1
|
Márquez-Moñino MÁ, Ortega-García R, Whitfield H, Riley AM, Infantes L, Garrett SW, Shipton ML, Brearley CA, Potter BVL, González B. Substrate promiscuity of inositol 1,4,5-trisphosphate kinase driven by structurally-modified ligands and active site plasticity. Nat Commun 2024; 15:1502. [PMID: 38374076 PMCID: PMC10876669 DOI: 10.1038/s41467-024-45917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
D-myo-inositol 1,4,5-trisphosphate (InsP3) is a fundamental second messenger in cellular Ca2+ mobilization. InsP3 3-kinase, a highly specific enzyme binding InsP3 in just one mode, phosphorylates InsP3 specifically at its secondary 3-hydroxyl group to generate a tetrakisphosphate. Using a chemical biology approach with both synthetised and established ligands, combining synthesis, crystallography, computational docking, HPLC and fluorescence polarization binding assays using fluorescently-tagged InsP3, we have surveyed the limits of InsP3 3-kinase ligand specificity and uncovered surprisingly unforeseen biosynthetic capacity. Structurally-modified ligands exploit active site plasticity generating a helix-tilt. These facilitated uncovering of unexpected substrates phosphorylated at a surrogate extended primary hydroxyl at the inositol pseudo 3-position, applicable even to carbohydrate-based substrates. Crystallization experiments designed to allow reactions to proceed in situ facilitated unequivocal characterization of the atypical tetrakisphosphate products. In summary, we define features of InsP3 3-kinase plasticity and substrate tolerance that may be more widely exploitable.
Collapse
Affiliation(s)
- María Ángeles Márquez-Moñino
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Raquel Ortega-García
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Hayley Whitfield
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew M Riley
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Lourdes Infantes
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Shane W Garrett
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Megan L Shipton
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Barry V L Potter
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Beatriz González
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
2
|
An ATP-responsive metabolic cassette comprised of inositol tris/tetrakisphosphate kinase 1 (ITPK1) and inositol pentakisphosphate 2-kinase (IPK1) buffers diphosphosphoinositol phosphate levels. Biochem J 2021; 477:2621-2638. [PMID: 32706850 PMCID: PMC7115839 DOI: 10.1042/bcj20200423] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022]
Abstract
Inositol polyphosphates are ubiquitous molecular signals in metazoans, as are their pyrophosphorylated derivatives that bear a so-called ‘high-energy’ phosphoanhydride bond. A structural rationale is provided for the ability of Arabidopsis inositol tris/tetrakisphosphate kinase 1 to discriminate between symmetric and enantiomeric substrates in the production of diverse symmetric and asymmetric myo-inositol phosphate and diphospho-myo-inositol phosphate (inositol pyrophosphate) products. Simple tools are applied to chromatographic resolution and detection of known and novel diphosphoinositol phosphates without resort to radiolabeling approaches. It is shown that inositol tris/tetrakisphosphate kinase 1 and inositol pentakisphosphate 2-kinase comprise a reversible metabolic cassette converting Ins(3,4,5,6)P4 into 5-InsP7 and back in a nucleotide-dependent manner. Thus, inositol tris/tetrakisphosphate kinase 1 is a nexus of bioenergetics status and inositol polyphosphate/diphosphoinositol phosphate metabolism. As such, it commands a role in plants that evolution has assigned to a different class of enzyme in mammalian cells. The findings and the methods described will enable a full appraisal of the role of diphosphoinositol phosphates in plants and particularly the relative contribution of reversible inositol phosphate hydroxykinase and inositol phosphate phosphokinase activities to plant physiology.
