1
|
Reinders A, Ward J. SUC1's mode of low-affinity transport. NATURE PLANTS 2023; 9:856-857. [PMID: 37231041 DOI: 10.1038/s41477-023-01431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Anke Reinders
- Graduate Education, College of Continuing and Professional Studies, University of Minnesota Twin Cities, St. Paul, MN, 55108, USA.
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota Twin Cities, St. Paul, MN, 55108, USA.
| | - John Ward
- Graduate Education, College of Continuing and Professional Studies, University of Minnesota Twin Cities, St. Paul, MN, 55108, USA.
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota Twin Cities, St. Paul, MN, 55108, USA.
| |
Collapse
|
2
|
Kanstrup C, Jimidar CC, Tomas J, Cutolo G, Crocoll C, Schuler M, Klahn P, Tatibouët A, Nour-Eldin HH. Artificial Fluorescent Glucosinolates (F-GSLs) Are Transported by the Glucosinolate Transporters GTR1/2/3. Int J Mol Sci 2023; 24:ijms24020920. [PMID: 36674437 PMCID: PMC9862856 DOI: 10.3390/ijms24020920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
The glucosinolate transporters 1/2/3 (GTR1/2/3) from the Nitrate and Peptide transporter Family (NPF) play an essential role in the transport, accumulation, and distribution of the specialized plant metabolite glucosinolates. Due to representing both antinutritional and health-promoting compounds, there is increasing interest in characterizing GTRs from various plant species. We generated seven artificial glucosinolates (either aliphatic or benzenic) bearing different fluorophores (Fluorescein, BODIPY, Rhodamine, Dansylamide, and NBD) and investigated the ability of GTR1/2/3 from Arabidopsis thaliana to import the fluorescent glucosinolates (F-GSLs) into oocytes from Xenopus laevis. Five out of the seven F-GSLs synthesized were imported by at least one of the GTRs. GTR1 and GTR2 were able to import three F-GSLs actively above external concentration, while GTR3 imported only one actively. Competition assays indicate that the F-GSLs are transported by the same mechanism as non-tagged natural glucosinolates. The GTR-mediated F-GSL uptake is detected via a rapid and sensitive assay only requiring simple fluorescence measurements on a standard plate reader. This is highly useful in investigations of glucosinolate transport function and provides a critical prerequisite for elucidating the relationship between structure and function through high-throughput screening of GTR mutant libraries. The F-GSL themselves may also be suitable for future studies on glucosinolate transport in vivo.
Collapse
Affiliation(s)
- Christa Kanstrup
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Claire C. Jimidar
- Institute of Organic Chemistry, Technische Universität Carolo Wilhelmina zu Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Josip Tomas
- Institute of Organic and Analytical Chemistry, Université d’Orléans, Rue de Chartres, BP6759, CEDEX 02, 45067 Orléans, France
| | - Giuliano Cutolo
- Institute of Organic and Analytical Chemistry, Université d’Orléans, Rue de Chartres, BP6759, CEDEX 02, 45067 Orléans, France
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Marie Schuler
- Institute of Organic and Analytical Chemistry, Université d’Orléans, Rue de Chartres, BP6759, CEDEX 02, 45067 Orléans, France
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Carolo Wilhelmina zu Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
- Department of Chemistry and Molecular Biology, Division of Organic and Medicinal Chemistry, University of Gothenburg, Kemigården 4, 412 96 Göteborg, Sweden
| | - Arnaud Tatibouët
- Institute of Organic and Analytical Chemistry, Université d’Orléans, Rue de Chartres, BP6759, CEDEX 02, 45067 Orléans, France
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Correspondence:
| |
Collapse
|
3
|
Yadav UP, Evers JF, Shaikh MA, Ayre BG. Cotton phloem loads from the apoplast using a single member of its nine-member sucrose transporter gene family. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:848-859. [PMID: 34687198 DOI: 10.1093/jxb/erab461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Phloem loading and transport are fundamental processes for allocating carbon from source organs to sink tissues. Cotton (Gossypium spp.) has a high sink demand for the cellulosic fibers that grow on the seed coat and for the storage reserves in the developing embryo, along with the demands of new growth in the shoots and roots. Addressing how cotton mobilizes resources from source leaves to sink organs provides insight into processes contributing to fiber and seed yield. Plasmodesmata frequencies between companion cells and flanking parenchyma in minor veins are higher than expected for an apoplastic loader, and cotton's close relatedness to Tilia spp. hints at passive loading. Suc was the only canonical transport sugar in leaves and constituted 87% of 14C-labeled photoassimilate being actively transported. [14C]Suc uptake coupled with autoradiography indicated active [14C]Suc accumulation in minor veins, suggesting Suc loading from the apoplast; esculin, a fluorescent Suc analog, did not accumulate in minor veins. Of the nine sucrose transporter (SUT) genes identified per diploid genome, only GhSUT1-L2 showed appreciable expression in mature leaves, and silencing GhSUT1-L2 yielded phenotypes characteristic of blocked phloem transport. Furthermore, only GhSUT1-L2 cDNA stimulated esculin and [14C]Suc uptake into yeast, and only the GhSUT1-L2 promoter caused uidA (β-glucuronidase) reporter gene expression in minor vein phloem of Arabidopsis thaliana. Collectively, these results argue that apoplastic phloem loading mediated by GhSUT1-L2 is the dominant mode of phloem loading in cotton.
