1
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Matthaeus C, Sochacki KA, Dickey AM, Puchkov D, Haucke V, Lehmann M, Taraska JW. The molecular organization of differentially curved caveolae indicates bendable structural units at the plasma membrane. Nat Commun 2022; 13:7234. [PMID: 36433988 PMCID: PMC9700719 DOI: 10.1038/s41467-022-34958-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Caveolae are small coated plasma membrane invaginations with diverse functions. Caveolae undergo curvature changes. Yet, it is unclear which proteins regulate this process. To address this gap, we develop a correlative stimulated emission depletion (STED) fluorescence and platinum replica electron microscopy imaging (CLEM) method to image proteins at single caveolae. Caveolins and cavins are found at all caveolae, independent of curvature. EHD2 is detected at both low and highly curved caveolae. Pacsin2 associates with low curved caveolae and EHBP1 with mostly highly curved caveolae. Dynamin is absent from caveolae. Cells lacking dynamin show no substantial changes to caveolae, suggesting that dynamin is not directly involved in caveolae curvature. We propose a model where caveolins, cavins, and EHD2 assemble as a cohesive structural unit regulated by intermittent associations with pacsin2 and EHBP1. These coats can flatten and curve to enable lipid traffic, signaling, and changes to the surface area of the cell.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea M Dickey
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Popov LD. Deciphering the relationship between caveolae-mediated intracellular transport and signalling events. Cell Signal 2022; 97:110399. [PMID: 35820545 DOI: 10.1016/j.cellsig.2022.110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
The caveolae-mediated transport across polarized epithelial cell barriers has been largely deciphered in the last decades and is considered the second essential intracellular transfer mechanism, after the clathrin-dependent endocytosis. The basic cell biology knowledge was supplemented recently, with the molecular mechanisms beyond caveolae generation implying the key contribution of the lipid-binding proteins (the structural protein Caveolin and the adapter protein Cavin), along with the bulb coat stabilizing molecules PACSIN-2 and Eps15 homology domain protein-2. The current attention is focused also on caveolae architecture (such as the bulb coat, the neck, the membrane funnel inside the bulb, and the associated receptors), and their specific tasks during the intracellular transport of various cargoes. Here, we resume the present understanding of the assembly, detachment, and internalization of caveolae from the plasma membrane lipid raft domains, and give an updated view on transcytosis and endocytosis, the two itineraries of cargoes transport via caveolae. The review adds novel data on the signalling molecules regulating caveolae intracellular routes and on the transport dysregulation in diseases. The therapeutic possibilities offered by exploitation of Caveolin-1 expression and caveolae trafficking, and the urgent issues to be uncovered conclude the review.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
4
|
Jones JH, Minshall RD. Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches. Front Physiol 2022; 13:828093. [PMID: 35431977 PMCID: PMC9008570 DOI: 10.3389/fphys.2022.828093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased protein and fluid permeability and interstitial edema, further impairing lung function. While most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity, studies in animal models suggest that transendothelial transport of protein through caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS. Here, we discuss the role of transcytosis in healthy and injured endothelium and highlight recent studies that have contributed to our understanding of the process during ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver therapeutics to the lungs which may prevent further injury or improve recovery.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,*Correspondence: Richard D. Minshall,
| |
Collapse
|
5
|
Matthaeus C, Taraska JW. Energy and Dynamics of Caveolae Trafficking. Front Cell Dev Biol 2021; 8:614472. [PMID: 33692993 PMCID: PMC7939723 DOI: 10.3389/fcell.2020.614472] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Caveolae are 70–100 nm diameter plasma membrane invaginations found in abundance in adipocytes, endothelial cells, myocytes, and fibroblasts. Their bulb-shaped membrane domain is characterized and formed by specific lipid binding proteins including Caveolins, Cavins, Pacsin2, and EHD2. Likewise, an enrichment of cholesterol and other lipids makes caveolae a distinct membrane environment that supports proteins involved in cell-type specific signaling pathways. Their ability to detach from the plasma membrane and move through the cytosol has been shown to be important for lipid trafficking and metabolism. Here, we review recent concepts in caveolae trafficking and dynamics. Second, we discuss how ATP and GTP-regulated proteins including dynamin and EHD2 control caveolae behavior. Throughout, we summarize the potential physiological and cell biological roles of caveolae internalization and trafficking and highlight open questions in the field and future directions for study.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Czopek A, Moorhouse R, Guyonnet L, Farrah T, Lenoir O, Owen E, van Bragt J, Costello HM, Menolascina F, Baudrie V, Webb DJ, Kluth DC, Bailey MA, Tharaux PL, Dhaun N. A novel role for myeloid endothelin-B receptors in hypertension. Eur Heart J 2020; 40:768-784. [PMID: 30657897 PMCID: PMC6396028 DOI: 10.1093/eurheartj/ehy881] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/04/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
