1
|
Taha MS, Ahmadian MR. Fragile X Messenger Ribonucleoprotein Protein and Its Multifunctionality: From Cytosol to Nucleolus and Back. Biomolecules 2024; 14:399. [PMID: 38672417 PMCID: PMC11047961 DOI: 10.3390/biom14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
2
|
Harada E, Serada S, Fujimoto M, Takahashi Y, Takahashi T, Hara H, Nakatsuka R, Sugase T, Nishigaki T, Saito Y, Hiramatsu K, Nojima S, Mitsuo R, Ohkawara T, Morii E, Mori M, Doki Y, Kaneda Y, Naka T. Glypican-1 targeted antibody-based therapy induces preclinical antitumor activity against esophageal squamous cell carcinoma. Oncotarget 2018; 8:24741-24752. [PMID: 28445969 PMCID: PMC5421884 DOI: 10.18632/oncotarget.15799] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has a poor prognosis despite the development of multimodal therapy. Expression of glypican-1 (GPC1) has been reported to be elevated in a subset of patients with ESCC and associated with chemoresistance. This study aimed to determine the association of GPC1 with ESCC growth and potential usefulness of the GPC1 targeted therapy by monoclonal antibody (mAb) in ESCC. Expression of GPC1 was higher in ESCC tumor tissues than in adjacent non-tumoral tissues and normal tissues. Knockdown of GPC1 decreased growth of ESCC cells and induced apoptosis via inhibition of EGFR, AKT and p44/42-MAPK signaling pathways in vitro. Anti-GPC1 mAb strongly inhibited tumor growth via antibody-dependent cellular cytotoxicity dependent and independent manner in GPC1-positive ESCC xenograft models. Anti-GPC1 mAb also inhibited tumor growth of GPC1 positive ESCC patients derived tumor xenograft models. Furthermore, anti-GPC1 mAb showed a significant tumor growth inhibition with decreased angiogenesis compared with IgG treated controls in ESCC xenografted mice. Treatment with anti-GPC1 mAb was not toxic in mice. Anti-GPC1 mAb may have a potent anti-tumor effect and represent a novel treatment option for patients with GPC1-positive ESCC.
Collapse
Affiliation(s)
- Emi Harada
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yusuke Takahashi
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Hisashi Hara
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Rie Nakatsuka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Takahito Sugase
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Takahiko Nishigaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yurina Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kosuke Hiramatsu
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Risa Mitsuo
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Tomoharu Ohkawara
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| |
Collapse
|
3
|
α3 Chains of type V collagen regulate breast tumour growth via glypican-1. Nat Commun 2017; 8:14351. [PMID: 28102194 PMCID: PMC5253704 DOI: 10.1038/ncomms14351] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/20/2016] [Indexed: 02/08/2023] Open
Abstract
Pericellular α3(V) collagen can affect the functioning of cells, such as adipocytes and pancreatic β cells. Here we show that α3(V) chains are an abundant product of normal mammary gland basal cells, and that α3(V) ablation in a mouse mammary tumour model inhibits mammary tumour progression by reducing the proliferative potential of tumour cells. These effects are shown to be primarily cell autonomous, from loss of α3(V) chains normally produced by tumour cells, in which they affect growth by enhancing the ability of cell surface proteoglycan glypican-1 to act as a co-receptor for FGF2. Thus, a mechanism is presented for microenvironmental influence on tumour growth. α3(V) chains are produced in both basal-like and luminal human breast tumours, and its expression levels are tightly coupled with those of glypican-1 across breast cancer types. Evidence indicates α3(V) chains as potential targets for inhibiting tumour growth and as markers of oncogenic transformation. Collagen has a role in cancer and is particularly important for breast cancer. Here the authors show that the expression of α3 type V collagen and one of its receptors- glipican-1- in the same cell, contributes to a deregulated growth of breast cancer cells.
