UPS is a crucial player in biological processes, with far-reaching implications in health and disease, including the anterior and posterior segments of the eye. Further research in this field may lead to the development of innovative therapies and a better understanding of the complex mechanisms underlying various eye disorders.
Collapse
Affiliation(s)
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Alba Martín-Gil
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain; (A.M.-G.); (G.C.)
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain; (A.M.-G.); (G.C.)
| |
Collapse
|
2
|
Sekaran S, Park S. The penultimate step of proteasomal ATPase assembly is mediated by a switch dependent on the chaperone Nas2. J Biol Chem 2023; 299:102870. [PMID: 36621624 PMCID: PMC9922823 DOI: 10.1016/j.jbc.2023.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
The proteasome holoenzyme is a complex molecular machine that degrades most proteins. In the proteasome holoenzyme, six distinct ATPase subunits (Rpt1 through Rpt6) enable protein degradation by injecting protein substrates into it. Individual Rpt subunits assemble into a heterohexameric "Rpt ring" in a stepwise manner, by binding to their cognate chaperones. Completion of the heterohexameric Rpt ring correlates with release of a specific chaperone, Nas2; however, it is unclear whether and how this event may ensure proper Rpt ring assembly. Here, we examined the action of Nas2 by capturing the poorly characterized penultimate step of heterohexameric Rpt ring assembly. For this, we used a heterologous Escherichia coli system coexpressing all Rpt subunits and assembly chaperones as well as Saccharomyces cerevisiae to track Nas2 actions during endogenous Rpt ring assembly. We show that Nas2 uses steric hindrance to block premature progression of the penultimate step into the final step of Rpt ring assembly. Importantly, Nas2 can activate an assembly checkpoint via its steric activity, when the last ATPase subunit, Rpt1, cannot be added in a timely manner. This checkpoint can be relieved via Nas2 release, when Nas2 recognizes proper addition of Rpt1 to one side of its cognate Rpt5, and ATP hydrolysis by Rpt4 on the other side of Rpt5, allowing completion of Rpt ring assembly. Our findings reveal dual criteria for Nas2 release, as a mechanism to ensure both the composition and functional competence of a newly assembled proteasomal ATPase, to generate the proteasome holoenzyme.
Collapse
Affiliation(s)
- Suganya Sekaran
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Soyeon Park
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA.
| |
Collapse
|
3
|
An Allosteric Interaction Network Promotes Conformation State-Dependent Eviction of the Nas6 Assembly Chaperone from Nascent 26S Proteasomes. Cell Rep 2020; 26:483-495.e5. [PMID: 30625330 PMCID: PMC6344052 DOI: 10.1016/j.celrep.2018.12.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/15/2018] [Accepted: 12/11/2018] [Indexed: 12/04/2022] Open
Abstract
The 26S proteasome is the central ATP-dependent protease in eukaryotes and is essential for organismal health. Proteasome assembly is mediated by several dedicated, evolutionarily conserved chaperone proteins. These chaperones associate transiently with assembly intermediates but are absent from mature proteasomes. Chaperone eviction upon completion of proteasome assembly is necessary for normal proteasome function, but how they are released remains unresolved. Here, we demonstrate that the Nas6 assembly chaperone, homolog of the human oncogene gankyrin, is evicted from nascent proteasomes during completion of assembly via a conformation-specific allosteric interaction of the Rpn5 subunit with the proteasomal ATPase ring. Subsequent ATP binding by the ATPase subunit Rpt3 promotes conformational remodeling of the ATPase ring that evicts Nas6 from the nascent proteasome. Our study demonstrates how assembly-coupled allosteric signals promote chaperone eviction and provides a framework for understanding the eviction of other chaperones from this bio-medically important molecular machine. Nemec et al. report how the evolutionarily conserved Nas6 assembly chaperone is evicted from nascent 26S proteasomes. Nucleotide binding events within the nascent proteasome trigger formation of conformation-specific intersubunit contacts that expel Nas6. This mechanism may serve a quality control function by blocking formation of 26S proteasomes from defective components.