Collapse
Affiliation(s)
- Umesh P Yadav
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX 76203-5017, USA
| | - John F Evers
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX 76203-5017, USA
| | - Mearaj A Shaikh
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX 76203-5017, USA
| | - Brian G Ayre
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX 76203-5017, USA
| |
Collapse
|
4
|
Pommerrenig B, Müdsam C, Kischka D, Neuhaus HE. Treat and trick: common regulation and manipulation of sugar transporters during sink establishment by the plant and the pathogen. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3930-3940. [PMID: 32242225 DOI: 10.1093/jxb/eraa168] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Sugar transport proteins are crucial for the coordinated allocation of sugars. In this Expert View we summarize recent key findings of the roles and regulation of sugar transporters in inter- and intracellular transport by focusing on applied approaches, demonstrating how sucrose transporter activity may alter source and sink dynamics and their identities. The plant itself alters its sugar transport activity in a developmentally dependent manner to either establish or load endogenous sinks, for example, during tuber formation and filling. Pathogens represent aberrant sinks that trigger the plant to induce the same processes, resulting in loss of carbon assimilates. We explore common mechanisms of intrinsic, developmentally dependent processes and aberrant, pathogen-induced manipulation of sugar transport. Transporter activity may also be targeted by breeding or genetic modification approaches in crop plants to alter source and sink metabolism upon the overexpression or heterologous expression of these proteins. In addition, we highlight recent progress in the use of sugar analogs to study these processes in vivo.
Collapse
Affiliation(s)
| | - Christina Müdsam
- Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Kischka
- Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
5
|
Huggins TD, Chen MH, Fjellstrom RG, Jackson AK, McClung AM, Edwards JD. Association Analysis of Three Diverse Rice ( Oryza sativa L.) Germplasm Collections for Loci Regulating Grain Quality Traits. THE PLANT GENOME 2019; 12:170085. [PMID: 30951092 DOI: 10.3835/plantgenome2017.09.0085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rice ( L.) end-use cooking quality is vital for producers and billions of consumers worldwide. Grain quality is a complex trait with interacting genetic and environmental factors. Deciphering the complex genetic architecture associated with grain quality provides essential information for improved breeding strategies to enhance desirable traits that are stable across variable climatic and environmental conditions. In this study, genome-wide association (GWA) analysis of three rice diversity panels, the USDA rice core subset (1364 accessions), the minicore (MC) (173 accessions after removing non-), and the high density rice array-MC (HDMC) (383 accessions), with simple sequence repeats, single nucleotide polymorphic markers, or both, revealed large- and small-effect loci associated with known genes and previously uncharacterized genomic regions. Clustering of the significant regions in the GWA results suggests that multiple grain quality traits are inherited together. The 11 novel candidate loci for grain quality traits and the seven candidates for grain chalk identified are involved in the starch biosynthesis pathway. This study highlights the intricate pleiotropic relationships that exist in complex genotype-phenotypic associations and gives a greater insight into effective breeding strategies for grain quality improvement.
Collapse
|
6
|
Knox K, Paterlini A, Thomson S, Oparka K. The Coumarin Glucoside, Esculin, Reveals Rapid Changes in Phloem-Transport Velocity in Response to Environmental Cues. PLANT PHYSIOLOGY 2018; 178:795-807. [PMID: 30111635 PMCID: PMC6181028 DOI: 10.1104/pp.18.00574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/03/2018] [Indexed: 05/24/2023]
Abstract
The study of phloem transport and its vital roles in long-distance communication and carbon allocation have been hampered by a lack of suitable tools that allow high-throughput, real-time studies. Esculin, a fluorescent coumarin glucoside, is recognized by Suc transporters, including AtSUC2, which loads it into the phloem for translocation to sink tissues. These properties make it an ideal tool for use in live-imaging experiments, where it acts as a surrogate for Suc. Here, we show that esculin is translocated with a similar efficiency to Suc and, because of its ease of application and detection, demonstrate that it is an ideal tool for in vivo studies of phloem transport. We used esculin to determine the effect of different environmental cues on the velocity of phloem transport. We provide evidence that fluctuations in cotyledon Suc levels influence phloem velocity rapidly, supporting the pressure-flow model of phloem transport. Under acute changes in light levels, the phloem velocity mirrored changes in the expression of AtSUC2 This observation suggests that under certain environmental conditions, transcriptional regulation may affect the abundance of AtSUC2 and thus regulate the phloem transport velocity.