Collapse
|
4
|
Hara H, Takahashi T, Serada S, Fujimoto M, Ohkawara T, Nakatsuka R, Harada E, Nishigaki T, Takahashi Y, Nojima S, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Miyata H, Nakajima K, Takiguchi S, Morii E, Mori M, Doki Y, Naka T. Overexpression of glypican-1 implicates poor prognosis and their chemoresistance in oesophageal squamous cell carcinoma. Br J Cancer 2016; 115:66-75. [PMID: 27310703 PMCID: PMC4931380 DOI: 10.1038/bjc.2016.183] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022] Open
Abstract
Background: Despite the recent improvements in multimodal therapies for oesophageal squamous cell carcinoma (ESCC), the prognosis remains poor. The identification of suitable biomarkers for predicting the prognosis and chemo-sensitivity is required to develop targeted treatments and improve treatment results. Methods: Proteins highly expressed in ESCC cell lines compared with normal oesophageal cell lines were screened by isobaric tag for relative and absolute quantitation (iTRAQ). We identified glypican-1 (GPC1) as a novel molecule. The clinicopathological characteristics of GPC1 were evaluated by immunohistochemistry using ESCC specimens, and clinical parameters were assessed. The correlation between GPC1 expression levels and chemo-sensitivity were analysed in vitro. Results: In the immunohistochemical assessment of 175 ESCC patients, 98.8% expressed GPC1. These patients demonstrated significantly poorer prognosis compared with patients with low-GPC1 expression by survival assay (P<0.001). Higher chemoresistance was observed in the GPC1 high-expression group. GPC1 expression levels positively correlated with chemo-sensitivity against cis-Diammineplatinum (II) dichloride (CDDP), and are potentially associated with anti-apoptotic function based on alterations in the MAPK downstream signalling pathway and Bcl-2 family member proteins. Conclusions: GPC1 is an independent prognostic factor in ESCC and is a critical molecule for altering the threshold of chemoresistance to CDDP.
Collapse
Affiliation(s)
- Hisashi Hara
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tomoharu Ohkawara
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Rie Nakatsuka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Emi Harada
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takahiko Nishigaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yusuke Takahashi
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Miyata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
5
|
Monteforte AJ, Lam B, Das S, Mukhopadhyay S, Wright CS, Martin PE, Dunn AK, Baker AB. Glypican-1 nanoliposomes for potentiating growth factor activity in therapeutic angiogenesis. Biomaterials 2016; 94:45-56. [PMID: 27101205 DOI: 10.1016/j.biomaterials.2016.03.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
Abstract
Therapeutic angiogenesis is a highly appealing concept for treating tissues that become ischemic due to vascular disease. A major barrier to the clinical translation of angiogenic therapies is that the patients that are in the greatest need of these treatments often have long term disease states and co-morbidities, such as diabetes and obesity, that make them resistant to angiogenic stimuli. In this study, we identified that human patients with type 2 diabetes have reduced levels of glypican-1 in the blood vessels of their skin. The lack of this key co-receptor in the tissue may make the application of exogenous angiogenic growth factors or cell therapies ineffective. We created a novel therapeutic enhancer for growth factor activity consisting of glypican-1 delivered in a nanoliposomal carrier (a "glypisome"). Here, we demonstrate that glypisomes enhance FGF-2 mediated endothelial cell proliferation, migration and tube formation. In addition, glypisomes enhance FGF-2 trafficking by increasing both uptake and endosomal processing. We encapsulated FGF-2 or FGF-2 with glypisomes in alginate beads and used these to deliver localized growth factor therapy in a murine hind limb ischemia model. Co-delivery of glypisomes with FGF-2 markedly increased the recovery of perfusion and vessel formation in ischemic hind limbs of wild type and diabetic mice in comparison to mice treated with FGF-2 alone. Together, our findings support that glypisomes are effective means for enhancing growth factor activity and may improve the response to local angiogenic growth factor therapies for ischemia.
Collapse
Affiliation(s)
- Anthony J Monteforte
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Brian Lam
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Catherine S Wright
- Diabetes Research Group, Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Patricia E Martin
- Diabetes Research Group, Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Tovar-Camargo OA, Toden S, Goel A. Exosomal microRNA Biomarkers: Emerging Frontiers in Colorectal and Other Human Cancers. Expert Rev Mol Diagn 2016; 16:553-67. [PMID: 26892862 DOI: 10.1586/14737159.2016.1156535] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diagnostic strategies, particularly non-invasive blood-based screening approaches, are gaining increased attention for the early detection and attenuation of mortality associated with colorectal cancer (CRC). However, the majority of current screening approaches are inadequate at replacing the conventional CRC diagnostic procedures. Yet, due to technological advances and better understanding of molecular events underlying human cancer, a new category of biomarkers are on the horizon. Recent evidence indicates that cells release a distinct class of small vesicles called 'exosomes', which contain nucleic acids and proteins that reflect and typify host-cell molecular architecture. Intriguingly, exosomes released from cancer cells have a distinct genetic and epigenetic makeup, which allows them to undertake their tumorigenic function. From a clinical standpoint, these unique cancer-specific fingerprints present in exosomes appear to be detectable in a small amount of blood, making them very attractive substrates for developing cancer biomarkers, particularly noninvasive diagnostic approaches.
