1
|
Powis G, Meuillet EJ, Indarte M, Booher G, Kirkpatrick L. Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. Biomed Pharmacother 2023; 165:115024. [PMID: 37399719 DOI: 10.1016/j.biopha.2023.115024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
The pleckstrin homology [PH] domain is a structural fold found in more than 250 proteins making it the 11th most common domain in the human proteome. 25% of family members have more than one PH domain and some PH domains are split by one, or several other, protein domains although still folding to give functioning PH domains. We review mechanisms of PH domain activity, the role PH domain mutation plays in human disease including cancer, hyperproliferation, neurodegeneration, inflammation, and infection, and discuss pharmacotherapeutic approaches to regulate PH domain activity for the treatment of human disease. Almost half PH domain family members bind phosphatidylinositols [PIs] that attach the host protein to cell membranes where they interact with other membrane proteins to give signaling complexes or cytoskeleton scaffold platforms. A PH domain in its native state may fold over other protein domains thereby preventing substrate access to a catalytic site or binding with other proteins. The resulting autoinhibition can be released by PI binding to the PH domain, or by protein phosphorylation thus providing fine tuning of the cellular control of PH domain protein activity. For many years the PH domain was thought to be undruggable until high-resolution structures of human PH domains allowed structure-based design of novel inhibitors that selectively bind the PH domain. Allosteric inhibitors of the Akt1 PH domain have already been tested in cancer patients and for proteus syndrome, with several other PH domain inhibitors in preclinical development for treatment of other human diseases.
Collapse
Affiliation(s)
- Garth Powis
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA.
| | | | - Martin Indarte
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Garrett Booher
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Lynn Kirkpatrick
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Carty SA, Murga-Zamalloa CA, Wilcox RA. SOHO State of the Art Updates and Next Questions | New Pathways and New Targets in PTCL: Staying on Target. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:561-574. [PMID: 37142534 PMCID: PMC10565700 DOI: 10.1016/j.clml.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
While the peripheral T-cell lymphomas (PTCL) remain a therapeutic challenge, and increasingly account for a disproportionate number of lymphoma-related deaths, improved understanding of disease pathogenesis and classification, and the development of novel therapeutic agents over the past decade, all provide reasons for a more optimistic outlook in the next. Despite their genetic and molecular heterogeneity, many PTCL are dependent upon signaling input provided by antigen, costimulatory, and cytokine receptors. While gain-of-function alterations effecting these pathways are recurrently observed in many PTCL, more often than not, signaling remains ligand-and tumor microenvironment (TME)-dependent. Consequently, the TME and its constituents are increasingly recognized as "on target". Utilizing a "3 signal" model, we will review new-and old-therapeutic targets that are relevant for the more common nodal PTCL subtypes.
Collapse
Affiliation(s)
- Shannon A Carty
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | | | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
3
|
T and NK cell lymphoma cell lines do not rely on ZAP-70 for survival. PLoS One 2022; 17:e0261469. [PMID: 35077445 PMCID: PMC8789098 DOI: 10.1371/journal.pone.0261469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/02/2021] [Indexed: 11/19/2022] Open
Abstract
B-cell receptor (BCR) signalling is critical for the survival of B-cell lymphomas and is a therapeutic target of drugs such as Ibrutinib. However, the role of T-cell receptor (TCR) signalling in the survival of T/Natural Killer (NK) lymphomas is not clear. ZAP-70 (zeta associated protein-70) is a cytoplasmic tyrosine kinase with a critical role in T-cell receptor (TCR) signalling. It has also been shown to play a role in normal NK cell signalling and activation. High ZAP-70 expression has been detected by immunohistochemistry in peripheral T cell lymphoma (PTCL) and NK cell lymphomas (NKTCL). We therefore, studied the role of TCR pathways in mediating the proliferation and survival of these malignancies through ZAP-70 signalling. ZAP-70 protein was highly expressed in T cell lymphoma cell lines (JURKAT and KARPAS-299) and NKTCL cell lines (KHYG-1, HANK-1, NK-YS, SNK-1 and SNK-6), but not in multiple B-cell lymphoma cell lines. siRNA depletion of ZAP-70 suppressed the phosphorylation of ZAP-70 substrates, SLP76, LAT and p38MAPK, but did not affect cell viability or induce apoptosis in these cell lines. Similarly, while stable overexpression of ZAP-70 mediates increased phosphorylation of target substrates in the TCR pathway, it does not promote increased survival or growth of NKTCL cell lines. The epidermal growth factor receptor (EGFR) inhibitor Gefitinib, which has off-target activity against ZAP-70, also did not show any differential cell kill between ZAP-70 overexpressing (OE) or knockdown (KD) cell lines. Whole transcriptome RNA sequencing highlighted that there was very minimal differential gene expression in three different T/NK cell lines induced by ZAP-70 KD. Importantly, ZAP-70 KD did not significantly enrich for any downstream TCR related genes and pathways. Altogether, this suggests that high expression and constitutive signalling of ZAP-70 in T/NK lymphoma is not critical for cell survival or downstream TCR-mediated signalling and gene expression. ZAP-70 therefore may not be a suitable therapeutic target in T/NK cell malignancies.
