1
|
Chu X, Suo Z, Wang J. Investigating the trade-off between folding and function in a multidomain Y-family DNA polymerase. eLife 2020; 9:60434. [PMID: 33079059 PMCID: PMC7641590 DOI: 10.7554/elife.60434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/16/2020] [Indexed: 01/01/2023] Open
Abstract
The way in which multidomain proteins fold has been a puzzling question for decades. Until now, the mechanisms and functions of domain interactions involved in multidomain protein folding have been obscure. Here, we develop structure-based models to investigate the folding and DNA-binding processes of the multidomain Y-family DNA polymerase IV (DPO4). We uncover shifts in the folding mechanism among ordered domain-wise folding, backtracking folding, and cooperative folding, modulated by interdomain interactions. These lead to ‘U-shaped’ DPO4 folding kinetics. We characterize the effects of interdomain flexibility on the promotion of DPO4–DNA (un)binding, which probably contributes to the ability of DPO4 to bypass DNA lesions, which is a known biological role of Y-family polymerases. We suggest that the native topology of DPO4 leads to a trade-off between fast, stable folding and tight functional DNA binding. Our approach provides an effective way to quantitatively correlate the roles of protein interactions in conformational dynamics at the multidomain level.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, New York, United States
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, United States
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, New York, United States
| |
Collapse
|
2
|
Raper AT, Reed AJ, Suo Z. Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion. Chem Rev 2018; 118:6000-6025. [DOI: 10.1021/acs.chemrev.7b00685] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Austin T. Raper
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew J. Reed
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Lee E, Fowler JD, Suo Z, Wu Z. Backbone assignment of the binary complex of the full length Sulfolobus solfataricus DNA polymerase IV and DNA. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:39-43. [PMID: 27738883 DOI: 10.1007/s12104-016-9717-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/08/2016] [Indexed: 05/03/2023]
Abstract
Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase, bypasses a wide range of DNA lesions in vitro and in vivo. In this paper, we report the backbone chemical shift assignments of the full length Dpo4 in its binary complex with a 14/14-mer DNA substrate. Upon DNA binding, several β-stranded regions in the isolated catalytic core and little finger/linker fragments of Dpo4 become more structured. This work serves as a foundation for our ongoing investigation of conformational dynamics of Dpo4 and future determination of the first solution structures of a DNA polymerase and its binary and ternary complexes.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Chemistry and Biochemistry, The Ohio State University, 876 Biological Sciences, 484 West 12th Ave., Columbus, OH, 43210, USA
| | - Jason D Fowler
- Department of Chemistry and Biochemistry, The Ohio State University, 876 Biological Sciences, 484 West 12th Ave., Columbus, OH, 43210, USA
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, 876 Biological Sciences, 484 West 12th Ave., Columbus, OH, 43210, USA
| | - Zhengrong Wu
- Department of Chemistry and Biochemistry, The Ohio State University, 876 Biological Sciences, 484 West 12th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Raper AT, Reed AJ, Gadkari VV, Suo Z. Advances in Structural and Single-Molecule Methods for Investigating DNA Lesion Bypass and Repair Polymerases. Chem Res Toxicol 2016; 30:260-269. [PMID: 28092942 DOI: 10.1021/acs.chemrestox.6b00342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Innovative advances in X-ray crystallography and single-molecule biophysics have yielded unprecedented insight into the mechanisms of DNA lesion bypass and damage repair. Time-dependent X-ray crystallography has been successfully applied to view the bypass of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG), a major oxidative DNA lesion, and the incorporation of the triphosphate form, 8-oxo-dGTP, catalyzed by human DNA polymerase β. Significant findings of these studies are highlighted here, and their contributions to the current mechanistic understanding of mutagenic translesion DNA synthesis (TLS) and base excision repair are discussed. In addition, single-molecule Förster resonance energy transfer (smFRET) techniques have recently been adapted to investigate nucleotide binding and incorporation opposite undamaged dG and 8-oxoG by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. The mechanistic response of Dpo4 to a DNA lesion and the complex smFRET technique are described here. In this perspective, we also describe how time-dependent X-ray crystallography and smFRET can be used to achieve the spatial and temporal resolutions necessary to answer some of the mechanistic questions that remain in the fields of TLS and DNA damage repair.