Collapse
|
4
|
Eisele MR, Reed RG, Rudack T, Schweitzer A, Beck F, Nagy I, Pfeifer G, Plitzko JM, Baumeister W, Tomko RJ, Sakata E. Expanded Coverage of the 26S Proteasome Conformational Landscape Reveals Mechanisms of Peptidase Gating. Cell Rep 2019; 24:1301-1315.e5. [PMID: 30067984 PMCID: PMC6140342 DOI: 10.1016/j.celrep.2018.07.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022] Open
Abstract
The proteasome is the central protease for intracellular protein breakdown. Coordinated binding and hydrolysis of ATP by the six proteasomal ATPase subunits induces conformational changes that drive the unfolding and translocation of substrates into the proteolytic 20S core particle for degradation. Here, we combine genetic and biochemical approaches with cryo-electron microscopy and integrative modeling to dissect the relationship between individual nucleotide binding events and proteasome conformational dynamics. We demonstrate unique impacts of ATP binding by individual ATPases on the proteasome conformational distribution and report two conformational states of the proteasome suggestive of a rotary ATP hydrolysis mechanism. These structures, coupled with functional analyses, reveal key roles for the ATPases Rpt1 and Rpt6 in gating substrate entry into the core particle. This deepened knowledge of proteasome conformational dynamics reveals key elements of intersubunit communication within the proteasome and clarifies the regulation of substrate entry into the proteolytic chamber.
Collapse
Affiliation(s)
- Markus R Eisele
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Randi G Reed
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | - Till Rudack
- Department of Biophysics, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andreas Schweitzer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Florian Beck
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Istvan Nagy
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Günter Pfeifer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA.
| | - Eri Sakata
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
5
|
Sun S, Liu S, Zhang Z, Zeng W, Sun C, Tao T, Lin X, Feng XH. Phosphatase UBLCP1 controls proteasome assembly. Open Biol 2018; 7:rsob.170042. [PMID: 28539385 PMCID: PMC5451543 DOI: 10.1098/rsob.170042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/20/2017] [Indexed: 12/26/2022] Open
Abstract
Ubiquitin-like domain-containing C-terminal domain phosphatase 1 (UBLCP1), an FCP/SCP phosphatase family member, was identified as the first proteasome phosphatase. UBLCP1 binds to proteasome subunit Rpn1 and dephosphorylates the proteasome in vitro. However, it is still unclear which proteasome subunit(s) are the bona fide substrate(s) of UBLCP1 and the precise mechanism for proteasome regulation remains elusive. Here, we show that UBLCP1 selectively binds to the 19S regulatory particle (RP) through its interaction with Rpn1, but not the 20S core particle (CP) or the 26S proteasome holoenzyme. In the RP, UBLCP1 dephosphorylates the subunit Rpt1, impairs its ATPase activity, and consequently disrupts the 26S proteasome assembly, yet it has no effects on the RP assembly from precursor complexes. The Rpn1-binding and phosphatase activities of UBLCP1 are essential for its function on Rpt1 dephosphorylation and proteasome activity both in vivo and in vitro. Our study establishes the essential role of the UBLCP1/Rpn1/Rpt1 complex in regulating proteasome assembly.