Collapse
|
4
|
Huang XL, Khan MI, Wang J, Ali R, Ali SW, Zahra QUA, Kazmi A, Lolai A, Huang YL, Hussain A, Bilal M, Li F, Qiu B. Role of receptor tyrosine kinases mediated signal transduction pathways in tumor growth and angiogenesis-New insight and futuristic vision. Int J Biol Macromol 2021; 180:739-752. [PMID: 33737188 DOI: 10.1016/j.ijbiomac.2021.03.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
Abstract
In the past two decades, significant progress has been made in the past two decades towards the understanding of the basic mechanisms underlying cancer growth and angiogenesis. In this context, receptor tyrosine kinases (RTKs) play a pivotal role in cell proliferation, differentiation, growth, motility, invasion, and angiogenesis, all of which contribute to tumor growth and progression. Mutations in RTKs lead to abnormal signal transductions in several pathways such as Ras-Raf, MEK-MAPK, PI3K-AKT and mTOR pathways, affecting a wide range of biological functions including cell proliferation, survival, migration and vascular permeability. Increasing evidence demonstrates that multiple kinases are involved in angiogenesis including RTKs such as vascular endothelial growth factor, platelet derived growth factor, epidermal growth factor, insulin-like growth factor-1, macrophage colony-stimulating factor, nerve growth factor, fibroblast growth factor, Hepatocyte Growth factor, Tie 1 & 2, Tek, Flt-3, Flt-4 and Eph receptors. Overactivation of RTKs and its downstream regulation is implicated in tumor initiation and angiogenesis, representing one of the hallmarks of cancer. This review discusses the role of RTKs, PI3K, and mTOR, their involvement, and their implication in pro-oncogenic cellular processes and angiogenesis with effective approaches and newly approved drugs to inhibit their unrestrained action.
Collapse
Affiliation(s)
- Xiao Lin Huang
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Jing Wang
- First Affiliated Hospital of University of Science and Technology of China Hefei, Anhui 230036, China
| | - Rizwan Ali
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Syed Wajahat Ali
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qurat-Ul-Ain Zahra
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ahsan Kazmi
- Department of Pathology, Al-Nafees Medical College and Hospital, Isra University, Islamabad 45600, Pakistan
| | - Arbelo Lolai
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yu Lin Huang
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Alamdar Hussain
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska Hospital, Huddinge, SE 141 86 Stockholm, Sweden; Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad Campus, Islamabad 44000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Fenfen Li
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
5
|
Murga-Zamalloa CA, Brown NA, Wilcox RA. Expression of the checkpoint receptors LAG-3, TIM-3 and VISTA in peripheral T cell lymphomas. J Clin Pathol 2020; 73:197-203. [PMID: 31672704 PMCID: PMC7236306 DOI: 10.1136/jclinpath-2019-206117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
AIMS Peripheral T cell lymphomas represent approximately 10%-15% of non-Hodgkin lymphomas and are characterised by an aggressive clinical courses and poor outcomes. Ligands provided by constituents of the tumour microenvironment engage receptors expressed by malignant T cells, promoting tumour growth and chemotherapy resistance. In addition to stimulatory receptors that promote the growth and survival of malignant T cells, recent studies suggest that homologous inhibitory receptors may have an opposing effect and function as tumour suppressors. For example, recent data suggest that programmed cell death 1 blockade may lead to increased lymphoma growth. Therefore, the identification of alternative checkpoint receptors in T cell lymphoproliferative neoplasms is an important and clinically relevant question. METHODS The checkpoint receptors T cell immunoglobulin-3 (TIM-3), V-domain Ig-containing suppressor of T cell activation (VISTA) and lymphocyte-activation gene 3 (LAG-3) play fundamental roles in peripheral tolerance, and their ligands are exploited by many solid tumours to evade host immunity. However, their expression in T cell lymphoproliferative neoplasms has not been evaluated. In this study, we evaluated the expression of TIM-3, VISTA and LAG-3 in a cohort of peripheral T cell lymphomas cases by immunohistochemistry and flow cytometric analysis. RESULTS Our results demonstrate that TIM-3, VISTA and LAG-3 expression is rarely identified within a large cohort of T cell lymphomas and its tumour microenvironment. CONCLUSIONS Our data suggest that immune-regulatory roles for TIM-3, VISTA and LAG-3 may be predominant in lymphomas subsets different than the ones analysed in the current study. However, a potential role for these checkpoint receptors as tumour suppressors in T cell lymphomas remains to be elucidated.