Collapse
Affiliation(s)
- Oscar A Tovar-Camargo
- a Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics , Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center , Dallas , TX , USA
| | - Shusuke Toden
- a Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics , Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center , Dallas , TX , USA
| | - Ajay Goel
- a Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics , Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center , Dallas , TX , USA
| |
Collapse
|
7
|
Amaya R, Pierides A, Tarbell JM. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression. PLoS One 2015; 10:e0129952. [PMID: 26147292 PMCID: PMC4492743 DOI: 10.1371/journal.pone.0129952] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Endothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS) and circumferential stress (CS) that can be characterized by the temporal phase angle between WSS and CS (stress phase angle - SPA). Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180°) such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0°) are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 °) and synchronous hemodynamics (SPA=0 °). This study used a novel bioreactor to investigate the cellular response of bovine aortic endothelial cells (BAECS) exposed to a combination of pulsatile WSS and CS at SPA=0 or SPA=-180. Using a PCR array of 42 genes, we determined that BAECS exposed to non-reversing sinusoidal WSS (10±10 dyne/cm2) and CS (4 ± 4%) over a 7 hour testing period displayed 17 genes that were up regulated by SPA = -180 °, most of them pro-atherogenic, including NFκB and other NFκB target genes. The up regulation of NFκB p50/p105 and p65 by SPA =-180° was confirmed by Western blots and immunofluorescence staining demonstrating the nuclear translocation of NFκB p50/p105 and p65. These data suggest that asynchronous hemodynamics (SPA=-180 °) can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA may be an important parameter characterizing arterial susceptibility to disease.
Collapse
Affiliation(s)
- Ronny Amaya
- Department of Biomedical Engineering, City College of New York, City University of New York, New York, New York, 10031, United States of America
| | - Alexis Pierides
- Department of Biomedical Engineering, City College of New York, City University of New York, New York, New York, 10031, United States of America
| | - John M. Tarbell
- Department of Biomedical Engineering, City College of New York, City University of New York, New York, New York, 10031, United States of America
- * E-mail:
| |
Collapse
|
8
|
Down-regulation of HDAC5 inhibits growth of human hepatocellular carcinoma by induction of apoptosis and cell cycle arrest. Tumour Biol 2014; 35:11523-32. [PMID: 25129440 DOI: 10.1007/s13277-014-2358-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022] Open
Abstract
Histone deacetylases (HDACs) play a critical role in the proliferation, differentiation, and apoptosis of cancer cells. An obstacle for the application of HDAC inhibitors as effective anti-cancer therapeutics is that our current knowledge on the contributions of different HDACs in various cancer types remains scarce. The present study reported that the mRNA and protein levels of HDAC5 were up-regulated in human hepatocellular carcinoma (HCC) tissues and cells as shown by quantitative real-time PCR and Western blot. MTT assay and BrdU incorporation assay showed that the down-regulation of HDAC5 inhibited cell proliferation in HepG2, Hep3B, and Huh7 cell lines. Data from in vivo xenograft tumorigenesis model also demonstrated the anti-proliferative effect of HDAC5 depletion on tumor cell growth. Furthermore, the suppression of HDAC5 promoted cell apoptosis and induced G1-phase cell cycle arrest in HCC cells. On the molecular level, we observed altered expression of apoptosis-related proteins such as p53, bax, bcl-2, cyto C, and caspase 3 in HDAC5-shRNA-transfected cells. Knockdown of HDAC5 led to a significant up-regulation of p21 and down-regulation of cyclin D1 and CDK2/4/6. We also found that the down-regulation of HDAC5 substantially increased p53 stability and promoted its nuclear localization and transcriptional activity. Our study suggested that knockdown of HDAC5 could inhibit cancer cell proliferation by the induction of cell cycle arrest and apoptosis; thus, suppression of HDAC5 may be a viable option for treating HCC patients.