Collapse
Affiliation(s)
- Austin T Raper
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Andrew J Reed
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Varun V Gadkari
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Raper AT, Suo Z. Investigation of Intradomain Motions of a Y-Family DNA Polymerase during Substrate Binding and Catalysis. Biochemistry 2016; 55:5832-5844. [PMID: 27685341 DOI: 10.1021/acs.biochem.6b00878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA polymerases catalyze DNA synthesis through a stepwise kinetic mechanism that begins with binding to DNA, followed by selection, binding, and incorporation of a nucleotide into an elongating primer. It is hypothesized that subtle active site adjustments in a polymerase to align reactive moieties limit the rate of correct nucleotide incorporation. DNA damage can impede this process for many DNA polymerases, causing replication fork stalling, genetic mutations, and potentially cell death. However, specialized Y-family DNA polymerases are structurally evolved to efficiently bypass DNA damage in vivo, albeit at the expense of replication fidelity. Dpo4, a model Y-family polymerase from Sulfolobus solfataricus, has been well-studied kinetically, structurally, and computationally, which yielded a mechanistic understanding of how the Y-family DNA polymerases achieve their unique catalytic properties. We previously employed a real-time Förster resonance energy transfer (FRET) technique to characterize the global conformational motions of Dpo4 during DNA binding as well as nucleotide binding and incorporation by monitoring changes in distance between sites on the polymerase and DNA, and even between domains of Dpo4. Here, we extend the utility of our FRET methodology to observe conformational transitions within individual domains of Dpo4 during DNA binding and nucleotide incorporation. The results of this novel, intradomain FRET approach unify findings from many studies to fully clarify the complex DNA binding mechanism of Dpo4. Furthermore, intradomain motions in the Finger domain during nucleotide binding and incorporation, for the first time, report on the rate-limiting step of a single-nucleotide addition catalyzed by Dpo4.
Collapse
Affiliation(s)
- Austin T Raper
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States.,Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States.,Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Raper AT, Gadkari VV, Maxwell BA, Suo Z. Single-Molecule Investigation of Response to Oxidative DNA Damage by a Y-Family DNA Polymerase. Biochemistry 2016; 55:2187-96. [PMID: 27002236 DOI: 10.1021/acs.biochem.6b00166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Y-family DNA polymerases are known to bypass DNA lesions in vitro and in vivo and rescue stalled DNA replication machinery. Dpo4, a well-characterized model Y-family DNA polymerase, is known to catalyze translesion synthesis across a variety of DNA lesions including 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxo-dG). Our previous X-ray crystallographic, stopped-flow Förster resonance energy transfer (FRET), and computational simulation studies have revealed that Dpo4 samples a variety of global conformations as it recognizes and binds DNA. Here we employed single-molecule FRET (smFRET) techniques to investigate the kinetics and conformational dynamics of Dpo4 when it encountered 8-oxo-dG, a major oxidative lesion with high mutagenic potential. Our smFRET data indicated that Dpo4 bound the DNA substrate in multiple conformations, as suggested by three observed FRET states. An incoming correct or incorrect nucleotide affected the distribution and stability of these states with the correct nucleotide completely shifting the equilibrium toward a catalytically competent complex. Furthermore, the presence of the 8-oxo-dG lesion in the DNA stabilized both the binary and ternary complexes of Dpo4. Thus, our smFRET analysis provided a basis for the enhanced efficiency which Dpo4 is known to exhibit when replicating across from 8-oxo-dG.