Collapse
Affiliation(s)
- Kirsten Knox
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Andrea Paterlini
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Simon Thomson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Karl Oparka
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
7
|
De Moliner F, Knox K, Reinders A, Ward JM, McLaughlin PJ, Oparka K, Vendrell M. Probing binding specificity of the sucrose transporter AtSUC2 with fluorescent coumarin glucosides. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2473-2482. [PMID: 29506213 PMCID: PMC5920547 DOI: 10.1093/jxb/ery075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/19/2018] [Indexed: 05/18/2023]
Abstract
The phloem sucrose transporter, AtSUC2, is promiscuous with respect to substrate recognition, transporting a range of glucosides in addition to sucrose, including naturally occurring coumarin glucosides. We used the inherent fluorescence of coumarin glucosides to probe the specificity of AtSUC2 for its substrates, and determined the structure-activity relationships that confer phloem transport in vivo using Arabidopsis seedlings. In addition to natural coumarin glucosides, we synthesized new compounds to identify key structural features that specify recognition by AtSUC2. Our analysis of the structure-activity relationship revealed that the presence of a free hydroxyl group on the coumarin moiety is essential for binding by AtSUC2 and subsequent phloem mobility. Structural modeling of the AtSUC2 substrate-binding pocket explains some important structural requirements for the interaction of coumarin glucosides with the AtSUC2 transporter.
Collapse
Affiliation(s)
- Fabio De Moliner
- MRC/UoE Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, UK
| | - Kirsten Knox
- Institute of Molecular Plant Sciences, Max Born Crescent, University of Edinburgh, UK
| | - Anke Reinders
- Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - John M Ward
- Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Paul J McLaughlin
- Institute of Quantitative Biology, Biochemistry and Biotechnology, Max Born Crescent, University of Edinburgh, UK
| | - Karl Oparka
- Institute of Molecular Plant Sciences, Max Born Crescent, University of Edinburgh, UK
- Correspondence: or
| | - Marc Vendrell
- MRC/UoE Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, UK
- Correspondence: or
| |
Collapse
|
8
|
Yang J, Luo D, Yang B, Frommer WB, Eom JS. SWEET11 and 15 as key players in seed filling in rice. THE NEW PHYTOLOGIST 2018; 218:604-615. [PMID: 29393510 DOI: 10.1111/nph.15004] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/15/2017] [Indexed: 05/04/2023]
Abstract
Despite the relevance of seed-filling mechanisms for crop yield, we still have only a rudimentary understanding of the transport processes that supply the caryopsis with sugars. We hypothesized that SWEET sucrose transporters may play important roles in nutrient import pathways in the rice caryopsis. We used a combination of mRNA quantification, histochemical analyses, translational promoter-reporter fusions and analysis of knockout mutants created by genomic editing to evaluate the contribution of SWEET transporters to seed filling. In rice caryopses, SWEET11 and 15 had the highest mRNA levels and proteins localized to four key sites: all regions of the nucellus at early stages; the nucellar projection close to the dorsal vein; the nucellar epidermis that surrounds the endosperm; and the aleurone. ossweet11;15 double knockout lines accumulated starch in the pericarp, whereas caryopses did not contain a functional endosperm. Jointly, SWEET11 and 15 show all the hallmarks of being necessary for seed filling with sucrose efflux functions at the nucellar projection and a role in transfer across the nucellar epidermis/aleurone interface, delineating two major steps for apoplasmic seed filling, observations that are discussed in relation to observations made in rice and barley regarding the relative prevalence of these two potential import routes.
Collapse
Affiliation(s)
- Jungil Yang
- Institute for Molecular Physiology, Heinrich-Heine University Duesseldorf, 40225, Duesseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Dangping Luo
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Bing Yang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich-Heine University Duesseldorf, 40225, Duesseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Joon-Seob Eom
- Institute for Molecular Physiology, Heinrich-Heine University Duesseldorf, 40225, Duesseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Bali AP, Genee HJ, Sommer MOA. Directed Evolution of Membrane Transport Using Synthetic Selections. ACS Synth Biol 2018; 7:789-793. [PMID: 29474058 DOI: 10.1021/acssynbio.7b00407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Understanding and engineering solute transporters is important for metabolic engineering and the development of therapeutics. However, limited available experimental data on membrane transporters makes sequence-function relationships complex to predict. Here we apply ligand-responsive biosensor systems that enable selective growth of E. coli cells only if they functionally express an importer that is specific to the biosensor ligand. Using this system in a directed evolution framework, we successfully engineer the specificity of nicotinamide riboside transporters, PnuC, to accept thiamine as a substrate. Our results provide insight into the molecular determinants of substrate recognition of the PnuC transporter family and demonstrate how synthetic biology can be deployed to engineer the substrate spectrum of small molecule transporters.
Collapse
Affiliation(s)
- Anne P. Bali
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Biosyntia
ApS, Fruebjergvej 3, DK-2100, Østerbro, Denmark
| | - Hans J. Genee
- Biosyntia
ApS, Fruebjergvej 3, DK-2100, Østerbro, Denmark
| | - Morten O. A. Sommer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Glassop D, Stiller J, Bonnett GD, Grof CPL, Rae AL. An analysis of the role of the ShSUT1 sucrose transporter in sugarcane using RNAi suppression. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:795-808. [PMID: 32480608 DOI: 10.1071/fp17073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/11/2017] [Indexed: 06/11/2023]
Abstract
The role of ShSUT1 in sucrose mobilisation and storage in sugarcane was investigated by employing RNAi technology to reduce the expression of this gene. Transcript profiling in non-transformed plants showed an alignment between expression and sucrose concentration, with strongest expression in source leaves and increasing expression through the daylight period of a diurnal cycle. Five transgenic plant lines were produced with reduced ShSUT1 expression ranging from 52 to 92% lower than control plants. Differential suppression of ShSUT1 sequence variants in the highly polyploid sugarcane genome were also investigated. Amplicon sequencing of the ShSUT1 variants within the transgenic lines and controls showed no preferential suppression with only minor differences in the proportional expression of the variants. A range of altered sugar, fibre and moisture contents were measured in mature leaf and internode samples, but no phenotype was consistently exhibited by all five transgenic lines. Phenotypes observed indicate that ShSUT1 does not play a direct role in phloem loading. ShSUT1 is likely involved with retrieving sucrose from intercellular spaces for transport and storage.