AIMS Hypertension is common. Recent data suggest that macrophages (Mφ) contribute to, and protect from, hypertension. Endothelin-1 (ET-1) is the most potent endogenous vasoconstrictor with additional pro-inflammatory properties. We investigated the role of the ET system in experimental and clinical hypertension by modifying Mφ number and phenotype. METHODS AND RESULTS In vitro, Mφ ET receptor function was explored using pharmacological, gene silencing, and knockout approaches. Using the CD11b-DTR mouse and novel mice with myeloid cell-specific endothelin-B (ETB) receptor deficiency (LysMETB-/-), we explored the effects of modifying Mφ number and phenotype on the hypertensive effects of ET-1, angiotensin II (ANG II), a model that is ET-1 dependent, and salt. In patients with small vessel vasculitis, the impacts of Mφ depleting and non-depleting therapies on blood pressure (BP) and endothelial function were examined. Mouse and human Mφ expressed both endothelin-A and ETB receptors and displayed chemokinesis to ET-1. However, stimulation of Mφ with exogenous ET-1 did not polarize Mφ phenotype. Interestingly, both mouse and human Mφ cleared ET-1 through ETB receptor mediated, and dynamin-dependent, endocytosis. Mφ depletion resulted in an augmented chronic hypertensive response to both ET-1 and salt. LysMETB-/- mice displayed an exaggerated hypertensive response to both ET-1 and ANG II. Finally, in patients who received Mφ depleting immunotherapy BP was higher and endothelial function worse than in those receiving non-depleting therapies. CONCLUSION Mφ and ET-1 may play an important role in BP control and potentially have a critical role as a therapeutic target in hypertension.
Collapse
Affiliation(s)
- Alicja Czopek
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Rebecca Moorhouse
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Léa Guyonnet
- Paris Cardiovascular Research Centre - PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Tariq Farrah
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Olivia Lenoir
- Paris Cardiovascular Research Centre - PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Elizabeth Owen
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Job van Bragt
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Hannah M Costello
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Filippo Menolascina
- School of Engineering & SynthSys, Institute for Bioengineering, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK.,MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Véronique Baudrie
- Paris Cardiovascular Research Centre - PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - David J Webb
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - David C Kluth
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Matthew A Bailey
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Centre - PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Neeraj Dhaun
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK.,Paris Cardiovascular Research Centre - PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| |
Collapse
|
7
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
8
|
Lian X, Matthaeus C, Kaßmann M, Daumke O, Gollasch M. Pathophysiological Role of Caveolae in Hypertension. Front Med (Lausanne) 2019; 6:153. [PMID: 31355199 PMCID: PMC6635557 DOI: 10.3389/fmed.2019.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/20/2019] [Indexed: 12/02/2022] Open
Abstract
Caveolae, flask-shaped cholesterol-, and glycosphingolipid-rich membrane microdomains, contain caveolin 1, 2, 3 and several structural proteins, in particular Cavin 1-4, EHD2, pacsin2, and dynamin 2. Caveolae participate in several physiological processes like lipid uptake, mechanosensitivity, or signaling events and are involved in pathophysiological changes in the cardiovascular system. They serve as a specific membrane platform for a diverse set of signaling molecules like endothelial nitric oxide synthase (eNOS), and further maintain vascular homeostasis. Lack of caveolins causes the complete loss of caveolae; induces vascular disorders, endothelial dysfunction, and impaired myogenic tone; and alters numerous cellular processes, which all contribute to an increased risk for hypertension. This brief review describes our current knowledge on caveolae in vasculature, with special focus on their pathophysiological role in hypertension.