Collapse
|
3
|
Poon JSY, Le Fevre RE, Carr JP, Hanke DE, Murphy AM. Inositol hexakisphosphate biosynthesis underpins PAMP-triggered immunity to Pseudomonas syringae pv. tomato in Arabidopsis thaliana but is dispensable for establishment of systemic acquired resistance. MOLECULAR PLANT PATHOLOGY 2020; 21:376-387. [PMID: 31876373 PMCID: PMC7036367 DOI: 10.1111/mpp.12902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 05/27/2023]
Abstract
Phytic acid (inositol hexakisphosphate, InsP6 ) is an important phosphate store and signal molecule necessary for maintenance of basal resistance to plant pathogens. Arabidopsis thaliana ('arabidopsis') has three genes encoding myo-inositol phosphate synthases (IPS1-3), the enzymes that catalyse conversion of glucose-6-phosphate to InsP, the first step in InsP6 biosynthesis. There is one gene for inositol-(1,3,4,5,6)-pentakisphosphate 2-kinase (IPK1), which catalyses the final step. Previously, we showed that mutation of IPS2 and IPK1 but not IPS1 increased susceptibility to pathogens. Our aim was to better understand the InsP6 biosynthesis pathway in plant defence. Here we found that the susceptibility of arabidopsis (Col-0) to virulent and avirulent Pseudomonas syringae pv. tomato was also increased in ips3 and ips2/3 double mutants. Also, ipk1 plants had compromised expression of local acquired resistance induced by treatment with the pathogen-derived molecular pattern (PAMP) molecule flg22, but were unaffected in other responses to flg22, including Ca2+ influx and the oxidative burst, seedling root growth inhibition, and transcriptional up-regulation of the PAMP-triggered genes MITOGEN-ACTIVATED PROTEIN KINASE (MPK) 3, MPK11, CINNAMYL ALCOHOL DEHYDROGENASE 5, and FLG22-INDUCED RECEPTOR-LIKE KINASE 1. IPK1 mutation did not prevent the induction of systemic acquired resistance by avirulent P. syringae. Also, ips2 and ips2/3 double mutant plants, like ipk1, were hypersusceptible to P. syringae but were not compromised in flg22-induced local acquired resistance. The results support the role of InsP6 biosynthesis enzymes in effective basal resistance and indicate that there is more than one basal resistance mechanism dependent upon InsP6 biosynthesis.
Collapse
Affiliation(s)
| | - Ruth E. Le Fevre
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| | - David E. Hanke
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
4
|
Whitfield H, Gilmartin M, Baker K, Riley AM, Godage HY, Potter BVL, Hemmings AM, Brearley CA. A Fluorescent Probe Identifies Active Site Ligands of Inositol Pentakisphosphate 2-Kinase. J Med Chem 2018; 61:8838-8846. [PMID: 30160967 DOI: 10.1021/acs.jmedchem.8b01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inositol pentakisphosphate 2-kinase catalyzes the phosphorylation of the axial 2-OH of myo-inositol 1,3,4,5,6-pentakisphosphate for de novo synthesis of myo-inositol hexakisphosphate. Disruption of inositol pentakisphosphate 2-kinase profoundly influences cellular processes, from nuclear mRNA export and phosphate homeostasis in yeast and plants to establishment of left-right asymmetry in zebrafish. We elaborate an active site fluorescent probe that allows high throughput screening of Arabidopsis inositol pentakisphosphate 2-kinase. We show that the probe has a binding constant comparable to the Km values of inositol phosphate substrates of this enzyme and can be used to prospect for novel substrates and inhibitors of inositol phosphate kinases. We identify several micromolar Ki inhibitors and validate this approach by solving the crystal structure of protein in complex with purpurogallin. We additionally solve structures of protein in complexes with epimeric higher inositol phosphates. This probe may find utility in characterization of a wide family of inositol phosphate kinases.