Collapse
Affiliation(s)
- Donna Glassop
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Qld 4067, Australia
| | - Jiri Stiller
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Qld 4067, Australia
| | - Graham D Bonnett
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Qld 4067, Australia
| | - Christopher P L Grof
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Anne L Rae
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Qld 4067, Australia
| |
Collapse
|
11
|
Milne RJ, Perroux JM, Rae AL, Reinders A, Ward JM, Offler CE, Patrick JW, Grof CPL. Sucrose Transporter Localization and Function in Phloem Unloading in Developing Stems. PLANT PHYSIOLOGY 2017; 173:1330-1341. [PMID: 27986867 PMCID: PMC5291036 DOI: 10.1104/pp.16.01594] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/14/2016] [Indexed: 05/05/2023]
Abstract
How sucrose transporters (SUTs) regulate phloem unloading in monocot stems is poorly understood and particularly so for species storing high Suc concentrations. To this end, Sorghum bicolor SUTs SbSUT1 and SbSUT5 were characterized by determining their transport properties heterologously expressed in yeast or Xenopus laevis oocytes, and their in planta cellular and subcellular localization. The plasma membrane-localized SbSUT1 and SbSUT5 exhibited a strong selectivity for Suc and high Suc affinities in X. laevis oocytes at pH 5-SbSUT1, 6.3 ± 0.7 mm, and SbSUT5, 2.4 ± 0.5 mm Suc. The Suc affinity of SbSUT1 was dependent on membrane potential and pH. In contrast, SbSUT5 Suc affinity was independent of membrane potential and pH but supported high transport rates at neutral pH. Suc transport by the tonoplast localized SbSUT4 could not be detected using yeast or X. laevis oocytes. Across internode development, SUTs, other than SbSUT4, were immunolocalized to sieve elements, while for elongating and recently elongated internodes, SUTs also were detected in storage parenchyma cells. We conclude that apoplasmic Suc unloading from de-energized protophloem sieve elements in meristematic zones may be mediated by reversal of SbSUT1 and/or by uniporting SWEETs. Storage parenchyma localized SbSUT1 and SbSUT5 may accumulate Suc from the stem apoplasms of elongating and recently elongated internodes, whereas SbSUT4 may function to release Suc from vacuoles. Transiting from an apoplasmic to symplasmic unloading pathway as the stem matures, SbSUT1 and SbSUT5 increasingly function in Suc retrieval into metaphloem sieve elements to maintain a high turgor to drive symplasmic unloading by bulk flow.
Collapse
Affiliation(s)
- Ricky J Milne
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia (R.J.M., C.E.O., J.W.P., C.P.L.G.)
- CSIRO Agriculture and Food, Crace, Australian Capital Territory 2911, Australia (R.J.M.)
- CSIRO Agriculture and Food, St Lucia, Queensland 4067, Australia (J.M.P., A.L.R.); and
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (A.R., J.M.W.)
| | - Jai M Perroux
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia (R.J.M., C.E.O., J.W.P., C.P.L.G.)
- CSIRO Agriculture and Food, Crace, Australian Capital Territory 2911, Australia (R.J.M.)
- CSIRO Agriculture and Food, St Lucia, Queensland 4067, Australia (J.M.P., A.L.R.); and
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (A.R., J.M.W.)
| | - Anne L Rae
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia (R.J.M., C.E.O., J.W.P., C.P.L.G.)
- CSIRO Agriculture and Food, Crace, Australian Capital Territory 2911, Australia (R.J.M.)
- CSIRO Agriculture and Food, St Lucia, Queensland 4067, Australia (J.M.P., A.L.R.); and
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (A.R., J.M.W.)
| | - Anke Reinders
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia (R.J.M., C.E.O., J.W.P., C.P.L.G.)
- CSIRO Agriculture and Food, Crace, Australian Capital Territory 2911, Australia (R.J.M.)
- CSIRO Agriculture and Food, St Lucia, Queensland 4067, Australia (J.M.P., A.L.R.); and
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (A.R., J.M.W.)
| | - John M Ward
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia (R.J.M., C.E.O., J.W.P., C.P.L.G.)
- CSIRO Agriculture and Food, Crace, Australian Capital Territory 2911, Australia (R.J.M.)
- CSIRO Agriculture and Food, St Lucia, Queensland 4067, Australia (J.M.P., A.L.R.); and
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (A.R., J.M.W.)
| | - Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia (R.J.M., C.E.O., J.W.P., C.P.L.G.)