Collapse
Affiliation(s)
- Xiaoming Lian
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Claudia Matthaeus
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mario Kaßmann
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Medical Clinic for Nephrology and Internal Intensive Care, Berlin, Germany
| |
Collapse
|
9
|
Filippini A, Sica G, D'Alessio A. The caveolar membrane system in endothelium: From cell signaling to vascular pathology. J Cell Biochem 2018; 119:5060-5071. [PMID: 29637636 DOI: 10.1002/jcb.26793] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
Abstract
Caveolae are 50- to 100-nm cholesterol and glycosphingolipid-rich flask-shaped invaginations commonly observed in many terminally differentiated cells. These organelles have been described in many cell types and are particularly abundant in endothelial cells, where they have been involved in the regulation of certain signaling pathways. Specific scaffolding proteins termed caveolins, along with the more recently discovered members of the cavin family, represent the major protein components during caveolae biogenesis. In addition, multiple studies aimed to investigate the expression and the regulation of these proteins significantly contributed to elucidate the role of caveolae and caveolins in endothelial cell physiology and disease. The aim of this review is to survey recent evidence of the involvement of the caveolar network in endothelial cell biology and endothelial cell dysfunction.
Collapse
Affiliation(s)
- Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gigliola Sica
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessio D'Alessio
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
10
|
Norman R, Fuller W, Calaghan S. Caveolae and the cardiac myocyte. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Foster SR, Bräuner-Osborne H. Investigating Internalization and Intracellular Trafficking of GPCRs: New Techniques and Real-Time Experimental Approaches. Handb Exp Pharmacol 2017; 245:41-61. [PMID: 29018878 DOI: 10.1007/164_2017_57] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ability to regulate the interaction between cells and their extracellular environment is essential for the maintenance of appropriate physiological function. For G protein-coupled receptors (GPCRs), this regulation occurs through multiple mechanisms that provide spatial and temporal control for signal transduction. One of the major mechanisms for GPCR regulation involves their endocytic trafficking, which serves to internalize the receptors from the plasma membrane and thereby attenuate G protein-dependent signaling. However, there is accumulating evidence to suggest that GPCRs can signal independently of G proteins, as well as from intracellular compartments including endosomes. It is in this context that receptor internalization and intracellular trafficking have attracted renewed interest within the GPCR field. In this chapter, we will review the current understanding and methodologies that have been used to investigate internalization and intracellular signaling of GPCRs, with a particular focus on emerging real-time techniques. These recent developments have improved our understanding of the complexities of GPCR internalization and intracellular signaling and suggest that the broader biological relevance and potential therapeutic implications of these processes remain to be explored.