Collapse
Affiliation(s)
- Austin T Raper
- Department of Chemistry and Biochemistry, †Ohio State Biochemistry Program and ‡Ohio State Biophysics Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Varun V Gadkari
- Department of Chemistry and Biochemistry, †Ohio State Biochemistry Program and ‡Ohio State Biophysics Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Brian A Maxwell
- Department of Chemistry and Biochemistry, †Ohio State Biochemistry Program and ‡Ohio State Biophysics Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, †Ohio State Biochemistry Program and ‡Ohio State Biophysics Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Nevin P, Lu X, Zhang K, Engen JR, Beuning PJ. Noncognate DNA damage prevents the formation of the active conformation of the Y-family DNA polymerases DinB and DNA polymerase κ. FEBS J 2015; 282:2646-60. [PMID: 25899385 DOI: 10.1111/febs.13304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023]
Abstract
Y-family DNA polymerases are specialized to copy damaged DNA, and are associated with increased mutagenesis, owing to their low fidelity. It is believed that the mechanism of nucleotide selection by Y-family DNA polymerases involves conformational changes preceding nucleotidyl transfer, but there is limited experimental evidence for such structural changes. In particular, nucleotide-induced conformational changes in bacterial or eukaryotic Y-family DNA polymerases have, to date, not been extensively characterized. Using hydrogen-deuterium exchange mass spectrometry, we demonstrate here that the Escherichia coli Y-family DNA polymerase DinB and its human ortholog DNA polymerase κ undergo a conserved nucleotide-induced conformational change in the presence of undamaged DNA and the correct incoming nucleotide. Notably, this holds true for damaged DNA containing N(2) -furfuryl-deoxyguanosine, which is efficiently copied by these two polymerases, but not for damaged DNA containing the major groove modification O(6) -methyl-deoxyguanosine, which is a poor substrate. Our observations suggest that DinB and DNA polymerase κ utilize a common mechanism for nucleotide selection involving a conserved prechemical conformational transition promoted by the correct nucleotide and only preferred DNA substrates.
Collapse
Affiliation(s)
- Philip Nevin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Xueguang Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
8
|
Gahlon HL, Boby ML, Sturla SJ. O6-alkylguanine postlesion DNA synthesis is correct with the right complement of hydrogen bonding. ACS Chem Biol 2014; 9:2807-14. [PMID: 25259614 DOI: 10.1021/cb500415q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ability of a DNA polymerase to replicate DNA beyond a mismatch containing a DNA lesion during postlesion DNA synthesis (PLS) can be a contributing factor to mutagenesis. In this study, we investigate the ability of Dpo4, a Y-family DNA polymerase from Sulfolobus solfataricus, to perform PLS beyond the pro-mutagenic DNA adducts O(6)-benzylguanine (O(6)-BnG) and O(6)-methylguanine (O(6)-MeG). Here, O(6)-BnG and O(6)-MeG were paired opposite artificial nucleosides that were structurally altered to systematically test the influence of hydrogen bonding and base pair size and shape on O(6)-alkylguanine PLS. Dpo4-mediated PLS was more efficient past pairs containing Benzi than pairs containing the other artificial nucleoside probes. Based on steady-state kinetic analysis, frequencies of mismatch extension were 7.4 × 10(-3) and 1.5 × 10(-3) for Benzi:O(6)-MeG and Benzi:O(6)-BnG pairs, respectively. Correct extension was observed when O(6)-BnG and O(6)-MeG were paired opposite the smaller nucleoside probes Benzi and BIM; conversely, Dpo4 did not extend past the larger nucleoside probes, Peri and Per, placed opposite O(6)-BnG and O(6)-MeG. Interestingly, Benzi was extended with high fidelity by Dpo4 when it was paired opposite O(6)-BnG and O(6)-MeG but not opposite G. These results indicate that hydrogen bonding is an important noncovalent interaction that influences the fidelity and efficiency of Dpo4 to perform high-fidelity O(6)-alkylguanine PLS.