Collapse
Affiliation(s)
- Shuangwu Sun
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sisi Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhengmao Zhang
- Michael E. DeBakey, Department of Surgery, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wang Zeng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chuang Sun
- Michael E. DeBakey, Department of Surgery, Houston, TX, USA
| | - Tao Tao
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xia Lin
- Michael E. DeBakey, Department of Surgery, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China .,Michael E. DeBakey, Department of Surgery, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone. Proc Natl Acad Sci U S A 2017; 114:1548-1553. [PMID: 28137839 DOI: 10.1073/pnas.1612922114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteasome is assembled via the nine-subunit lid, nine-subunit base, and 28-subunit core particle (CP). Previous work has shown that the chaperones Rpn14, Nas6, Hsm3, and Nas2 each bind a specific ATPase subunit of the base and antagonize base-CP interaction. Here, we show that the Nas6 chaperone also obstructs base-lid association. Nas6 alternates between these two inhibitory modes according to the nucleotide state of the base. When ATP cannot be hydrolyzed, Nas6 interferes with base-lid, but not base-CP, association. In contrast, under conditions of ATP hydrolysis, Nas6 obstructs base-CP, but not base-lid, association. Modeling of Nas6 into cryoelectron microscopy structures of the proteasome suggests that Nas6 controls both base-lid affinity and base-CP affinity through steric hindrance; Nas6 clashes with the lid in the ATP-hydrolysis-blocked proteasome, but clashes instead with the CP in the ATP-hydrolysis-competent proteasome. Thus, Nas6 provides a dual mechanism to control assembly at both major interfaces of the proteasome.
Collapse
|
7
|
Abstract
The proteasome is the major engine of protein degradation in all eukaryotic cells. At the heart of this machine is a heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitylated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. Using cryoelectron microscopy, we determined a near-atomic-resolution structure of the 2.5-MDa human proteasome in its ground state, as well as subnanometer-resolution structures of the holoenzyme in three alternative conformational states. The substrate-unfolding AAA-ATPase channel is narrowed by 10 inward-facing pore loops arranged into two helices that run in parallel with each other, one hydrophobic in character and the other highly charged. The gate of the core particle was unexpectedly found closed in the ground state and open in only one of the alternative states. Coordinated, stepwise conformational changes of the regulatory particle couple ATP hydrolysis to substrate translocation and regulate gating of the core particle, leading to processive degradation.
Collapse
|
8
|
Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF, Balea M. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease. J Cell Mol Med 2016; 20:1392-407. [PMID: 27028664 PMCID: PMC4929298 DOI: 10.1111/jcmm.12817] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/17/2016] [Indexed: 01/06/2023] Open
Abstract
The cellular quality control system degrades abnormal or misfolded proteins and consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy and molecular chaperones. Any disturbance in this system causes proteins to accumulate, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and prion or polyglutamine diseases. Alzheimer's disease is currently one of the most common age-related neurodegenerative diseases. However, its exact cause and pathogenesis are unknown. Currently approved medications for AD provide symptomatic relief; however, they fail to influence disease progression. Moreover, the components of the cellular quality control system represent an important focus for the development of targeted and potent therapies for managing AD. This review aims to evaluate whether existing evidence supports the hypothesis that UPS impairment causes the early pathogenesis of neurodegenerative disorders. The first part presents basic information about the UPS and its molecular components. The next part explains how the UPS is involved in neurodegenerative disorders. Finally, we emphasize how the UPS influences the management of AD. This review may help in the design of future UPS-related therapies for AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Nityanand Bolshette
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Ashutosh Ahire
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Rohit Pardeshi
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Krishan Thakur
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Cristiana Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alexandru Istrate
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Mangala Lahkar
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Dafin F Muresanu
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Maria Balea
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
9
|
Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly. Sci Rep 2015; 5:14909. [PMID: 26449534 PMCID: PMC4598862 DOI: 10.1038/srep14909] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022] Open
Abstract
In the proteasome, the proteolytic 20S core particle (CP) associates with the 19S regulatory particle (RP) to degrade polyubiquitinated proteins. Six ATPases (Rpt1-Rpt6) of the RP form a hexameric Rpt ring and interact with the heptameric α ring (α1–α7) of the CP via the Rpt C-terminal tails individually binding to the α subunits. Importantly, the Rpt6 tail has been suggested to be crucial for RP assembly. Here, we show that the interaction of the CP and Rpt6 tail promotes a CP-Rpt3 tail interaction, and that they jointly mediate proteasome activation via opening the CP gate for substrate entry. The Rpt6 tail forms a novel relationship with the Nas6 chaperone, which binds to Rpt3 and regulates the CP-Rpt3 tail interaction, critically influencing cell growth and turnover of polyubiquitinated proteins. CP-Rpt6 tail binding promotes the release of Nas6 from the proteasome. Based on disulfide crosslinking that detects cognate α3-Rpt6 tail and α2-Rpt3 tail interactions in the proteasome, decreased α3-Rpt6 tail interaction facilitates robust α2-Rpt3 tail interaction that is also strongly ATP-dependent. Together, our data support the reported role of Rpt6 during proteasome assembly, and suggest that its function switches from anchoring for RP assembly into promoting Rpt3-dependent activation of the mature proteasome.