Collapse
Affiliation(s)
- Simon R Foster
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
12
|
Endothelin-1: Biosynthesis, Signaling and Vasoreactivity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:143-75. [PMID: 27451097 DOI: 10.1016/bs.apha.2016.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endothelin-1 (ET-1) is an extremely potent vasoconstrictor peptide originally isolated from endothelial cells. Its synthesis, mainly regulated at the gene transcription level, involves processing of a precursor by a furin-type proprotein convertase to an inactive intermediate, big ET-1. The latter peptide can then be cleaved directly by an endothelin-converting enzyme (ECE) into ET-1 or reach the active metabolite through a two-step process involving chymase hydrolyzing big ET-1 to ET-1 (1-31), itself needing conversion to ET-1 by neprilysin (NEP) to exert physiological activity. ET-1 signals through two G protein-coupled receptors, endothelin receptor A (ETA) and endothelin receptor B (ETB). Both receptors induce an increase in intracellular Ca(2+), mainly from the extracellular space through voltage-independent mechanisms, the receptor-operated channels and store-operated channels. ET-1 also induces signaling through epidermal growth factor receptor transactivation, oxidative stress induction, rho-kinase, and the activation (ETA) or inhibition (ETB) of the adenylate cyclase/cyclic adenosine monophosphate pathway. Arterial vasoconstriction is mediated mainly by the ETA receptor. ET-1, via endothelium-located ETB, relaxes arteries or constricts vessels following activation of the same receptor type on the smooth muscle, where it can interact with ETA. In addition, ETB-dependent vasoconstriction seems more prominent in the venous vasculature. A better understanding of how ET-1 is synthesized and how ETA and ETB receptors interact could help design better pharmacological agents in the treatment of cardiovascular diseases where targeting the ET-1 system is indicated.
Collapse
|
13
|
Jensen DD, Zhao P, Jimenez-Vargas NN, Lieu T, Gerges M, Yeatman HR, Canals M, Vanner SJ, Poole DP, Bunnett NW. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane. J Biol Chem 2016; 291:11285-99. [PMID: 27030010 PMCID: PMC4900274 DOI: 10.1074/jbc.m115.710681] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/17/2016] [Indexed: 12/12/2022] Open
Abstract
Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gβγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gβγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gβγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gβγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases.
Collapse
Affiliation(s)
- Dane D Jensen
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Peishen Zhao
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Nestor N Jimenez-Vargas
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - TinaMarie Lieu
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Marina Gerges
- From the Monash Institute of Pharmaceutical Sciences and
| | | | - Meritxell Canals
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Stephen J Vanner
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Daniel P Poole
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia, the Departments of Anatomy and Neuroscience and
| | - Nigel W Bunnett
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia, Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia, and
| |
Collapse
|
14
|
Andrews AM, Rizzo V. Microparticle-Induced Activation of the Vascular Endothelium Requires Caveolin-1/Caveolae. PLoS One 2016; 11:e0149272. [PMID: 26891050 PMCID: PMC4758735 DOI: 10.1371/journal.pone.0149272] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/30/2016] [Indexed: 12/29/2022] Open
Abstract
Microparticles (MPs) are small membrane fragments shed from normal as well as activated, apoptotic or injured cells. Emerging evidence implicates MPs as a causal and/or contributing factor in altering normal vascular cell phenotype through initiation of proinflammatory signal transduction events and paracrine delivery of proteins, mRNA and miRNA. However, little is known regarding the mechanism by which MPs influence these events. Caveolae are important membrane microdomains that function as centers of signal transduction and endocytosis. Here, we tested the concept that the MP-induced pro-inflammatory phenotype shift in endothelial cells (ECs) depends on caveolae. Consistent with previous reports, MP challenge activated ECs as evidenced by upregulation of intracellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 upregulation was mediated by activation of NF-κB, Poly [ADP-ribose] polymerase 1 (PARP-1) and the epidermal growth factor receptor (EGFR). This response was absent in ECs lacking caveolin-1/caveolae. To test whether caveolae-mediated endocytosis, a dynamin-2 dependent process, is a feature of the proinflammatory response, EC’s were pretreated with the dynamin-2 inhibitor dynasore. Similar to observations in cells lacking caveolin-1, inhibition of endocytosis significantly attenuated MPs effects including, EGFR phosphorylation, activation of NF-κB and upregulation of ICAM-1 expression. Thus, our results indicate that caveolae play a role in mediating the pro-inflammatory signaling pathways which lead to EC activation in response to MPs.