Collapse
Affiliation(s)
- Hailey L. Gahlon
- Department of Health Sciences
and Technology, Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Melissa L. Boby
- Department of Health Sciences
and Technology, Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Shana J. Sturla
- Department of Health Sciences
and Technology, Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
9
|
Lerner E, Orevi T, Ben Ishay E, Amir D, Haas E. Kinetics of fast changing intramolecular distance distributions obtained by combined analysis of FRET efficiency kinetics and time-resolved FRET equilibrium measurements. Biophys J 2014; 106:667-76. [PMID: 24507607 DOI: 10.1016/j.bpj.2013.11.4500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/13/2013] [Accepted: 11/05/2013] [Indexed: 10/25/2022] Open
Abstract
Detailed studies of the mechanisms of macromolecular conformational transitions such as protein folding are enhanced by analysis of changes of distributions for intramolecular distances during the transitions. Time-resolved Förster resonance energy transfer (FRET) measurements yield such data, but the more readily available kinetics of mean FRET efficiency changes cannot be analyzed in terms of changes in distances because of the sixth-power dependence on the mean distance. To enhance the information obtained from mean FRET efficiency kinetics, we combined the analyses of FRET efficiency kinetics and equilibrium trFRET experiments. The joint analysis enabled determination of transient distance distributions along the folding reaction both in cases where a two-state transition is valid and in some cases consisting of a three-state scenario. The procedure and its limits were tested by simulations. Experimental data obtained from stopped-flow measurements of the refolding of Escherichia coli adenylate kinase were analyzed. The distance distributions between three double-labeled mutants, in the collapsed transient state, were determined and compared to those obtained experimentally using the double-kinetics technique. The proposed method effectively provides information on distance distributions of kinetically accessed intermediates of fast conformational transitions induced by common relaxation methods.
Collapse
Affiliation(s)
- E Lerner
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - T Orevi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - E Ben Ishay
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - D Amir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - E Haas
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900.
| |
Collapse
|
10
|
Dynamic conformational change regulates the protein-DNA recognition: an investigation on binding of a Y-family polymerase to its target DNA. PLoS Comput Biol 2014; 10:e1003804. [PMID: 25188490 PMCID: PMC4154647 DOI: 10.1371/journal.pcbi.1003804] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/10/2014] [Indexed: 12/02/2022] Open
Abstract
Protein-DNA recognition is a central biological process that governs the life of cells. A protein will often undergo a conformational transition to form the functional complex with its target DNA. The protein conformational dynamics are expected to contribute to the stability and specificity of DNA recognition and therefore may control the functional activity of the protein-DNA complex. Understanding how the conformational dynamics influences the protein-DNA recognition is still challenging. Here, we developed a two-basin structure-based model to explore functional dynamics in Sulfolobus solfataricus DNA Y-family polymerase IV (DPO4) during its binding to DNA. With explicit consideration of non-specific and specific interactions between DPO4 and DNA, we found that DPO4-DNA recognition is comprised of first 3D diffusion, then a short-range adjustment sliding on DNA and finally specific binding. Interestingly, we found that DPO4 is under a conformational equilibrium between multiple states during the binding process and the distributions of the conformations vary at different binding stages. By modulating the strength of the electrostatic interactions, the flexibility of the linker, and the conformational dynamics in DPO4, we drew a clear picture on how DPO4 dynamically regulates the DNA recognition. We argue that the unique features of flexibility and conformational dynamics in DPO4-DNA recognition have direct implications for low-fidelity translesion DNA synthesis, most of which is found to be accomplished by the Y-family DNA polymerases. Our results help complete the description of the DNA synthesis process for the Y-family polymerases. Furthermore, the methods developed here can be widely applied for future investigations on how various proteins recognize and bind specific DNA substrates. Protein-DNA recognition is crucial for many key biological processes in cells. Protein often undergoes large-scale conformational change during DNA recognition. However, the physical and global understanding of flexible protein-DNA binding is still challenging. Here, we developed a theoretical approach to investigate binding of a Y-family DNA polymerase to its target DNA during the DNA synthesis process. The results of electrostatic-controlled multi-step DNA binding process accompanied with multi-state conformational transition of protein occurring throughout are in remarkable agreement with experiments. During the process of protein-DNA recognition, the flexibility is found to facilitate both the conformational transition of protein (intra-chain dynamics) and DNA binding (inter-chain dynamics) simultaneously. Therefore, we provided a quantitative description of protein-DNA binding mechanism that flexibility or conformational change regulates DNA recognition dynamically, leading to high efficiency and specificity of function for protein-DNA recognition.