Collapse
|
10
|
Alpha-ring Independent Assembly of the 20S Proteasome. Sci Rep 2015; 5:13130. [PMID: 26286114 PMCID: PMC4541365 DOI: 10.1038/srep13130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/20/2015] [Indexed: 12/17/2022] Open
Abstract
Archaeal proteasomes share many features with their eukaryotic counterparts and serve as important models for assembly. Proteasomes are also found in certain bacterial lineages yet their assembly mechanism is thought to be fundamentally different. Here we investigate α-ring formation using recombinant proteasomes from the archaeon Methanococcus maripaludis. Through an engineered disulfide cross-linking strategy, we demonstrate that double α-rings are structurally analogous to half-proteasomes and can form independently of single α-rings. More importantly, via targeted mutagenesis, we show that single α-rings are not required for the efficient assembly of 20S proteasomes. Our data support updating the currently held "α-ring first" view of assembly, initially proposed in studies of archaeal proteasomes, and present a way to reconcile the seemingly separate bacterial assembly mechanism with the rest of the proteasome realm. We suggest that a common assembly network underpins the absolutely conserved architecture of proteasomes across all domains of life.
Collapse
|
11
|
Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat Struct Mol Biol 2013; 20:1164-72. [PMID: 24013205 PMCID: PMC3869383 DOI: 10.1038/nsmb.2659] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/26/2013] [Indexed: 12/25/2022]
Abstract
The 26S proteasome is the major eukaryotic ATP-dependent protease, yet the detailed mechanisms used by the proteasomal heterohexameric AAA+ unfoldase to drive substrate degradation remain poorly understood. To perform systematic mutational analyses of individual ATPase subunits, we heterologously expressed the unfoldase subcomplex from Saccharomyces cerevisiae in Escherichia coli and reconstituted the proteasome in vitro. Our studies demonstrate that the six ATPases have distinct roles in degradation, corresponding to their positions in the spiral staircases adopted by the AAA+ domains in the absence or presence of substrate. ATP hydrolysis in subunits at the top of the staircases is critical for substrate engagement and translocation. Whereas the unfoldase relies on this vertical asymmetry for substrate processing, interaction with the peptidase exhibits three-fold symmetry with contributions from alternate subunits. These diverse functional asymmetries highlight how the 26S proteasome deviates from simpler, homomeric AAA+ proteases.