Collapse
Affiliation(s)
- Allison M. Andrews
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Victor Rizzo
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Yaiw KC, Mohammad AA, Costa H, Taher C, Badrnya S, Assinger A, Wilhelmi V, Ananthaseshan S, Estekizadeh A, Davoudi B, Ovchinnikova O, Shlyakhto E, Rafnsson A, Khan Z, Butler L, Rahbar A, Pernow J, Söderberg-Nauclér C. Human Cytomegalovirus Up-Regulates Endothelin Receptor Type B: Implication for Vasculopathies? Open Forum Infect Dis 2015; 2:ofv155. [PMID: 26719843 PMCID: PMC4690546 DOI: 10.1093/ofid/ofv155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Background. Both endothelin receptor type B ([ETBR], a G protein-coupled receptor that mediates the vascular effects of the potent vasoconstrictor endothelin-1) and human cytomegalovirus ([HCMV], a ubiquitous herpesvirus) have been implicated in the pathogenesis of cardiovascular disease (CVD). The effects of HCMV infection on ETBR expression are unknown. We hypothesized that HCMV may contribute to the pathogenesis of CVD via ETBR modulation. Methods. Human CMV effects on ETBR were studied in vitro in endothelial cells (ECs) and smooth muscle cells (SMCs) and ex vivo in human carotid plaque tissue specimens. Expression of ETBR and viral immediate-early were quantified using quantitative polymerase chain reaction. Functional consequences after ETBR blockade in ECs were examined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide proliferation, wound healing, tube formation, and flow adhesion assays. Results. Human CMV is capable of upregulating both ETBR mRNA and protein expression in ECs and SMCs. The ETBR was also abundantly expressed in ECs, foam cells, and SMCs, and, more importantly, in HCMV-positive cells in human carotid plaques. Endothelin receptor type B blockade led to decreased proliferation and reduced tumor necrosis factor α-mediated leukocyte recruitment in both uninfected and HCMV-infected ECs. Direct HCMV infection was antimigratory and antiangiogenic in ECs. Conclusions. Human CMV may contribute to CVD via ETBR induction.
Collapse
Affiliation(s)
- Koon-Chu Yaiw
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| | - Abdul-Aleem Mohammad
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| | - Helena Costa
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| | - Chato Taher
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| | - Sigrun Badrnya
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet ; Center for Physiology and Pharmacology , Institute of Physiology, Medical University of Vienna , Austria
| | - Alice Assinger
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet ; Center for Physiology and Pharmacology , Institute of Physiology, Medical University of Vienna , Austria
| | - Vanessa Wilhelmi
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| | - Sharan Ananthaseshan
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| | - Atosa Estekizadeh
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| | - Belghis Davoudi
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| | - Olga Ovchinnikova
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| | - Eugene Shlyakhto
- Almazov Federal Heart, Blood and Endocrinology Centre , St . Petersburg , Russia
| | - Arnar Rafnsson
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet ; Department of Medicine, Cardiology Unit , Karolinska University Hospital Solna , Stockholm , Sweden
| | - Zahidul Khan
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| | - Lynn Butler
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| | - Afsar Rahbar
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| | - John Pernow
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet ; Department of Medicine, Cardiology Unit , Karolinska University Hospital Solna , Stockholm , Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Solna, Center for Molecular Medicine, Microbial Pathogenesis Unit , Karolinska University Hospital, Karolinska Institutet
| |
Collapse
|
16
|
Kuver A, Smith SS. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization. Brain Res Bull 2015; 120:131-43. [PMID: 26592470 DOI: 10.1016/j.brainresbull.2015.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/15/2015] [Accepted: 11/18/2015] [Indexed: 11/25/2022]
Abstract
Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM-100 μM, IC50=∼1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM)+THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ∼60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil.