Collapse
|
11
|
Xu C, Maxwell BA, Suo Z. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis. J Mol Biol 2014; 426:2901-2917. [PMID: 24931550 DOI: 10.1016/j.jmb.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/02/2014] [Accepted: 06/07/2014] [Indexed: 11/15/2022]
Abstract
Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been performed to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol.
Collapse
Affiliation(s)
- Cuiling Xu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Brian A Maxwell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Maxwell BA, Suo Z. Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases. Biochemistry 2014; 53:2804-14. [PMID: 24716482 PMCID: PMC4018064 DOI: 10.1021/bi5000405] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
The
kinetic mechanisms by which DNA polymerases catalyze DNA replication
and repair have long been areas of active research. Recently discovered
Y-family DNA polymerases catalyze the bypass of damaged DNA bases
that would otherwise block replicative DNA polymerases and stall replication
forks. Unlike DNA polymerases from the five other families, the Y-family
DNA polymerases have flexible, solvent-accessible active sites that
are able to tolerate various types of damaged template bases and allow
for efficient lesion bypass. Their promiscuous active sites, however,
also lead to fidelities that are much lower than those observed for
other DNA polymerases and give rise to interesting mechanistic properties.
Additionally, the Y-family DNA polymerases have several other unique
structural features and undergo a set of conformational changes during
substrate binding and catalysis different from those observed for
replicative DNA polymerases. In recent years, pre-steady-state kinetic
methods have been extensively employed to reveal a wealth of information
about the catalytic properties of these fascinating noncanonical DNA
polymerases. Here, we review many of the recent findings on the kinetic
mechanisms of DNA polymerization with undamaged and damaged DNA substrates
by the Y-family DNA polymerases, and the conformational dynamics employed
by these error-prone enzymes during catalysis.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and ‡Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
13
|
Maxwell BA, Xu C, Suo Z. Conformational dynamics of a Y-family DNA polymerase during substrate binding and catalysis as revealed by interdomain Förster resonance energy transfer. Biochemistry 2014; 53:1768-78. [PMID: 24568554 PMCID: PMC3985488 DOI: 10.1021/bi5000146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Numerous kinetic, structural, and
theoretical studies have established
that DNA polymerases adjust their domain structures to enclose nucleotides
in their active sites and then rearrange critical active site residues
and substrates for catalysis, with the latter conformational change
acting to kinetically limit the correct nucleotide incorporation rate.
Additionally, structural studies have revealed a large conformational
change between the apoprotein and the DNA–protein binary state
for Y-family DNA polymerases. In previous studies [Xu, C., Maxwell,
B. A., Brown, J. A., Zhang, L., and Suo, Z. (2009) PLoS Biol.7, e1000225], a real-time Förster resonance
energy transfer (FRET) method was developed to monitor the global
conformational transitions of DNA polymerase IV from Sulfolobus
solfataricus (Dpo4), a prototype Y-family enzyme, during
nucleotide binding and incorporation by measuring changes in distance
between locations on the enzyme and the DNA substrate. To elucidate
further details of the conformational transitions of Dpo4 during substrate
binding and catalysis, in this study, the real-time FRET technique
was used to monitor changes in distance between various pairs of locations
in the protein itself. In addition to providing new insight into the
conformational changes as revealed in previous studies, the results
here show that the previously described conformational change between
the apo and DNA-bound states of Dpo4 occurs in a mechanistic step
distinct from initial formation or dissociation of the binary complex
of Dpo4 and DNA.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and ‡Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | | | |
Collapse
|
14
|
Gahlon HL, Schweizer WB, Sturla SJ. Tolerance of base pair size and shape in postlesion DNA synthesis. J Am Chem Soc 2013; 135:6384-7. [PMID: 23560524 DOI: 10.1021/ja311434s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The influence of base pair size and shape on the fidelity of DNA polymerase-mediated extension past lesion-containing mispairs was examined. Primer extension analysis was performed with synthetic nucleosides paired opposite the pro-mutagenic DNA lesion O(6)-benzylguanine (O(6)-BnG). These data indicate that the error-prone DNA polymerase IV (Dpo4) inefficiently extended past the larger Peri:O(6)-BnG base pair, and in contrast, error-free extension was observed for the smaller BIM:O(6)-BnG base pair. Steady-state kinetic analysis revealed that Dpo4 catalytic efficiency was strongly influenced by the primer:template base pair. Compared to the C:G pair, a 1.9- and 79,000-fold reduction in Dpo4 efficiency was observed for terminal C:O(6)-BnG and BIM:G base pairs respectively. These results demonstrate the impact of geometrical size and shape on polymerase-mediated mispair extension.