Collapse
|
9
|
RNAi silencing of the SoxE gene suppresses cell proliferation in silkworm BmN4 cells. Mol Biol Rep 2014; 41:4769-81. [PMID: 24723138 PMCID: PMC4066180 DOI: 10.1007/s11033-014-3348-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 03/24/2014] [Indexed: 11/09/2022]
Abstract
The transcription factor SoxE is mainly expressed in the gonad and involved in the regulation of gonad development and sex determination in animals. Here, we used the silkworm ovary-derived BmN4-SID1 cell line to survey the roles of the silkworm SoxE protein (BmSoxE) and predict its candidate binding targets. RNAi-mediated silencing of BmSoxE expression suppressed cell proliferation in BmN4-SID1 cells. A further cell cycle analysis revealed that this inhibition of cell proliferation was largely due to cell cycle arrest in G1 phase when BmSoxE expression was blocked in BmN4-SID1 cells. Genome-wide microarray expression analyses demonstrated that the expression levels of a set of genes were significantly altered following BmSoxE RNAi. More than half of these genes contained conserved binding sites for HMG box domain of the Sox proteins and were predicted to be candidate binding targets for BmSoxE. Importantly, some of the candidate targets may be associated with the effect of BmSoxE on cell proliferation. Several candidate target genes showed gonad-specific expression in silkworm larvae. Taken together, these data demonstrate that BmSoxE is required for cell proliferation in silkworm BmN4-SID1 cells and provide valuable information for further investigations of the molecular control exerted by the BmSoxE protein over cell proliferation and gonad development in the silkworm.
Collapse
|
10
|
Liao YJ, Bai HY, Li ZH, Zou J, Chen JW, Zheng F, Zhang JX, Mai SJ, Zeng MS, Sun HD, Pu JX, Xie D. Longikaurin A, a natural ent-kaurane, induces G2/M phase arrest via downregulation of Skp2 and apoptosis induction through ROS/JNK/c-Jun pathway in hepatocellular carcinoma cells. Cell Death Dis 2014; 5:e1137. [PMID: 24651440 PMCID: PMC3973226 DOI: 10.1038/cddis.2014.66] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, and is also highly resistant to conventional chemotherapy treatments. In this study, we report that Longikaurin A (LK-A), an ent-kaurane diterpenoid isolated from the plant Isodon ternifolius, induced cell cycle arrest and apoptosis in human HCC cell lines. LK-A also suppressed tumor growth in SMMC-7721 xenograft models, without inducing any notable major organ-related toxicity. LK-A treatment led to reduced expression of the proto-oncogene S phase kinase-associated protein 2 (Skp2) in SMMC-7721 cells. Lower Skp2 levels correlated with increased expression of p21 and p-cdc2 (Try15), and a corresponding decrease in protein levels of Cyclin B1 and cdc2. Overexpression of Skp2 significantly inhibited LK-A-induced cell cycle arrest in SMMC-7721 cells, suggesting that LK-A may target Skp2 to arrest cells at the G2/M phase. LK-A also induced reactive oxygen species (ROS) production and apoptosis in SMMC-7721 cells. LK-A induced phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase and P38 MAP kinase. Treatment with, the JNK inhibitor SP600125 prevented LK-A-induced apoptosis in SMMC-7721 cells. Moreover, the antioxidant N-acetylcysteine prevented phosphorylation of both JNK and c-Jun. Taken together, these data indicate that LK-A induces cell cycle arrest and apoptosis in cancer cells by dampening Skp2 expression, and thereby activating the ROS/JNK/c-Jun signaling pathways. LK-A is therefore a potential lead compound for development of antitumor drugs targeting HCC.
Collapse
Affiliation(s)
- Y-J Liao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - H-Y Bai
- 1] Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Z-H Li
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - J Zou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - J-W Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - F Zheng
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - J-X Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - S-J Mai
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - M-S Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - H-D Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - J-X Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - D Xie
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
11
|
Chamorro-Jorganes A, Araldi E, Rotllan N, Cirera-Salinas D, Suárez Y. Autoregulation of glypican-1 by intronic microRNA-149 fine tunes the angiogenic response to FGF2 in human endothelial cells. J Cell Sci 2014; 127:1169-78. [PMID: 24463821 DOI: 10.1242/jcs.130518] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-149 (miR-149) is located within the first intron of the glypican-1 (GPC1) gene. GPC1 is a low affinity receptor for fibroblast growth factor (FGF2) that enhances FGF2 binding to its receptor (FGFR1), subsequently promoting FGF2-FGFR1 activation and signaling. Using bioinformatic approaches, both GPC1 and FGFR1 were identified and subsequently validated as targets for miR-149 (both the mature strand, miR-149, and the passenger strand, miR-149*) in endothelial cells (ECs). As a consequence of their targeting activity towards GPC1 and FGFR1, both miR-149 and miR-149* regulated FGF2 signaling and FGF2-induced responses in ECs, namely proliferation, migration and cord formation. Moreover, lentiviral overexpression of miR-149 reduced in vivo tumor-induced neovascularization. Importantly, FGF2 transcriptionally stimulated the expression of miR-149 independently of its host gene, therefore assuring the steady state of FGF2-induced responses through the regulation of the GPC1-FGFR1 binary complex in ECs.