Collapse
Affiliation(s)
| | - Noah A. Brown
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ryan A. Wilcox
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Zhang LL, Pan HX, Wang YX, Guo T, Liu L. Genome profiling revealed the activation of IL2RG/JAK3/STAT5 in peripheral T‑cell lymphoma expressing the ITK‑SYK fusion gene. Int J Oncol 2019; 55:1077-1089. [PMID: 31545408 PMCID: PMC6776186 DOI: 10.3892/ijo.2019.4882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
Peripheral T‑cell lymphomas (PTCLs) are heterogeneous malignancies that are types of non‑Hodgkin lymphomas; patients with this disease have poor prognoses. The IL‑2‑inducible T‑cell kinase‑spleen tyrosine kinase (ITK‑SYK) fusion gene, the first recurrent chromosome translocation in PTCL‑not otherwise specified (NOS), can drive cellular transformation and the development of T‑cell lymphoma in mouse models. The aim of the current study was to investigate the signal transduction pathways downstream of ITK‑SYK. The authors constructed a lentiviral vector to overexpress the ITK‑SYK fusion gene in Jurkat cells. By using Signal‑Net and cluster analyses of microarray data, the authors identified the tyrosine‑protein kinase JAK (JAK)3/STAT5 signalling pathway as a downstream pathway of ITK‑SYK, activation of which mediates the effects of ITK‑SYK on tumourigenesis. JAK3‑selective inhibitor tofacitinib abrogated the phosphorylation of downstream signalling molecule STAT5, supressed cell growth, induced cell apoptosis and arrested the cell cycle at the G1/S phase in ITK‑SYK+ Jurkat cells. In a xenograft mouse model, tumour growth was significantly delayed by tofacitinib. Since JAK3 associates with interleukin‑2 receptor subunit γ (IL2RG) only, siRNA‑specific knockdown of IL2RG showed the same effect as tofacitinib treatment in vitro. These results first demonstrated that the activation of the IL2RG/JAK3/STAT5 signalling pathway contributed greatly to the oncogenic progress regulated by ITK‑SYK, supporting further investigation of JAK3 inhibitors for the treatment of PTCLs carrying the ITK‑SYK fusion gene.
Collapse
Affiliation(s)
- Lei-Lei Zhang
- Department of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hua-Xiong Pan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yi-Xuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tao Guo
- Department of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lin Liu
- Department of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
7
|
Wang T, Lu Y, Polk A, Chowdhury P, Murga-Zamalloa C, Fujiwara H, Suemori K, Beyersdorf N, Hristov AC, Lim MS, Bailey NG, Wilcox RA. T-cell Receptor Signaling Activates an ITK/NF-κB/GATA-3 axis in T-cell Lymphomas Facilitating Resistance to Chemotherapy. Clin Cancer Res 2016; 23:2506-2515. [PMID: 27780854 DOI: 10.1158/1078-0432.ccr-16-1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/16/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
Purpose: T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T cell-specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR's role in mediating resistance to chemotherapy.Experimental Design: Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following TCR engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines.Results: Here, we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3 and promotes chemotherapy resistance.Conclusions: These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented the activation of this signaling axis and overcame chemotherapy resistance. Clin Cancer Res; 23(10); 2506-15. ©2016 AACR.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/immunology
- GATA3 Transcription Factor/genetics
- GATA3 Transcription Factor/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/immunology
- Lymphoma, T-Cell/drug therapy
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/immunology
- NF-kappa B/genetics
- NF-kappa B/immunology
- Piperidines
- Primary Cell Culture
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/immunology
- Pyrazoles/administration & dosage
- Pyrimidines/administration & dosage
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Tianjiao Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ye Lu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Avery Polk
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Pinki Chowdhury
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Carlos Murga-Zamalloa
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Hiroshi Fujiwara
- Department of Hematology, Clinical Immunology and Infectious Disease, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Koichiro Suemori
- Department of Hematology, Clinical Immunology and Infectious Disease, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Alexandra C Hristov
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nathanael G Bailey
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
8
|
Mohammad DK, Nore BF, Gustafsson MO, Mohamed AJ, Smith CIE. Protein kinase B (AKT) regulates SYK activity and shuttling through 14-3-3 and importin 7. Int J Biochem Cell Biol 2016; 78:63-74. [PMID: 27381982 DOI: 10.1016/j.biocel.2016.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 01/10/2023]
Abstract
The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK's interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK's binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK's interaction with Importin 7.