Collapse
Affiliation(s)
- Hailey L Gahlon
- Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | | | | |
Collapse
|
15
|
Maxwell BA, Suo Z. Single-molecule investigation of substrate binding kinetics and protein conformational dynamics of a B-family replicative DNA polymerase. J Biol Chem 2013; 288:11590-600. [PMID: 23463511 DOI: 10.1074/jbc.m113.459982] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replicative DNA polymerases use a complex, multistep mechanism for efficient and accurate DNA replication as uncovered by intense kinetic and structural studies. Recently, single-molecule fluorescence spectroscopy has provided new insights into real time conformational dynamics utilized by DNA polymerases during substrate binding and nucleotide incorporation. We have used single-molecule Förster resonance energy transfer techniques to investigate the kinetics and conformational dynamics of Sulfolobus solfataricus DNA polymerase B1 (PolB1) during DNA and nucleotide binding. Our experiments demonstrate that this replicative polymerase can bind to DNA in at least three conformations, corresponding to an open and closed conformation of the finger domain as well as a conformation with the DNA substrate bound to the exonuclease active site of PolB1. Additionally, our results show that PolB1 can transition between these conformations without dissociating from a primer-template DNA substrate. Furthermore, we show that the closed conformation is promoted by a matched incoming dNTP but not by a mismatched dNTP and that mismatches at the primer-template terminus lead to an increase in the binding of the DNA to the exonuclease site. Our analysis has also revealed new details of the biphasic dissociation kinetics of the polymerase-DNA binary complex. Notably, comparison of the results obtained in this study with PolB1 with those from similar single-molecule studies with an A-family DNA polymerase suggests mechanistic differences between these polymerases. In summary, our findings provide novel mechanistic insights into protein conformational dynamics and substrate binding kinetics of a high fidelity B-family DNA polymerase.
Collapse
Affiliation(s)
- Brian A Maxwell
- Biophysics Program and the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
16
|
Chandani S, Loechler EL. Structural model of the Y-Family DNA polymerase V/RecA mutasome. J Mol Graph Model 2012; 39:133-44. [PMID: 23266508 DOI: 10.1016/j.jmgm.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/19/2012] [Accepted: 09/29/2012] [Indexed: 11/18/2022]
Abstract
To synthesize past DNA damaged by chemicals or radiation, cells have lesion bypass DNA polymerases (DNAPs), most of which are in the Y-Family. One class of Y-Family DNAPs includes DNAP η in eukaryotes and DNAP V in bacteria, which have low fidelity when replicating undamaged DNA. In Escherchia coli, DNAP V is carefully regulated to insure it is active for lesion bypass only, and one mode of regulation involves interaction of the polymerase subunit (UmuC) and two regulatory subunits (UmuD') with a RecA-filament bound to ss-DNA. Taking a docking approach, ∼150,000 unique orientations involving UmuC, UmuD' and RecA were evaluated to generate models, one of which was judged best able to rationalize the following published findings. (1) In the UmuD'(2)C/RecA-filament model, R64-UmuC interacts with S117-RecA, which is known to be at the UmuC/RecA interface. (2) At the model's UmuC/RecA interface, UmuC has three basic amino acids (K59/R63/R64) that anchor it to RecA. No other Y-Family DNAP has three basic amino acids clustered in this region, making it a plausible site for UmuC to form its unique interaction with RecA. (3) In the model, residues N32/N33/D34 of UmuC form a second interface with RecA, which is consistent with published findings. (4) Active UmuD' is generated when 24 amino acids in the N-terminal tail of UmuD are proteolyzed, which occurs when UmuD(2)C binds the RecA-filament. When UmuD is included in an UmuD(2)C/RecA-filament model, plausible