Collapse
Affiliation(s)
- Aarti Kuver
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA.
| |
Collapse
|
17
|
Navarro G, Borroto-Escuela DO, Fuxe K, Franco R. Potential of caveolae in the therapy of cardiovascular and neurological diseases. Front Physiol 2014; 5:370. [PMID: 25324780 PMCID: PMC4179688 DOI: 10.3389/fphys.2014.00370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/08/2014] [Indexed: 12/25/2022] Open
Abstract
Caveolae are membrane micro-domains enriched in cholesterol, sphingolipids and caveolins, which are transmembrane proteins with a hairpin-like structure. Caveolae participate in receptor-mediated trafficking of cell surface receptors and receptor-mediated signaling. Furthermore, caveolae participate in clathrin-independent endocytosis of membrane receptors. On the one hand, caveolins are involved in vascular and cardiac dysfunction. Also, neurological abnormalities in caveolin-1 knockout mice and a link between caveolin-1 gene haplotypes and neurodegenerative diseases have been reported. The aim of this article is to present the rationale for considering caveolae as potential targets in cardiovascular and neurological diseases.
Collapse
Affiliation(s)
- Gemma Navarro
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Rafael Franco
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
18
|
Ryu YS, Lee IH, Suh JH, Park SC, Oh S, Jordan LR, Wittenberg NJ, Oh SH, Jeon NL, Lee B, Parikh AN, Lee SD. Reconstituting ring-rafts in bud-mimicking topography of model membranes. Nat Commun 2014; 5:4507. [PMID: 25058275 PMCID: PMC4124864 DOI: 10.1038/ncomms5507] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/25/2014] [Indexed: 01/30/2023] Open
Abstract
During vesicular trafficking and release of enveloped viruses, the budding and fission processes dynamically remodel the donor cell membrane in a protein- or a lipid-mediated manner. In all cases, in addition to the generation or relief of the curvature stress, the buds recruit specific lipids and proteins from the donor membrane through restricted diffusion for the development of a ring-type raft domain of closed topology. Here, by reconstituting the bud topography in a model membrane, we demonstrate the preferential localization of cholesterol- and sphingomyelin-enriched microdomains in the collar band of the bud-neck interfaced with the donor membrane. The geometrical approach to the recapitulation of the dynamic membrane reorganization, resulting from the local radii of curvatures from nanometre-to-micrometre scales, offers important clues for understanding the active roles of the bud topography in the sorting and migration machinery of key signalling proteins involved in membrane budding.
Collapse
Affiliation(s)
- Yong-Sang Ryu
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600, Republic of Korea
| | - In-Ho Lee
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600, Republic of Korea
| | - Jeng-Hun Suh
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600, Republic of Korea
| | - Seung Chul Park
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600, Republic of Korea
| | - Soojung Oh
- World Class University (WCU) Program of Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | - Luke R. Jordan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Nathan J. Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Sang-Hyun Oh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Noo Li Jeon
- World Class University (WCU) Program of Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | - Byoungho Lee
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600, Republic of Korea
| | - Atul N. Parikh
- Department of Biomedical Engineering and Chemical Engineering and Materials Science, University of California, Davis, California 95616, USA
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore
| | - Sin-Doo Lee
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600, Republic of Korea
| |
Collapse
|
19
|
Abstract
There are many pathways of endocytosis at the cell surface that apparently operate at the same time. With the advent of new molecular genetic and imaging tools, an understanding of the different ways by which a cell may endocytose cargo is increasing by leaps and bounds. In this review we explore pathways of endocytosis that occur in the absence of clathrin. These are referred to as clathrin-independent endocytosis (CIE). Here we primarily focus on those pathways that function at the small scale in which some have distinct coats (caveolae) and others function in the absence of specific coated intermediates. We follow the trafficking itineraries of the material endocytosed by these pathways and finally discuss the functional roles that these pathways play in cell and tissue physiology. It is likely that these pathways will play key roles in the regulation of plasma membrane area and tension and also control the availability of membrane during cell migration.