Collapse
Affiliation(s)
- Hayley Whitfield
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Megan Gilmartin
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Kendall Baker
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , U.K
| | - H Y Godage
- Medicinal Chemistry, Department of Pharmacy and Pharmacology , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , U.K.,Medicinal Chemistry, Department of Pharmacy and Pharmacology , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| | - Andrew M Hemmings
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Charles A Brearley
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| |
Collapse
|
5
|
Whitfield H, Riley AM, Diogenous S, Godage HY, Potter BVL, Brearley CA. Simple synthesis of 32P-labelled inositol hexakisphosphates for study of phosphate transformations. PLANT AND SOIL 2018; 427:149-161. [PMID: 29880988 PMCID: PMC5984642 DOI: 10.1007/s11104-017-3315-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/12/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS In many soils inositol hexakisphosphate in its various forms is as abundant as inorganic phosphate. The organismal and geochemical processes that exchange phosphate between inositol hexakisphosphate and other pools of soil phosphate are poorly defined, as are the organisms and enzymes involved. We rationalized that simple enzymic synthesis of inositol hexakisphosphate labeled with 32P would greatly enable study of transformation of soil inositol phosphates when combined with robust HPLC separations of different inositol phosphates. METHODS We employed the enzyme inositol pentakisphosphate 2-kinase, IP5 2-K, to transfer phosphate from [γ-32P]ATP to axial hydroxyl(s) of myo-, neo- and 1D-chiro-inositol phosphate substrates. RESULTS 32P-labeled inositol phosphates were separated by anion exchange HPLC with phosphate eluents. Additional HPLC methods were developed to allow facile separation of myo-, neo-, 1D-chiro- and scyllo-inositol hexakisphosphate on acid gradients. CONCLUSIONS We developed enzymic approaches that allow the synthesis of labeled myo-inositol 1,[32P]2,3,4,5,6-hexakisphosphate; neo-inositol 1,[32P]2,3,4,[32P]5,6 - hexakisphosphate and 1D-chiro-inositol [32P]1,2,3,4,5,[32P]6-hexakisphosphate. Additionally, we describe HPLC separations of all inositol hexakisphosphates yet identified in soils, using a collection of soil inositol phosphates described in the seminal historic studies of Cosgrove, Tate and coworkers. Our study will enable others to perform radiotracer experiments to analyze fluxes of phosphate to/from inositol hexakisphosphates in different soils.
Collapse
Affiliation(s)
- Hayley Whitfield
- School of Biological Sciences, University of Norwich, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Andrew M. Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT UK
| | - Soulla Diogenous
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Himali Y. Godage
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT UK
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Charles A. Brearley
- School of Biological Sciences, University of Norwich, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
6
|
Oh J, Lee DG, Bahn YS, Rhee S. Crystal structure of inositol 1,3,4,5,6-pentakisphosphate 2-kinase from Cryptococcus neoformans. J Struct Biol 2017; 200:118-123. [PMID: 28919350 DOI: 10.1016/j.jsb.2017.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/19/2022]
Abstract
The fungal pathogen Cryptococcus neoformans is a causative agent of meningoencephalitis in humans. For its pathogenicity, the inositol polyphosphate biosynthetic pathway plays critical roles. Recently, Ipk1 from C. neoformans (CnIpk1) was identified as an inositol 1,3,4,5,6-pentakisphosphate 2-kinase that catalyzes the phosphorylation of IP5 to form IP6, a substrate for subsequent reaction to produce inositol pyrophosphates, such as PP-IP5/IP7. Furthermore, it was shown that deletion of IPK1 significantly reduces the virulence of C. neoformans, indicating that Ipk1 is a major virulence contributor. In this study, we determined a crystal structure of the apo-form of CnIpk1 at 2.35Å resolution, the first structure for a fungal Ipk1, using a single-wavelength anomalous dispersion method. Even with a low sequence similarity of 26-28%, its overall structure resembles two other Ipk1 orthologs from Arabidopsis thaliana (AtIpk1) and Mus musculus (MmIpk1), and the most crucial residues in the active site are conserved. Unlike AtIpk1 and MmIpk1, however, metal-binding sites for structural stabilization and conformational variations are absent in CnIpk1. The binding environments for substrate IP5 could be inferred by the two different binding sites for sulfate ion in CnIpk1. Taken together, these observations suggest structural similarities and discrepancies for fungal Ipk1 among members of the Ipk1 family and provide structural information for the possible development of drug design for treatment of cryptococcosis.