UmuD/RecA contacts guide the UmuD cleavage site (C24/G25) into the UmuD proteolysis active site (S60/K97). One contact involves E11-UmuD interacting with R243-RecA, where the latter is known to be important for UmuD cleavage. (5) The UmuD(2)C/RecA-filament model rationalizes published findings that at least some UmuD-to-UmuD' cleavage occurs intermolecularly. (6) Active DNAP V is known to be the heterotetramer UmuD'(2)C/RecA, a model of which can be generated by a simple rearrangement of the RecA monomer at the 3'-end of the RecA-filament. The rearranged UmuD'(2)C/RecA model rationalizes published findings about UmuD' residues in proximity to RecA. In summary, docking and molecular simulations are used to develop an UmuD'(2)C/RecA model, whose structure rationalizes much of the known properties of the active form of DNA polymerase V.
Collapse
Affiliation(s)
- Sushil Chandani
- Biology Department, Boston University, Boston, MA 02215, United States
| | | |
Collapse
|
17
|
Riedl J, Ménová P, Pohl R, Orság P, Fojta M, Hocek M. GFP-like fluorophores as DNA labels for studying DNA-protein interactions. J Org Chem 2012; 77:8287-93. [PMID: 22935023 DOI: 10.1021/jo301684b] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
GFP-like 3,5-difluoro-4-hydroxybenzylideneimidazolinone (FBI) and 3,5-bis(methoxy)-4-hydroxy-benzylideneimidazolinone (MBI) labels were attached to dCTP through a propargyl linker, and the resulting labeled nucleotides (dC(MBI)TP and dC(FBI)TP) were used for a facile enzymatic synthesis of oligonucleotide or DNA probes by polymerase-catalyzed primer extension. The MBI/FBI-labeled DNA probes exerted low fluorescence that was increased 2-3.2 times upon binding of a protein. The concept was demonstrated on sequence-specific binding of p53 to dsDNA and on nonspecific binding of single strand binding protein to an oligonucleotide. The FBI label was also used for a time-resolved experiment monitoring a single-nucleotide incorporation followed by primer extension by Vent(exo-) polymerase.
Collapse
Affiliation(s)
- Jan Riedl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
18
|
Sherrer SM, Maxwell BA, Pack LR, Fiala KA, Fowler JD, Zhang J, Suo Z. Identification of an unfolding intermediate for a DNA lesion bypass polymerase. Chem Res Toxicol 2012; 25:1531-40. [PMID: 22667759 DOI: 10.1021/tx3002115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sulfolobus solfataricus DNA Polymerase IV (Dpo4), a prototype Y-family DNA polymerase, has been well characterized biochemically and biophysically at 37 °C or lower temperatures. However, the physiological temperature of the hyperthermophile S. solfataricus is approximately 80 °C. With such a large discrepancy in temperature, the in vivo relevance of these in vitro studies of Dpo4 has been questioned. Here, we employed circular dichroism spectroscopy and fluorescence-based thermal scanning to investigate the secondary structural changes of Dpo4 over a temperature range from 26 to 119 °C. Dpo4 was shown to display a high melting temperature characteristic of hyperthermophiles. Unexpectedly, the Little Finger domain of Dpo4, which is only found in the Y-family DNA polymerases, was shown to be more thermostable than the polymerase core. More interestingly, Dpo4 exhibited a three-state cooperative unfolding profile with an unfolding intermediate. The linker region between the Little Finger and Thumb domains of Dpo4 was found to be a source of structural instability. Through site-directed mutagenesis, the interactions between the residues in the linker region and the Palm domain were identified to play a critical role in the formation of the unfolding intermediate. Notably, the secondary structure of Dpo4 was not altered when the temperature was increased from 26 to 87.5 °C. Thus, in addition to providing structural insights into the thermal stability and an unfolding intermediate of Dpo4, our work also validated the relevance of the in vitro studies of Dpo4 performed at temperatures significantly lower than 80 °C.