Collapse
|
12
|
De La Mota-Peynado A, Lee SYC, Pierce BM, Wani P, Singh CR, Roelofs J. The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J Biol Chem 2013; 288:29467-81. [PMID: 23995839 DOI: 10.1074/jbc.m113.491662] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several proteasome-associated proteins regulate degradation by the 26 S proteasome using the ubiquitin chains that mark most substrates for degradation. The proteasome-associated protein Ecm29, however, has no ubiquitin-binding or modifying activity, and its direct effect on substrate degradation is unclear. Here, we show that Ecm29 acts as a proteasome inhibitor. Besides inhibiting the proteolytic cleavage of peptide substrates in vitro, it inhibits the degradation of ubiquitin-dependent and -independent substrates in vivo. Binding of Ecm29 to the proteasome induces a closed conformation of the substrate entry channel of the core particle. Furthermore, Ecm29 inhibits proteasomal ATPase activity, suggesting that the mechanism of inhibition and gate regulation by Ecm29 is through regulation of the proteasomal ATPases. Consistent with this, we identified through chemical cross-linking that Ecm29 binds to, or in close proximity to, the proteasomal ATPase subunit Rpt5. Additionally, we show that Ecm29 preferentially associates with both mutant and nucleotide depleted proteasomes. We propose that the inhibitory ability of Ecm29 is important for its function as a proteasome quality control factor by ensuring that aberrant proteasomes recognized by Ecm29 are inactive.
Collapse
|
13
|
Abstract
The eukaryotic ubiquitin-proteasome system is responsible for most aspects of regulatory and quality-control protein degradation in cells. Its substrates, which are usually modified by polymers of ubiquitin, are ultimately degraded by the 26S proteasome. This 2.6-MDa protein complex is separated into a barrel-shaped proteolytic 20S core particle (CP) of 28 subunits capped on one or both ends by a 19S regulatory particle (RP) comprising at least 19 subunits. The RP coordinates substrate recognition, removal of substrate polyubiquitin chains, and substrate unfolding and translocation into the CP for degradation. Although many atomic structures of the CP have been determined, the RP has resisted high-resolution analysis. Recently, however, a combination of cryo-electron microscopy, biochemical analysis, and crystal structure determination of several RP subunits has yielded a near-atomic-resolution view of much of the complex. Major new insights into chaperone-assisted proteasome assembly have also recently emerged. Here we review these novel findings.
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
14
|
Kim YC, Li X, Thompson D, DeMartino GN. ATP binding by proteasomal ATPases regulates cellular assembly and substrate-induced functions of the 26 S proteasome. J Biol Chem 2012; 288:3334-45. [PMID: 23212908 DOI: 10.1074/jbc.m112.424788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the role of ATP binding by six different ATPase subunits (Rpt1-6) in the cellular assembly and molecular functions of mammalian 26 S proteasome. Four Rpt subunits (Rpt1-4) with ATP binding mutations were incompetent for cellular assembly into 26 S proteasome. In contrast, analogous mutants of Rpt5 and Rpt6 were incorporated normally into 26 S proteasomes in both intact cells and an in vitro assembly assay. Surprisingly, purified 26 S proteasomes containing either mutant Rpt5 or Rpt6 had normal basal ATPase activity and substrate gate opening for hydrolysis of short peptides. However, these mutant 26 S proteasomes were severely defective for ATP-dependent in vitro degradation of ubiquitylated and non-ubiquitylated proteins and did not display substrate-stimulated ATPase and peptidase activities characteristic of normal proteasomes. These results reveal differential roles of ATP binding by various Rpt subunits in proteasome assembly and function. They also indicate that substrate-stimulated ATPase activity and gating depend on the concerted action of a full complement of Rpt subunits competent for ATP binding and that this regulation is essential for normal proteolysis. Thus, protein substrates appear to promote their own degradation by stimulating proteasome functions involved in proteolysis.
Collapse
Affiliation(s)
- Young-Chan Kim
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The 26S proteasome operates at the executive end of the ubiquitin-proteasome pathway. Here, we present a cryo-EM structure of the Saccharomyces cerevisiae 26S proteasome at a resolution of 7.4 Å or 6.7 Å (Fourier-Shell Correlation of 0.5 or 0.3, respectively). We used this map in conjunction with molecular dynamics-based flexible fitting to build a near-atomic resolution model of the holocomplex. The quality of the map allowed us to assign α-helices, the predominant secondary structure element of the regulatory particle subunits, throughout the entire map. We were able to determine the architecture of the Rpn8/Rpn11 heterodimer, which had hitherto remained elusive. The MPN domain of Rpn11 is positioned directly above the AAA-ATPase N-ring suggesting that Rpn11 deubiquitylates substrates immediately following commitment and prior to their unfolding by the AAA-ATPase module. The MPN domain of Rpn11 dimerizes with that of Rpn8 and the C-termini of both subunits form long helices, which are integral parts of a coiled-coil module. Together with the C-terminal helices of the six PCI-domain subunits they form a very large coiled-coil bundle, which appears to serve as a flexible anchoring device for all the lid subunits.
