1
|
Peralta-Castro A, Cordoba-Andrade F, Díaz-Quezada C, Sotelo-Mundo R, Winkler R, Brieba LG. The plant organellar primase-helicase directs template recognition and primosome assembly via its zinc finger domain. BMC PLANT BIOLOGY 2023; 23:467. [PMID: 37803262 PMCID: PMC10557236 DOI: 10.1186/s12870-023-04477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The mechanisms and regulation for DNA replication in plant organelles are largely unknown, as few proteins involved in replisome assembly have been biochemically studied. A primase-helicase dubbed Twinkle (T7 gp4-like protein with intramitochondrial nucleoid localization) unwinds double-stranded DNA in metazoan mitochondria and plant organelles. Twinkle in plants is a bifunctional enzyme with an active primase module. This contrast with animal Twinkle in which the primase module is inactive. The organellar primase-helicase of Arabidopsis thaliana (AtTwinkle) harbors a primase module (AtPrimase) that consists of an RNA polymerase domain (RPD) and a Zn + + finger domain (ZFD). RESULTS Herein, we investigate the mechanisms by which AtTwinkle recognizes its templating sequence and how primer synthesis and coupling to the organellar DNA polymerases occurs. Biochemical data show that the ZFD of the AtPrimase module is responsible for template recognition, and this recognition is achieved by residues N163, R166, and K168. The role of the ZFD in template recognition was also corroborated by swapping the RPDs of bacteriophage T7 primase and AtPrimase with their respective ZFDs. A chimeric primase harboring the ZFD of T7 primase and the RPD of AtPrimase synthesizes ribonucleotides from the T7 primase recognition sequence and conversely, a chimeric primase harboring the ZFD of AtPrimase and the RPD of T7 primase synthesizes ribonucleotides from the AtPrimase recognition sequence. A chimera harboring the RPDs of bacteriophage T7 and the ZBD of AtTwinkle efficiently synthesizes primers for the plant organellar DNA polymerase. CONCLUSIONS We conclude that the ZFD is responsible for recognizing a single-stranded sequence and for primer hand-off into the organellar DNA polymerases active site. The primase activity of plant Twinkle is consistent with phylogeny-based reconstructions that concluded that Twinkle´s last eukaryotic common ancestor (LECA) was an enzyme with primase and helicase activities. In plants, the primase domain is active, whereas the primase activity was lost in metazoans. Our data supports the notion that AtTwinkle synthesizes primers at the lagging-strand of the organellar replication fork.
Collapse
Affiliation(s)
- Antolin Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico
| | - Francisco Cordoba-Andrade
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico
| | - Rogerio Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas Núm. 46, Ejido a La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Robert Winkler
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico.
| |
Collapse
|
2
|
Zhang H. Mechanisms of mutagenesis induced by DNA lesions: multiple factors affect mutations in translesion DNA synthesis. Crit Rev Biochem Mol Biol 2020; 55:219-251. [PMID: 32448001 DOI: 10.1080/10409238.2020.1768205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmental mutagens lead to mutagenesis. However, the mechanisms are very complicated and not fully understood. Environmental mutagens produce various DNA lesions, including base-damaged or sugar-modified DNA lesions, as well as epigenetically modified DNA. DNA polymerases produce mutation spectra in translesion DNA synthesis (TLS) through misincorporation of incorrect nucleotides, frameshift deletions, blockage of DNA replication, imbalance of leading- and lagging-strand DNA synthesis, and genome instability. Motif or subunit in DNA polymerases further affects the mutations in TLS. Moreover, protein interactions and accessory proteins in DNA replisome also alter mutations in TLS, demonstrated by several representative DNA replisomes. Finally, in cells, multiple DNA polymerases or cellular proteins collaborate in TLS and reduce in vivo mutagenesis. Summaries and perspectives were listed. This review shows mechanisms of mutagenesis induced by DNA lesions and the effects of multiple factors on mutations in TLS in vitro and in vivo.