- CSIRO Agriculture and Food, Crace, Australian Capital Territory 2911, Australia (R.J.M.)
- CSIRO Agriculture and Food, St Lucia, Queensland 4067, Australia (J.M.P., A.L.R.); and
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (A.R., J.M.W.)
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia (R.J.M., C.E.O., J.W.P., C.P.L.G.)
- CSIRO Agriculture and Food, Crace, Australian Capital Territory 2911, Australia (R.J.M.)
- CSIRO Agriculture and Food, St Lucia, Queensland 4067, Australia (J.M.P., A.L.R.); and
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (A.R., J.M.W.)
| | - Christopher P L Grof
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia (R.J.M., C.E.O., J.W.P., C.P.L.G.);
- CSIRO Agriculture and Food, Crace, Australian Capital Territory 2911, Australia (R.J.M.);
- CSIRO Agriculture and Food, St Lucia, Queensland 4067, Australia (J.M.P., A.L.R.); and
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (A.R., J.M.W.)
| |
Collapse
|
12
|
Regmi KC, Li L, Gaxiola RA. Alternate Modes of Photosynthate Transport in the Alternating Generations of Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2017; 8:1956. [PMID: 29181017 PMCID: PMC5693889 DOI: 10.3389/fpls.2017.01956] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 05/06/2023]
Abstract
Physcomitrella patens has emerged as a model moss system to investigate the evolution of various plant characters in early land plant lineages. Yet, there is merely a disparate body of ultrastructural and physiological evidence from other mosses to draw inferences about the modes of photosynthate transport in the alternating generations of Physcomitrella. We performed a series of ultrastructural, fluorescent tracing, physiological, and immunohistochemical experiments to elucidate a coherent model of photosynthate transport in this moss. Our ultrastructural observations revealed that Physcomitrella is an endohydric moss with water-conducting and putative food-conducting cells in the gametophytic stem and leaves. Movement of fluorescent tracer 5(6)-carboxyfluorescein diacetate revealed that the mode of transport in the gametophytic generation is symplasmic and is mediated by plasmodesmata, while there is a diffusion barrier composed of transfer cells that separates the photoautotrophic gametophyte from the nutritionally dependent heterotrophic sporophyte. We posited that, analogous to what is found in apoplasmically phloem loading higher plants, the primary photosynthate sucrose, is actively imported into the transfer cells by sucrose/H+ symporters (SUTs) that are, in turn, powered by P-type ATPases, and that the transfer cells harbor an ATP-conserving Sucrose Synthase (SUS) pathway. Supporting our hypothesis was the finding that a protonophore (2,4-dinitrophenol) and a SUT-specific inhibitor (diethyl pyrocarbonate) reduced the uptake of radiolabeled sucrose into the sporangia. In situ immunolocalization of P-type ATPase, Sucrose Synthase, and Proton Pyrophosphatase - all key components of the SUS pathway - showed that these proteins were prominently localized in the transfer cells, providing further evidence consistent with our argument.
Collapse
|
13
|
Tao J, Diaz RK, Teixeira CRV, Hackmann TJ. Transport of a Fluorescent Analogue of Glucose (2-NBDG) versus Radiolabeled Sugars by Rumen Bacteria and Escherichia coli. Biochemistry 2016; 55:2578-89. [PMID: 27096355 DOI: 10.1021/acs.biochem.5b01286] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent tracers have been used to measure solute transport, but transport kinetics have not been evaluated by comparison of radiolabeled tracers. Using Streptococcus equinus JB1 and other bacteria, the objective of this study was to determine if a fluorescent analogue of glucose (2-NBDG) would be transported with the same kinetics and transporters as [(14)C]glucose. We uniquely modified a technique for measuring transport of radiolabeled tracers so that transport of a fluorescent tracer (2-NBDG) could also be measured. Deploying this technique for S. equinus JB1, we could detect 2-NDBG transport quantitatively and within 2 s. We found the Vmax of 2-NBDG transport was 2.9-fold lower than that for [(14)C]glucose, and the Km was 9.9-fold lower. Experiments with transport mutants suggested a mannose phosphotransferase system (PTS) was responsible for 2-NBDG transport in S. equinus JB1 as well as Escherichia coli. Upon examination of strains from 12 species of rumen bacteria, only the five that possessed a mannose PTS were shown to transport 2-NBDG. Those five uniformly transported [(14)C]mannose and [(14)C]deoxyglucose (other glucose analogues at the C-2 position) at high velocities. Species that did not transport 2-NBDG at detectable velocities did not possess a mannose PTS, though they collectively possessed several other glucose transporters. These results, along with retrospective genomic analyses of previous 2-NBDG studies, suggest that only a few bacterial transporters may display high activity toward 2-NBDG. Fluorescent tracers have the potential to measure solute transport qualitatively, but their bulky fluorescent groups may restrict (i) activity of many transporters and (ii) use for quantitative measurement.