Collapse
Affiliation(s)
- Shanen M Sherrer
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Manderville RA, Omumi A, Rankin née Schlitt KM, Wilson KA, Millen AL, Wetmore SD. Fluorescent C-linked C8-aryl-guanine probe for distinguishing syn from anti structures in duplex DNA. Chem Res Toxicol 2012; 25:1271-82. [PMID: 22667322 DOI: 10.1021/tx300152q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The synthesis and optical properties of the carbon (C)-linked C(8)-(2"-benzo[b]thienyl)-2'-deoxyguanosine ((Bth)dG), which acts as a fluorescent reporter of syn versus anti glycosidic conformations in duplex DNA, are described. In the syn-conformation, the probe stabilizes a G:G mismatch, emits at ∼385 nm (excitation ∼285 nm), and shows an induced circular dichroism (ICD) signal at ∼320 nm. Molecular dynamics (MD) simulations predict a wedge (W)-conformation for the mismatched duplex with the C(8)-benzo[b]thienyl moiety residing in the minor groove. In contrast, the probe destabilizes the duplex when base paired with its normal pyrimidine partner C. With flanking purine bases, a major groove B-type duplex is favored with (Bth)dG present in the anti-conformation emitting at ∼413 nm (excitation ∼326 nm) and no ICD signal. However, with flanking pyrimidine bases, (Bth)dG adopts the syn-conformation when base paired with C, and MD simulations predict a base-displaced stacked (S)-conformation, with the opposing C flipped out of the helix. The different duplex (B-, S-, and W-) conformers formed upon incorporation of (Bth)dG are known to play a critical role in the biological activity of N-linked C8-dG adducts formed by arylamine carcinogens. Bulky environment-sensitive fluorescent C(8)-dG adducts that mimic the duplex structures formed by carcinogens may be useful in luminescence-based DNA polymerase assays.
Collapse
|
20
|
Maxwell BA, Suo Z. Kinetic basis for the differing response to an oxidative lesion by a replicative and a lesion bypass DNA polymerase from Sulfolobus solfataricus. Biochemistry 2012; 51:3485-96. [PMID: 22471521 DOI: 10.1021/bi300246r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG), a major oxidative DNA lesion, exhibits ambiguous coding potential and can lead to genomic mutations. Tight control of 8-oxoG bypass during DNA replication is therefore extremely important in hyperthermophiles as the rate of oxidative damage to DNA is significantly increased at high temperatures. Here we employed pre-steady state kinetics to compare the kinetic responses to an 8-oxoG lesion of the main replicative and lesion bypass DNA polymerases of Sulfolobus solfataricus, a hyperthermophilic crenarchaeon. Upon encountering 8-oxoG, PolB1, the replicative DNA polymerase, was completely stalled by the lesion, as its 3' → 5' exonuclease activity increased significantly and outcompeted its slowed polymerase activity at and near the lesion site. In contrast, our results show that Dpo4, the lone Y-family DNA polymerase in S. solfataricus, can faithfully and efficiently incorporate nucleotides opposite 8-oxoG and extend from an 8-oxoG:C base pair with a mechanism similar to that observed for the replication of undamaged DNA. Furthermore, we show that the stalling of PolB1 at the lesion site can be relieved by Dpo4. Finally, the 3' → 5' exonuclease activity of PolB1 was the highest when 8-oxoG was mispaired with an incorrect nucleotide and could therefore correct rare mistakes made by Dpo4 during 8-oxoG bypass. These results provide a kinetic basis for a potential polymerase switching mechanism during 8-oxoG bypass whereby Dpo4 can switch with the stalled PolB1 at the replication fork to bypass and extend the damaged DNA and then switch off of the DNA substrate to allow continued replication of undamaged DNA by the more faithful PolB1.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|