Collapse
Affiliation(s)
- Juntaek Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Dong-Gi Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sangkee Rhee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Franco-Echevarría E, Sanz-Aparicio J, Troffer-Charlier N, Poterszman A, González B. Crystallization and Preliminary X-Ray Diffraction Analysis of a Mammal Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase. Protein J 2017; 36:240-248. [PMID: 28429156 DOI: 10.1007/s10930-017-9717-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5 2-K) is an enzyme that catalyses the formation of phytic acid (IP6) from IP5 and ATP. In mammals, IP6 is involved in multiple events such as DNA repair and mRNA edit and it is the precursor of inositol pyrophosphates, emerging compounds shown to have an essential role in apoptosis. In addition, IP5 2-K have functions in cells independently of its catalytic activity, for example in rRNA biogenesis. We pursue the structure determination of a mammal IP5 2-K by Protein Crystallography. For this purpose, we have designed protocols for recombinant expression and purification of Mus musculus IP5 2-K (mIP5 2-K). The recombinant protein has been expressed in two different hosts, E. coli and insect cells using the LSLt and GST fusion proteins, respectively. Both macromolecule preparations yielded crystals of similar quality. Best crystals diffracted to 4.3 Å (E. coli expression) and 4.0 Å (insect cells expression) maximum resolution. Both type of crystals belong to space group P212121 with an estimated solvent content compatible with the presence of two molecules per asymmetric unit. Gel filtration experiments are in agreement with this enzyme being a monomer. Crystallographic data analysis is currently undergoing.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- Departament of Crystallography and Structural Biology, Insitute of Physical-Chemistry "Rocasolano," CSIC, Serrano 119, 28006, Madrid, Spain
| | - Julia Sanz-Aparicio
- Departament of Crystallography and Structural Biology, Insitute of Physical-Chemistry "Rocasolano," CSIC, Serrano 119, 28006, Madrid, Spain
| | - Nathalie Troffer-Charlier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France
| | - Beatriz González
- Departament of Crystallography and Structural Biology, Insitute of Physical-Chemistry "Rocasolano," CSIC, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
8
|
Acebrón I, Plaza-Vinuesa L, de Las Rivas B, Muñoz R, Cumella J, Sánchez-Sancho F, Mancheño JM. Structural basis of the substrate specificity and instability in solution of a glycosidase from Lactobacillus plantarum. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1227-1236. [PMID: 28734976 DOI: 10.1016/j.bbapap.2017.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 01/06/2023]
Abstract
Statistics from structural genomics initiatives reveal that around 50-55% of the expressed, non-membrane proteins cannot be purified and therefore structurally characterized due to solubility problems, which emphasized protein solubility as one of the most serious concerns in structural biology projects. Lactobacillus plantarum CECT 748T produces an aggregation-prone glycosidase (LpBgl) that we crystallized previously. However, this result could not be reproduced due to protein instability and therefore further high-resolution structural analyses of LpBgl were impeded. The obtained crystals of LpBgl diffracted up to 2.48Å resolution and permitted to solve the structure of the enzyme. Analysis of the active site revealed a pocket for phosphate-binding with an uncommon architecture, where a phosphate molecule is tightly bound suggesting the recognition of 6-phosphoryl sugars. In agreement with this observation, we showed that LpBgl exhibited 6-phospho-β-glucosidase activity. Combination of structural and mass spectrometry results revealed the formation of dimethyl arsenic adducts on the solvent exposed cysteine residues Cys211 and Cys292. Remarkably, the double mutant Cys211Ser/Cys292Ser resulted stable in solution at high concentrations indicating that the marginal solubility of LpBgl can be ascribed specifically to these two cysteine residues. The 2.30Å crystal structure of this double mutant showed no disorder around the newly incorporated serine residues and also loop rearrangements within the phosphate-binding site. Notably, LpBgl could be prepared at high yield by proteolytic digestion of the fusion protein LSLt-LpBgl, which raises important questions about potential hysteretic processes upon its initial production as an enzyme fused to a solubility enhancer.