Collapse
Affiliation(s)
- Junyi Tao
- Department of Animal Sciences, University of Florida , P.O. Box 110910, Gainesville, Florida 32611, United States
| | - Rebecca K Diaz
- Department of Animal Sciences, University of Florida , P.O. Box 110910, Gainesville, Florida 32611, United States
| | - César R V Teixeira
- Departamento de Zootecnia, Universidade Federal de Viçosa , Viçosa, Minas Gerais 36570-000, Brazil
| | - Timothy J Hackmann
- Department of Animal Sciences, University of Florida , P.O. Box 110910, Gainesville, Florida 32611, United States
| |
Collapse
|
14
|
Zanon L, Falchi R, Hackel A, Kühn C, Vizzotto G. Expression of peach sucrose transporters in heterologous systems points out their different physiological role. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:262-72. [PMID: 26259193 DOI: 10.1016/j.plantsci.2015.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/10/2015] [Accepted: 06/14/2015] [Indexed: 05/26/2023]
Abstract
Sucrose is the major phloem-translocated component in a number of economically important plant species. The comprehension of the mechanisms involved in sucrose transport in peach fruit appears particularly relevant, since the accumulation of this sugar, during ripening, is crucial for the growth and quality of the fruit. Here, we report the functional characterisation and subcellular localisation of three sucrose transporters (PpSUT1, PpSUT2, PpSUT4) in peach, and we formulate novel hypotheses about their role in accumulation of sugar. We provide evidence, about the capability of both PpSUT1 and PpSUT4, expressed in mutant yeast strains to transport sucrose. The functionality of PpSUT1 at the plasma membrane, and of PpSUT4 at the tonoplast, has been demonstrated. On the other hand, the functionality of PpSUT2 was not confirmed: this protein is unable to complement two sucrose uptake-deficient mutant yeast strains. Our results corroborate the hypotheses that PpSUT1 partakes in phloem loading in leaves, and PpSUT4 sustains cell metabolism by regulating sucrose efflux from the vacuole.
Collapse
Affiliation(s)
- Laura Zanon
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 206, 33100 Udine, Italy.
| | - Rachele Falchi
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 206, 33100 Udine, Italy.
| | - Aleksandra Hackel
- Department of Plant Physiology, Humboldt University of Berlin, Philippstr. 13, Building 12, 10115 Berlin, Germany.
| | - Christina Kühn
- Department of Plant Physiology, Humboldt University of Berlin, Philippstr. 13, Building 12, 10115 Berlin, Germany.
| | - Giannina Vizzotto
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 206, 33100 Udine, Italy.
| |
Collapse
|
15
|
Matros A, Peshev D, Peukert M, Mock HP, Van den Ende W. Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:822-39. [PMID: 25891826 DOI: 10.1111/tpj.12853] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 05/25/2023]
Abstract
Substantial formation of reactive oxygen species (ROS) is inevitable in aerobic life forms. Due to their extremely high reactivity and short lifetime, hydroxyl radicals are a special case, because cells have not developed enzymes to detoxify these most dangerous ROS. Thus, scavenging of hydroxyl radicals may only occur by accumulation of higher levels of simple organic compounds. Previous studies have demonstrated that plant-derived sugars show hydroxyl radical scavenging capabilities during Fenton reactions with Fe(2+) and hydrogen peroxide in vitro, leading to formation of less detrimental sugar radicals that may be subject of regeneration to non-radical carbohydrates in vivo. Here, we provide further evidence for the occurrence of such radical reactions with sugars in planta, by following the fate of sucralose, an artificial analog of sucrose, in Arabidopsis tissues. The expected sucralose recombination and degradation products were detected in both normal and stressed plant tissues. Oxidation products of endogenous sugars were also assessed in planta for Arabidopsis and barley, and were shown to increase in abundance relative to the non-oxidized precursor during oxidative stress conditions. We concluded that such non-enzymatic reactions with hydroxyl radicals form an integral part of plant antioxidant mechanisms contributing to cellular ROS homeostasis, and may be more important than generally assumed. This is discussed in relation to the recently proposed roles for Fe(2+) and hydrogen peroxide in processes leading to the origin of metabolism and the origin of life.
Collapse
Affiliation(s)
- Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Darin Peshev
- Laboratory of Molecular Plant Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Belgium
| | - Manuela Peukert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Belgium
| |
Collapse
|
16
|
Rotsch D, Brossard T, Bihmidine S, Ying W, Gaddam V, Harmata M, Robertson JD, Swyers M, Jurisson SS, Braun DM. Radiosynthesis of 6'-Deoxy-6'[18F]Fluorosucrose via Automated Synthesis and Its Utility to Study In Vivo Sucrose Transport in Maize (Zea mays) Leaves. PLoS One 2015; 10:e0128989. [PMID: 26024520 PMCID: PMC4449027 DOI: 10.1371/journal.pone.0128989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/01/2015] [Indexed: 01/08/2023] Open
Abstract
Sugars produced from photosynthesis in leaves are transported through the phloem tissues within veins and delivered to non-photosynthetic organs, such as roots, stems, flowers, and seeds, to support their growth and/or storage of carbohydrates. However, because the phloem is located internally within the veins, it is difficult to access and to study the dynamics of sugar transport. Radioactive tracers have been extensively used to study vascular transport in plants and have provided great insights into transport dynamics. To better study sucrose partitioning in vivo, a novel radioactive analog of sucrose was synthesized through a completely chemical synthesis route by substituting fluorine-18 (half-life 110 min) at the 6' position to generate 6'-deoxy-6'[(18)F]fluorosucrose ((18)FS). This radiotracer was then used to compare sucrose transport between wild-type maize plants and mutant plants lacking the Sucrose transporter1 (Sut1) gene, which has been shown to function in sucrose phloem loading. Our results demonstrate that (18)FS is transported in vivo, with the wild-type plants showing a greater rate of transport down the leaf blade than the sut1 mutant plants. A similar transport pattern was also observed for universally labeled [U-(14)C]sucrose ([U-(14)C]suc). Our findings support the proposed sucrose phloem loading function of the Sut1 gene in maize, and additionally demonstrate that the (18)FS analog is a valuable, new tool that offers imaging advantages over [U-(14)C]suc for studying phloem transport in plants.