Collapse
Affiliation(s)
- Aránzazu Chamorro-Jorganes
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
12
|
Gallagher EJ, Alikhani N, Tobin-Hess A, Blank J, Buffin NJ, Zelenko Z, Tennagels N, Werner U, LeRoith D. Insulin receptor phosphorylation by endogenous insulin or the insulin analog AspB10 promotes mammary tumor growth independent of the IGF-I receptor. Diabetes 2013; 62:3553-60. [PMID: 23835331 PMCID: PMC3781483 DOI: 10.2337/db13-0249] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endogenous hyperinsulinemia and insulin receptor (IR)/IGF-I receptor (IGF-IR) phosphorylation in tumors are associated with a worse prognosis in women with breast cancer. In vitro, insulin stimulation of the IR increases proliferation of breast cancer cells. However, in vivo studies demonstrating that IR activation increases tumor growth, independently of IGF-IR activation, are lacking. We hypothesized that endogenous hyperinsulinemia increases mammary tumor growth by directly activating the IR rather than the IGF-IR or hybrid receptors. We aimed to determine whether stimulating the IR with the insulin analog AspB10 could increase tumor growth independently of IGF-IR signaling. We induced orthotopic mammary tumors in control FVB/n and hyperinsulinemic MKR mice, and treated them with the insulin analog AspB10, recombinant human IGF-I, or vehicle. Tumors from mice with endogenous hyperinsulinemia were larger and had greater IR phosphorylation, but not IGF-IR phosphorylation, than those from control mice. Chronic AspB10 administration also increased tumor growth and IR (but not IGF-IR) phosphorylation in tumors. IGF-I led to activation of both the IGF-IR and IR and probably hybrid receptors. Our results demonstrate that IR phosphorylation increases tumor growth, independently of IGF-IR/hybrid receptor phosphorylation, and warrant consideration when developing therapeutics targeting the IGF-IR, but not the IR.
Collapse
Affiliation(s)
- Emily Jane Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nyosha Alikhani
- Division of Endocrinology, Diabetes and Bone Diseases, Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aviva Tobin-Hess
- Division of Endocrinology, Diabetes and Bone Diseases, Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeffrey Blank
- Division of Endocrinology, Diabetes and Bone Diseases, Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas J. Buffin
- Division of Endocrinology, Diabetes and Bone Diseases, Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zara Zelenko
- Division of Endocrinology, Diabetes and Bone Diseases, Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Norbert Tennagels
- R&D Diabetes Division, Sanofi-Aventis Deutschland, Frankfurt am Main, Germany
| | - Ulrich Werner
- R&D Diabetes Division, Sanofi-Aventis Deutschland, Frankfurt am Main, Germany
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Corresponding author: Derek LeRoith,
| |
Collapse
|
13
|
Sasaki N, Toyoda M. Glycoconjugates and related molecules in human vascular endothelial cells. Int J Vasc Med 2013; 2013:963596. [PMID: 24171112 PMCID: PMC3793293 DOI: 10.1155/2013/963596] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
Vascular endothelial cells (ECs) form the inner lining of blood vessels. They are critically involved in many physiological functions, including control of vasomotor tone, blood cell trafficking, hemostatic balance, permeability, proliferation, survival, and immunity. It is considered that impairment of EC functions leads to the development of vascular diseases. The carbohydrate antigens carried by glycoconjugates (e.g., glycoproteins, glycosphingolipids, and proteoglycans) mainly present on the cell surface serve not only as marker molecules but also as functional molecules. Recent studies have revealed that the carbohydrate composition of the EC surface is critical for these cells to perform their physiological functions. In this paper, we consider the expression and functional roles of endogenous glycoconjugates and related molecules (galectins and glycan-degrading enzymes) in human ECs.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
14
|