Collapse
Affiliation(s)
- Iván Acebrón
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
| | - Laura Plaza-Vinuesa
- Laboratory of Bacterial Biotechnology, Institute of Food Science and Technology and Nutrition (ICTAN), CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Blanca de Las Rivas
- Laboratory of Bacterial Biotechnology, Institute of Food Science and Technology and Nutrition (ICTAN), CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Rosario Muñoz
- Laboratory of Bacterial Biotechnology, Institute of Food Science and Technology and Nutrition (ICTAN), CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - J Cumella
- Institute of Medicinal Chemistry (CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - F Sánchez-Sancho
- Institute of Medicinal Chemistry (CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - José Miguel Mancheño
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain.
| |
Collapse
|
9
|
Franco-Echevarría E, Sanz-Aparicio J, Brearley CA, González-Rubio JM, González B. The crystal structure of mammalian inositol 1,3,4,5,6-pentakisphosphate 2-kinase reveals a new zinc-binding site and key features for protein function. J Biol Chem 2017; 292:10534-10548. [PMID: 28450399 PMCID: PMC5481561 DOI: 10.1074/jbc.m117.780395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Indexed: 12/28/2022] Open
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinases (IP5 2-Ks) are part of a family of enzymes in charge of synthesizing inositol hexakisphosphate (IP6) in eukaryotic cells. This protein and its product IP6 present many roles in cells, participating in mRNA export, embryonic development, and apoptosis. We reported previously that the full-length IP5 2-K from Arabidopsis thaliana is a zinc metallo-enzyme, including two separated lobes (the N- and C-lobes). We have also shown conformational changes in IP5 2-K and have identified the residues involved in substrate recognition and catalysis. However, the specific features of mammalian IP5 2-Ks remain unknown. To this end, we report here the first structure for a murine IP5 2-K in complex with ATP/IP5 or IP6. Our structural findings indicated that the general folding in N- and C-lobes is conserved with A. thaliana IP5 2-K. A helical scaffold in the C-lobe constitutes the inositol phosphate-binding site, which, along with the participation of the N-lobe, endows high specificity to this protein. However, we also noted large structural differences between the orthologues from these two eukaryotic kingdoms. These differences include a novel zinc-binding site and regions unique to the mammalian IP5 2-K, as an unexpected basic patch on the protein surface. In conclusion, our findings have uncovered distinct features of a mammalian IP5 2-K and set the stage for investigations into protein-protein or protein-RNA interactions important for IP5 2-K function and activity.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain and
| | - Julia Sanz-Aparicio
- From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain and
| | - Charles A Brearley
- the School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Juana M González-Rubio
- From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain and
| | - Beatriz González
- From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain and
| |
Collapse
|
10
|
Acebrón I, Ruiz-Estrada AG, Luengo Y, Morales MDP, Guisán JM, Mancheño JM. Oriented Attachment of Recombinant Proteins to Agarose-Coated Magnetic Nanoparticles by Means of a β-Trefoil Lectin Domain. Bioconjug Chem 2016; 27:2734-2743. [DOI: 10.1021/acs.bioconjchem.6b00504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iván Acebrón
- Departamento
de Cristalografía y Biología Estructural, Instituto
Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Amalia G. Ruiz-Estrada
- Departamento
de Biomateriales y Materiales Bioinspirados, Instituto de Ciencia
de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz,
3, Cantoblanco, 28049 Madrid, Spain
| | - Yurena Luengo
- Departamento
de Biomateriales y Materiales Bioinspirados, Instituto de Ciencia
de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz,
3, Cantoblanco, 28049 Madrid, Spain
| | - María del Puerto Morales
- Departamento
de Biomateriales y Materiales Bioinspirados, Instituto de Ciencia
de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz,
3, Cantoblanco, 28049 Madrid, Spain
| | - José Manuel Guisán
- Departamento
de Biocatálisis, Instituto de Catálisis, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Miguel Mancheño