Collapse
Affiliation(s)
- David Rotsch
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Tom Brossard
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Saadia Bihmidine
- Division of Biological Sciences, Interdisciplinary Plant Group and the Missouri Maize Center, University of Missouri, Columbia, Missouri, United States of America
| | - Weijiang Ying
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Vikram Gaddam
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Michael Harmata
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - J. David Robertson
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
- University of Missouri Research Reactor, University of Missouri, Columbia, Missouri, United States of America
| | - Michael Swyers
- Division of Biological Sciences, Interdisciplinary Plant Group and the Missouri Maize Center, University of Missouri, Columbia, Missouri, United States of America
| | - Silvia S. Jurisson
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - David M. Braun
- Division of Biological Sciences, Interdisciplinary Plant Group and the Missouri Maize Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
17
|
Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauß N, Herrero A, Maldener I, Flores E, Mullineaux CW. Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium. mBio 2015; 6:e02109. [PMID: 25784700 PMCID: PMC4453526 DOI: 10.1128/mbio.02109-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/11/2015] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED Many filamentous cyanobacteria produce specialized nitrogen-fixing cells called heterocysts, which are located at semiregular intervals along the filament with about 10 to 20 photosynthetic vegetative cells in between. Nitrogen fixation in these complex multicellular bacteria depends on metabolite exchange between the two cell types, with the heterocysts supplying combined-nitrogen compounds but dependent on the vegetative cells for photosynthetically produced carbon compounds. Here, we used a fluorescent tracer to probe intercellular metabolite exchange in the filamentous heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. We show that esculin, a fluorescent sucrose analog, is incorporated by a sucrose import system into the cytoplasm of Anabaena cells. The cytoplasmic esculin is rapidly and reversibly exchanged across vegetative-vegetative and vegetative-heterocyst cell junctions. Our measurements reveal the kinetics of esculin exchange and also show that intercellular metabolic communication is lost in a significant fraction of older heterocysts. SepJ, FraC, and FraD are proteins located at the intercellular septa and are suggested to form structures analogous to gap junctions. We show that a ΔsepJ ΔfraC ΔfraD triple mutant shows an altered septum structure with thinner septa but a denser peptidoglycan layer. Intercellular diffusion of esculin and fluorescein derivatives is impaired in this mutant, which also shows a greatly reduced frequency of nanopores in the intercellular septal cross walls. These findings suggest that FraC, FraD, and SepJ are important for the formation of junctional structures that constitute the major pathway for feeding heterocysts with sucrose. IMPORTANCE Anabaena and its relatives are filamentous cyanobacteria that exhibit a sophisticated form of prokaryotic multicellularity, with the formation of differentiated cell types, including normal photosynthetic cells and specialized nitrogen-fixing cells called heterocysts. The question of how heterocysts communicate and exchange metabolites with other cells in the filament is key to understanding this form of bacterial multicellularity. Here we provide the first information on the intercellular exchange of a physiologically important molecule, sucrose. We show that a fluorescent sucrose analog can be imported into the Anabaena cytoplasm by a sucrose import system. Once in the cytoplasm, it is rapidly and reversibly exchanged among all of the cells in the filament by diffusion across the septal junctions. Photosynthetically produced sucrose likely follows the same route from cytoplasm to cytoplasm. We identify some of the septal proteins involved in sucrose exchange, and our results indicate that these proteins form structures functionally analogous to metazoan gap junctions.
Collapse
Affiliation(s)
- Dennis J Nürnberg
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Jan Bornikoel
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Norbert Krauß
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Iris Maldener
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
18
|
Site directed mutagenesis of StSUT1 reveals target amino acids of regulation and stability. Biochimie 2013; 95:2132-44. [PMID: 23954800 DOI: 10.1016/j.biochi.2013.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 07/25/2013] [Indexed: 12/15/2022]
Abstract
Plant sucrose transporters (SUTs) are functional as sucrose-proton-cotransporters with an optimal transport activity in the acidic pH range. Recently, the pH optimum of the Solanum tuberosum sucrose transporter StSUT1 was experimentally determined to range at an unexpectedly low pH of 3 or even below. Various research groups have confirmed these surprising findings independently and in different organisms. Here we provide further experimental evidence for a pH optimum at physiological extrema. Site directed mutagenesis provides information about functional amino acids, which are highly conserved and responsible for this extraordinary increase in transport capacity under extreme pH conditions. Redox-dependent dimerization of the StSUT1 protein was described earlier. Here the ability of StSUT1 to form homodimers was demonstrated by heterologous expression in Lactococcus lactis and Xenopus leavis using Western blots, and in plants by bimolecular fluorescence complementation. Mutagenesis of highly conserved cysteine residues revealed their importance in protein stability. The accessibility of regulatory amino acid residues in the light of StSUT1's compartmentalization in membrane microdomains is discussed.