Collapse
Affiliation(s)
- Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, and Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, Queensland 4072, Brisbane, Australia
| | - Julie G Donaldson
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
20
|
Immunomodulatory glycan lacto-N-fucopentaose III requires clathrin-mediated endocytosis to induce alternative activation of antigen-presenting cells. Infect Immun 2014; 82:1891-903. [PMID: 24566617 DOI: 10.1128/iai.01293-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of alternative activation of antigen-presenting cells (APCs) is largely unknown. Lacto-N-fucopentaose III (LNFPIII) is a biologically conserved pentasaccharide that contains the Lewis(x) trisaccharide. LNFPIII conjugates and schistosome egg antigens, which contain the Lewis(x) trisaccharide, drive alternative activation of APCs and induce anti-inflammatory responses in vivo, preventing inflammation-based diseases, including psoriasis, transplant organ rejection, and metabolic disease. In this study, we show that LNFPIII conjugates and schistosome egg antigens interact with APCs via a receptor-mediated process, requiring internalization of these molecules through a clathrin/dynamin-dependent but caveolus-independent endocytic pathway. Using inhibitors/small interfering RNA (siRNA) against dynamin and clathrin, we show for the first time that endocytosis of Lewis(x)-containing glycans is required to drive alternative maturation of antigen-presenting cells and Th2 immune responses. We identified mouse SIGNR-1 as a cell surface receptor for LNFPIII conjugates. Elimination of SIGNR-1 showed no effect on uptake of LNFPIII conjugates, suggesting that other receptors bind to and facilitate uptake of LNFPIII conjugates. We demonstrate that disruption of actin filaments partially prevented the entry of LNFPIII conjugates into APCs and that LNFPIII colocalizes with both early and late endosomal markers and follows the classical endosomal pathway leading to lysosome maturation. The results of this study show that the ability of LNFPIII to induce alternative activation utilizes a receptor-mediated process that requires a dynamin-dependent endocytosis. Thus, key steps have been defined in the previously unknown mechanism of alternative activation that ultimately leads to induction of anti-inflammatory responses.
Collapse
|
21
|
Tull SP, Bevins A, Kuravi SJ, Satchell SC, Al-Ani B, Young SP, Harper L, Williams JM, Rainger GE, Savage COS. PR3 and elastase alter PAR1 signaling and trigger vWF release via a calcium-independent mechanism from glomerular endothelial cells. PLoS One 2012; 7:e43916. [PMID: 22952809 PMCID: PMC3430624 DOI: 10.1371/journal.pone.0043916] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022] Open
Abstract
Neutrophil proteases, proteinase-3 (PR3) and elastase play key roles in glomerular endothelial cell (GEC) injury during glomerulonephritis. Endothelial protease-activated receptors (PARs) are potential serine protease targets in glomerulonephritis. We investigated whether PAR1/2 are required for alterations in GEC phenotype that are mediated by PR3 or elastase during active glomerulonephritis. Endothelial PARs were assessed by flow cytometry. Thrombin, trypsin and agonist peptides for PAR1 and PAR2, TFLLR-NH(2) and SLIGKV-NH(2,) respectively, were used to assess alterations in PAR activation induced by PR3 or elastase. Endothelial von Willebrand Factor (vWF)release and calcium signaling were used as PAR activation markers. Both PR3 and elastase induced endothelial vWF release, with elastase inducing the highest response. PAR1 peptide induced GEC vWF release to the same extent as PR3. However, knockdown of PARs by small interfering RNA showed that neither PAR1 nor PAR2 activation caused PR3 or elastase-mediated vWF release. Both proteases interacted with and disarmed surface GEC PAR1, but there was no detectable interaction with cellular PAR2. Neither protease induced a calcium response in GEC. Therefore, PAR signaling and serine protease-induced alterations in endothelial function modulate glomerular inflammation via parallel but independent pathways.
Collapse
Affiliation(s)
- Samantha P Tull
- Schools of Immunity and Infection, College of Medicine and Dentistry, University of Birmingham, Birmingham, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|