Glypican 1 stimulates S phase entry and DNA replication in human glioma cells and normal astrocytes. Mol Cell Biol 2013; 33:4408-21. [PMID: 24019070 DOI: 10.1128/mcb.00238-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malignant gliomas are highly lethal neoplasms with limited treatment options. We previously found that the heparan sulfate proteoglycan glypican 1 (GPC1) is universally and highly expressed in human gliomas. In this study, we investigated the biological activity of GPC1 expression in both human glioma cells and normal astrocytes in vitro. Expression of GPC1 inactivates the G1/S checkpoint and strongly stimulates DNA replication. Constitutive expression of GPC1 causes DNA rereplication and DNA damage, suggesting a mutagenic activity for GPC1. GPC1 expression leads to a significant downregulation of the tumor suppressors pRb, Cip/Kip cyclin-dependent kinase inhibitors (CKIs), and CDH1, and upregulation of the pro-oncogenic proteins cyclin E, cyclin-dependent kinase 2 (CDK2), Skp2, and Cdt1. These GPC1-induced changes are accompanied by a significant reduction in all types of D cyclins, which is independent of serum supplementation. It is likely that GPC1 stimulates the so-called Skp2 autoinduction loop, independent of cyclin D-CDK4/6. Knockdown of Skp2, CDK2, or cyclin E, three key elements within the network modulated by GPC1, results in a reduction of the S phase and aneuploid fractions, implying a functional role for these regulators in GPC1-induced S phase entry and DNA rereplication. In addition, a significant activation of both the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways by GPC1 is seen in normal human astrocytes even in the presence of growth factor supplement. Both pathways are constitutively activated in human gliomas. The surprising magnitude and the mitogenic and mutagenic nature of the effect exerted by GPC1 on the cell cycle imply that GPC1 may play an important role in both glioma tumorigenesis and growth.
Collapse
|
15
|
Qu X, Shen L, Zheng Y, Cui Y, Feng Z, Liu F, Liu J. A signal transduction pathway from TGF-β1 to SKP2 via Akt1 and c-Myc and its correlation with progression in human melanoma. J Invest Dermatol 2013; 134:159-167. [PMID: 23792459 DOI: 10.1038/jid.2013.281] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/12/2012] [Accepted: 10/29/2012] [Indexed: 12/31/2022]
Abstract
Both SKP2 (S-phase kinase-associated protein 2) and transforming growth factor-β1 (TGF-β1) play important roles in cancer metastasis through different mechanisms: TGF-β1 via induction of epithelial-mesenchymal transition (EMT) and SKP2 via downregulating p27(kip1). Recent studies indicated that c-Myc and Akt1 were active players in metastasis. In this study we demonstrated a crosstalk between these pathways. Specifically, we found that TGF-β1 treatment increased SKP2 expression accompanied with increased phosphorylation of Akt1 and c-Myc protein accumulation during EMT. We demonstrated that Akt1 was required for TGF-β1-mediated SKP2 upregulation and that c-Myc transcription factor specifically bound to the promoter of SKP2 for its enhanced transcription. Analysis of 25 samples of normal human skin, nevi, and melanomas revealed a positive correlation between c-Myc and SKP2 accumulation. Furthermore, accumulation of SKP2 and c-Myc proteins was significantly higher in metastatic melanoma samples as compared with that in primary melanomas, which again was higher than that in normal skin or nevi. In summary, our results integrated TGF-β1 signals to SKP2 via Akt1 and c-Myc during EMT, and provided, to our knowledge, a previously unreported mechanistic molecular event for TGF-β1-induced metastasis in human melanoma.
Collapse
Affiliation(s)
- Xuan Qu
- Institute of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Liangliang Shen
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yang Cui
- Institute of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Feng Liu
- Department of Medicine, University of California Irvine Medical School, Irvine, California, USA; Chao Family Comprehensive Cancer Center, University of California Irvine Medical School, Irvine, California, USA.
| | - Jiankang Liu
- Institute of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| |
Collapse
|
16
|
Dwivedi PP, Lam N, Powell BC. Boning up on glypicans-opportunities for new insights into bone biology. Cell Biochem Funct 2013; 31:91-114. [DOI: 10.1002/cbf.2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 01/01/2023]
Affiliation(s)
| | - N. Lam
- Craniofacial Research Group; Women's and Children's Health Research Institute; North Adelaide; South Australia; Australia
| | | |
Collapse
|