Collapse
Affiliation(s)
- Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zou Z, Liang T, Xu Z, Xie J, Zhang S, Chen W, Wan S, Ling Y, Zhang H. Protein interactions in T7 DNA replisome inhibit the bypass of abasic site by DNA polymerase. Mutagenesis 2019; 34:355-361. [PMID: 31318416 DOI: 10.1093/mutage/gez013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/14/2019] [Indexed: 11/13/2022] Open
Abstract
Abasic site as a common DNA lesion blocks DNA replication and is highly mutagenic. Protein interactions in T7 DNA replisome facilitate DNA replication and translesion DNA synthesis. However, bypass of an abasic site by T7 DNA replisome has never been investigated. In this work, we used T7 DNA replisome and T7 DNA polymerase alone as two models to study DNA replication on encountering an abasic site. Relative to unmodified DNA, abasic site strongly inhibited primer extension and completely blocked strand-displacement DNA synthesis, due to the decreased fraction of enzyme-DNA productive complex and the reduced average extension rates. Moreover, abasic site at DNA fork inhibited the binding of DNA polymerase or helicase onto fork and the binding between polymerase and helicase at fork. Notably and unexpectedly, we found DNA polymerase alone bypassed an abasic site on primer/template (P/T) substrate more efficiently than did polymerase and helicase complex bypass it at fork. The presence of gp2.5 further inhibited the abasic site bypass at DNA fork. Kinetic analysis showed that this inhibition at fork relative to that on P/T was due to the decreased fraction of productive complex instead of the average extension rates. Therefore, we found that protein interactions in T7 DNA replisome inhibited the bypass of DNA lesion, different from all the traditional concept that protein interactions or accessory proteins always promote DNA replication and DNA damage bypass, providing new insights in translesion DNA synthesis performed by DNA replisome.
Collapse
Affiliation(s)
- Zhenyu Zou
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tingting Liang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhongyan Xu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayu Xie
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shuming Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Weina Chen
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Siqi Wan
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,The Key Laboratory of Environment and Health Among Universities and Colleges in Fujian, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Zou Z, Chen Z, Cai Y, Yang H, Du K, Li B, Jiang Y, Zhang H. Consecutive ribonucleoside monophosphates on template inhibit DNA replication by T7 DNA polymerase or by T7 polymerase and helicase complex. Biochimie 2018; 151:128-138. [DOI: 10.1016/j.biochi.2018.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022]
|
5
|
Zou Z, Chen Z, Xue Q, Xu Y, Xiong J, Yang P, Le S, Zhang H. Protein Interactions in the T7 DNA Replisome Facilitate DNA Damage Bypass. Chembiochem 2018; 19:1740-1749. [PMID: 29900646 DOI: 10.1002/cbic.201800203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 01/07/2023]
Abstract
The DNA replisome inevitably encounters DNA damage during DNA replication. The T7 DNA replisome contains a DNA polymerase (gp5), the processivity factor thioredoxin (trx), a helicase-primase (gp4), and a ssDNA-binding protein (gp2.5). T7 protein interactions mediate this DNA replication. However, whether the protein interactions could promote DNA damage bypass is still little addressed. In this study, we investigated strand-displacement DNA synthesis past 8-oxoG or O6 -MeG lesions at the synthetic DNA fork by the T7 DNA replisome. DNA damage does not obviously affect the binding affinities between helicase, polymerase, and DNA fork. Relative to unmodified G, both 8-oxoG and O6 -MeG-as well as GC-rich template sequence clusters-inhibit strand-displacement DNA synthesis and produce partial extension products. Relative to the gp4 ΔC-tail, gp4 promotes DNA damage bypass. The presence of gp2.5 also promotes it. Thus, the interactions of polymerase with helicase and ssDNA-binding protein facilitate DNA damage bypass. Accessory proteins in other complicated DNA replisomes also facilitate bypassing DNA damage in similar manner. This work provides new mechanistic information relating to DNA damage bypass by the DNA replisome.