- Departamento
de Cristalografía y Biología Estructural, Instituto
Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
11
|
Gosein V, Miller GJ. Conformational stability of inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) dictates its substrate selectivity. J Biol Chem 2013; 288:36788-95. [PMID: 24165122 DOI: 10.1074/jbc.m113.512731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) converts inositol 1,3,4,5,6-pentakisphosphate(IP5) to inositol hexakisphosphate (IP6). IPK1 shares structural similarity with protein kinases and is suspected to employ a similar mechanism of activation. Previous studies revealed roles for the 1- and 3-phosphates of IP5 in IPK1 activation and revealed that the N-lobe of IPK1 is unstable in the absence of inositol phosphate (IP). Here, we demonstrate the link between IPK1 substrate specificity and the stability of its N-lobe. Limited proteolysis of IPK1 revealed that N-lobe stability is dependent on the presence of the 1-phosphate of the substrate, whereas overall stability of IPK1 was increased in ternary complexes with nucleotide and IPs possessing 1- and 3-phosphates that engage the N-lobe of IPK1. Thus, the 1- and 3-phosphates possess dual roles in both IPK1 activation and IPK1 stability. To test whether kinase stability directly contributed to substrate selectivity of the kinase, we engineered IPK1 mutants with disulfide bonds that artificially stabilized the N-lobe in an IP-independent manner thereby mimicking its substrate-bound state in the absence of IP. IPK1 E82C/S142C exhibited a DTT-sensitive 5-fold increase in kcat for 3,4,5,6-inositol tetrakisphosphate (3,4,5,6-IP4) as compared with wild-type IPK1. The crystal structure of the IPK1 E82C/S142C mutant confirmed the presence of the disulfide bond and revealed a small shift in the N-lobe. Finally, we determined that IPK1 E82C/S142C is substantially more stable than wild-type IPK1 under nonreducing conditions, revealing that increased stability of IPK1 E82C/S142C correlates with changes in substrate specificity by allowing IPs lacking the stabilizing 1-phosphate to be used. Taken together, our results show that IPK1 substrate selection is linked to the ability of each potential substrate to stabilize IPK1.
Collapse
Affiliation(s)
- Varin Gosein
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
12
|
Gosein V, Miller GJ. Roles of phosphate recognition in inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) substrate binding and activation. J Biol Chem 2013; 288:26908-13. [PMID: 23884422 PMCID: PMC3772240 DOI: 10.1074/jbc.m113.487777] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol phosphate kinases (IPKs) sequentially phosphorylate inositol phosphates (IPs) to yield a group of small signaling molecules involved in diverse cellular processes. IPK1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase) phosphorylates inositol 1,3,4,5,6-pentakisphosphate to inositol 1,2,3,4,5,6-hexakisphosphate; however, the mechanism of IP recognition employed by IPK1 is currently unresolved. We demonstrated previously that IPK1 possesses an unstable N-terminal lobe in the absence of IP, which led us to propose that the phosphate profile of the IP was linked to stabilization of IPK1. Here, we describe a systematic study to determine the roles of the 1-, 3-, 5-, and 6-phosphate groups of inositol 1,3,4,5,6-pentakisphosphate in IP binding and IPK1 activation. The 5- and 6-phosphate groups were the most important for IP binding to IPK1, and the 1- and 3-phosphate groups were more important for IPK1 activation than the others. Moreover, we demonstrate that there are three critical residues (Arg-130, Lys-170, and Lys-411) necessary for IPK1 activity. Arg-130 is the only substrate-binding N-terminal lobe residue that can render IPK1 inactive; its 1-phosphate is critical for full IPK1 activity and for stabilization of the active conformation of IPK1. Taken together, our results support the model for recognition of the IP substrate by IPK1 in which (i) the 4-, 5-, and 6-phosphates are initially recognized by the C-terminal lobe, and subsequently, (ii) the interaction between the 1-phosphate and Arg-130 stabilizes the N-terminal lobe and activates IPK1. This model of IP recognition, believed to be unique among IPKs, could be exploited for selective inhibition of IPK1 in future studies that investigate the role of higher IPs.
Collapse
Affiliation(s)
- Varin Gosein
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | |
Collapse
|