Collapse
|
16
|
Lee KH, Marshall RS, Slivicke LM, Vierstra RD. Genetic analyses of the Arabidopsis 26S proteasome regulatory particle reveal its importance during light stress and a specific role for the N-terminus of RPT2 in development. PLANT SIGNALING & BEHAVIOR 2012; 7:973-978. [PMID: 22836496 PMCID: PMC3474698 DOI: 10.4161/psb.20934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The 26S proteasome subunit RPT2 is a component of the hexameric ring of AAA-ATPases that forms the base of the 19S regulatory particle (RP). This subunit has specific roles in the yeast and mammalian proteasomes by helping promote assembly of the RP with the 20S core protease (CP) and gate the CP to prevent indiscriminate degradation of cytosolic and nuclear proteins. In plants, this subunit plays an important role in diverse processes that include shoot and root apical meristem maintenance, cell size regulation, trichome branching, and stress responses. Recently, we reported that mutants in RPT2 and several other RP subunits have reduced histone levels, suggesting that at least some of the pleiotropic phenotypes observed in these plants result from aberrant nucleosome assembly. Here, we expand our genetic analysis of RPT2 in Arabidopsis to shed additional light on the roles of the N- and C-terminal ends. We also present data showing that plants bearing mutations in RP subunit genes have their seedling phenotypes exacerbated by prolonged light exposure.
Collapse
|
17
|
Erales J, Hoyt MA, Troll F, Coffino P. Functional asymmetries of proteasome translocase pore. J Biol Chem 2012; 287:18535-43. [PMID: 22493437 DOI: 10.1074/jbc.m112.357327] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Degradation by proteasomes involves coupled translocation and unfolding of its protein substrates. Six distinct but paralogous proteasome ATPase proteins, Rpt1 to -6, form a heterohexameric ring that acts on substrates. An axially positioned loop (Ar-Φ loop) moves in concert with ATP hydrolysis, engages substrate, and propels it into a proteolytic chamber. The aromatic (Ar) residue of the Ar-Φ loop in all six Rpts of S. cerevisiae is tyrosine; this amino acid is thought to have important functional contacts with substrate. Six yeast strains were constructed and characterized in which Tyr was individually mutated to Ala. The mutant cells were viable and had distinct phenotypes. rpt3, rpt4, and rpt5 Tyr/Ala mutants, which cluster on one side of the ATPase hexamer, were substantially impaired in their capacity to degrade substrates. In contrast, rpt1, rpt2, and rpt6 mutants equaled or exceeded wild type in degradation activity. However, rpt1 and rpt6 mutants had defects that limited cell growth or viability under conditions that stressed the ubiquitin proteasome system. In contrast, the rpt3 mutant grew faster than wild type and to a smaller size, a defect that has previously been associated with misregulation of G1 cyclins. This rpt3 phenotype probably results from altered degradation of cell cycle regulatory proteins. Finally, mutation of five of the Rpt subunits increased proteasome ATPase activity, implying bidirectional coupling between the Ar-Φ loop and the ATP hydrolysis site. The present observations assign specific functions to individual Rpt proteins and provide insights into the diverse roles of the axial loops of individual proteasome ATPases.
Collapse
Affiliation(s)
- Jenny Erales
- Department of Microbiology and Immunology, University of California, San Francisco, California 94127, USA
| | | | | | | |
Collapse
|