Collapse
|
19
|
Derrer C, Wittek A, Bamberg E, Carpaneto A, Dreyer I, Geiger D. Conformational changes represent the rate-limiting step in the transport cycle of maize sucrose transporter1. THE PLANT CELL 2013; 25:3010-21. [PMID: 23964025 PMCID: PMC3784595 DOI: 10.1105/tpc.113.113621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Proton-driven Suc transporters allow phloem cells of higher plants to accumulate Suc to more than 1 M, which is up to ~1000-fold higher than in the surrounding extracellular space. The carrier protein can accomplish this task only because proton and Suc transport are tightly coupled. This study provides insights into this coupling by resolving the first step in the transport cycle of the Suc transporter SUT1 from maize (Zea mays). Voltage clamp fluorometry measurements combining electrophysiological techniques with fluorescence-based methods enable the visualization of conformational changes of SUT1 expressed in Xenopus laevis oocytes. Using the Suc derivate sucralose, binding of which hinders conformational changes of SUT1, the association of protons to the carrier could be dissected from transport-associated movements of the protein. These combined approaches enabled us to resolve the binding of protons to the carrier and its interrelationship with the alternating movement of the protein. The data indicate that the rate-limiting step of the reaction cycle is determined by the accessibility of the proton binding site. This, in turn, is determined by the conformational change of the SUT1 protein, alternately exposing the binding pockets to the inward and to the outward face of the membrane.
Collapse
Affiliation(s)
- Carmen Derrer
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, D-97082 Wuerzburg, Germany
| | - Anke Wittek
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, D-97082 Wuerzburg, Germany
| | - Ernst Bamberg
- Max-Plant-Institute for Biophysics, Department of Biophysical Chemistry, D-60438 Frankfurt/Main, Germany
| | - Armando Carpaneto
- Instituto di Biofisica–Consiglio Nazionale delle Richerche, I-16149 Genova, Italy
| | - Ingo Dreyer
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Campus de Montegancedo, E-28223 Pozuelo de Alarcón (Madrid), Spain
| | - Dietmar Geiger
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, D-97082 Wuerzburg, Germany
- Address correspondence to
| |
Collapse
|
20
|
Milne RJ, Byrt CS, Patrick JW, Grof CPL. Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes? FRONTIERS IN PLANT SCIENCE 2013; 4:223. [PMID: 23805151 PMCID: PMC3693075 DOI: 10.3389/fpls.2013.00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/08/2013] [Indexed: 05/06/2023]
Abstract
Sorghum bicolor is a genetically diverse C4 monocotyledonous species, encompassing varieties capable of producing high grain yields as well as sweet types which accumulate soluble sugars (predominantly sucrose) within their stems to high concentrations. Sucrose produced in leaves (sources) enters the phloem and is transported to regions of growth and storage (sinks). It is likely that sucrose transporter (SUT) proteins play pivotal roles in phloem loading and the delivery of sucrose to growth and storage sinks in all Sorghum ecotypes. Six SUTs are present in the published Sorghum genome, based on the BTx623 grain cultivar. Homologues of these SUTs were cloned and sequenced from the sweet cultivar Rio, and compared with the publically available genome information. SbSUT5 possessed nine amino acid sequence differences between the two varieties. Two of the remaining five SUTs exhibited single variations in their amino acid sequences (SbSUT1 and SbSUT2) whilst the rest shared identical sequences. Complementation of a mutant Saccharomyces yeast strain (SEY6210), unable to grow upon sucrose as the sole carbon source, demonstrated that the Sorghum SUTs were capable of transporting sucrose. SbSUT1, SbSUT4, and SbSUT6 were highly expressed in mature leaf tissues and hence may contribute to phloem loading. In contrast, SbSUT2 and SbSUT5 were expressed most strongly in sinks consistent with a possible role of facilitating sucrose import into stem storage pools and developing inflorescences.
Collapse
Affiliation(s)
- Ricky J. Milne
- School of Environmental and Life Sciences, University of Newcastle, NewcastleNSW, Australia
| | - Caitlin S. Byrt
- School of Environmental and Life Sciences, University of Newcastle, NewcastleNSW, Australia
- Australian Research Council Centre of Excellence in Plant Cell Walls, Waite Campus, University of AdelaideAdelaide, SA, Australia
| | - John W. Patrick
- School of Environmental and Life Sciences, University of Newcastle, NewcastleNSW, Australia
| | - Christopher P. L. Grof
- School of Environmental and Life Sciences, University of Newcastle, NewcastleNSW, Australia
| |
Collapse
|
21
|
REINDERS ANKE, WARD JOHNM. Investigating polymorphisms in membrane-associated transporter protein SLC45A2, using sucrose transporters as a model. Mol Med Rep 2012; 12:1393-8. [DOI: 10.3892/mmr.2015.3462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
|