Collapse
Affiliation(s)
- Zhenyu Zou
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No.17 People's South Road, Chengdu, 6100041, P. R. China
| | - Ze Chen
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No.17 People's South Road, Chengdu, 6100041, P. R. China
| | - Qizhen Xue
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No.17 People's South Road, Chengdu, 6100041, P. R. China
| | - Ying Xu
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No.17 People's South Road, Chengdu, 6100041, P. R. China
| | - Jingyuan Xiong
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No.17 People's South Road, Chengdu, 6100041, P. R. China
| | - Ping Yang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511439, P. R. China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Huidong Zhang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No.17 People's South Road, Chengdu, 6100041, P. R. China
| |
Collapse
|
6
|
Pseudomonas aeruginosa phage PaP1 DNA polymerase is an A-family DNA polymerase demonstrating ssDNA and dsDNA 3′–5′ exonuclease activity. Virus Genes 2016; 52:538-51. [DOI: 10.1007/s11262-016-1329-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
|
7
|
Abstract
I spent my childhood and adolescence in North and South Carolina, attended Duke University, and then entered Duke Medical School. One year in the laboratory of George Schwert in the biochemistry department kindled my interest in biochemistry. After one year of residency on the medical service of Duke Hospital, chaired by Eugene Stead, I joined the group of Arthur Kornberg at Stanford Medical School as a postdoctoral fellow. Two years later I accepted a faculty position at Harvard Medical School, where I remain today. During these 50 years, together with an outstanding group of students, postdoctoral fellows, and collaborators, I have pursued studies on DNA replication. I have experienced the excitement of discovering a number of important enzymes in DNA replication that, in turn, triggered an interest in the dynamics of a replisome. My associations with industry have been stimulating and fostered new friendships. I could not have chosen a better career.
Collapse
Affiliation(s)
- Charles C Richardson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
8
|
Huang J, Zhao Y, Liu H, Huang D, Cheng X, Zhao W, Taylor IA, Liu J, Peng YL. Substitution of tryptophan 89 with tyrosine switches the DNA binding mode of PC4. Sci Rep 2015; 5:8789. [PMID: 25739870 PMCID: PMC4350104 DOI: 10.1038/srep08789] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/04/2015] [Indexed: 11/17/2022] Open
Abstract
PC4, a well-known general transcription cofactor, has multiple functions in transcription and DNA repair. Residue W89, is engaged in stacking interactions with DNA in PC4, but substituted by tyrosine in some PC4 orthologous proteins. In order to understand the consequences and reveal the molecular details of this substitution we have determined the crystal structures of the PC4 orthologue MoSub1 and a PC4 W89Y mutant in complex with DNA. In the structure of MoSub1-DNA complex, Y74 interacts directly with a single nucleotide of oligo DNA. By comparison, the equivalent residue, W89 in wild type PC4 interacts with two nucleotides and the base of the second nucleotide has distinct orientation relative to that of the first one. A hydrophobic patch around W89 that favours interaction with two nucleotides is not formed in the PC4 W89Y mutant. Therefore, the change of the surface hydrophobicity around residue 89 results in a difference between the modes of DNA interaction. These results indicate that the conserved Y74 in MoSub1 or W89 in PC4, are not only key residues in making specific interactions with DNA but also required to determine the DNA binding mode of PC4 proteins.
Collapse
Affiliation(s)
- Jinguang Huang
- 1] State key Laboratory of Agrobiotechnology, China Agricultural University, No2 Yunamingyuanxilu, Beijing. 100193, China [2] MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing. 100193, China [3] College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong. 266109, China
| | - Yanxiang Zhao
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing. 100193, China
| | - Huaian Liu
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing. 100193, China
| | - Dan Huang
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing. 100193, China
| | - Xiankun Cheng
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing. 100193, China
| | - Wensheng Zhao
- 1] State key Laboratory of Agrobiotechnology, China Agricultural University, No2 Yunamingyuanxilu, Beijing. 100193, China [2] MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing. 100193, China
| | - Ian A Taylor
- Molecular Structure, MRC-NIMR, The Ridgeway, London, NW7 1AA, United Kingdom
| | - Junfeng Liu
- MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing. 100193, China
| | - You-Liang Peng
- 1] State key Laboratory of Agrobiotechnology, China Agricultural University, No2 Yunamingyuanxilu, Beijing. 100193, China [2] MOA Key Laboratory of Plant Pathology, China Agricultural University, No2 Yunamingyuanxilu, Beijing. 100193, China
| |
Collapse
|