Collapse
Affiliation(s)
- Dara K Mohammad
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden; Department of Biology, College of Science, University of Salahaddin, Erbil, Kurdistan Region, Iraq.
| | - Beston F Nore
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden; Department of Biochemistry, School of Medicine, University of Sulaimani, Sulaimaniyah, Kurdistan Region, Iraq
| | - Manuela O Gustafsson
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden
| | - Abdalla J Mohamed
- Universiti Brunei Darussalam, Environmental and Life Sciences, Faculty of Science, Jalan Tungku Link, Gadong BE1410 Negara Brunei Darussalam, Brunei
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden.
| |
Collapse
|
9
|
Increased ZAP70 Is Involved in Dry Skin Pruritus in Aged Mice. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6029538. [PMID: 27195291 PMCID: PMC4852331 DOI: 10.1155/2016/6029538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/26/2016] [Accepted: 04/03/2016] [Indexed: 11/26/2022]
Abstract
Dry skin pruritus is common in the elderly. Recent reports show that T-cell signal path is involved in dry skin pruritus. Zeta-chain-associated protein kinase 70 (ZAP70), as a T-cell receptor, may induce interleukin 2 (IL-2) secretion and promote nerve growth factor (NGF) secretion in skin. This study aimed to detect the alteration of ZAP70 in a mice model with dry skin pruritus. The C57BL mice with 5 months and 22 months were used as experimental animal. Following a 5-day period of treatment of back with a mixture of acetone-diethyl-ether-water (AEW), mice exhibited a significant increase in spontaneous scratching behavior directed to the treated back compared to control animals in which back was similarly treated with water only (W). After AEW process, spontaneous scratching in 22-month AEW mice was increased compared to 5-month AEW mice. Western blot and real-time quantitative PCR data analysis showed that ZAP70 expression was significantly increased in 22-month AEW mice compared with 5-month AEW mice. ELISA data showed that secretions of IL-2 and NGF in 22-month AEW mice were higher than 5-month AEW mice. Our results indicate that increased ZAP70 is involved in dry skin in elderly pruritus. Increased secretion of IL-2 and NGF may induce dry skin itch.
Collapse
|
10
|
Wilcox RA. A three-signal model of T-cell lymphoma pathogenesis. Am J Hematol 2016; 91:113-22. [PMID: 26408334 DOI: 10.1002/ajh.24203] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/24/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Abstract
T-cell lymphoma pathogenesis and classification have, until recently, remained enigmatic. Recently performed whole-exome sequencing and gene-expression profiling studies have significant implications for their classification and treatment. Recurrent genetic modifications in antigen ("signal 1"), costimulatory ("signal 2"), or cytokine receptors ("signal 3"), and the tyrosine kinases and other signaling proteins they activate, have emerged as important therapeutic targets in these lymphomas. Many of these genetic modifications do not function in a cell-autonomous manner, but require the provision of ligand(s) by constituents of the tumor microenvironment, further supporting the long-appreciated view that these lymphomas are dependent upon and driven by their microenvironment. Therefore, the seemingly disparate fields of genomics and immunology are converging. A unifying "3 signal model" for T-cell lymphoma pathogenesis that integrates these findings will be presented, and its therapeutic implications briefly reviewed.
Collapse
Affiliation(s)
- Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology; University of Michigan; Ann Arbor Michigan
| |
Collapse
|
11
|
Bestas B, Turunen JJ, Blomberg KEM, Wang Q, Månsson R, El Andaloussi S, Berglöf A, Smith CIE. Splice-correction strategies for treatment of X-linked agammaglobulinemia. Curr Allergy Asthma Rep 2015; 15:510. [PMID: 25638286 PMCID: PMC4312560 DOI: 10.1007/s11882-014-0510-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
X-linked agammaglobulinemia (XLA) is a primary immunodeficiency disease caused by mutations in the gene coding for Bruton’s tyrosine kinase (BTK). Deficiency of BTK leads to a developmental block in B cell differentiation; hence, the patients essentially lack antibody-producing plasma cells and are susceptible to various infections. A substantial portion of the mutations in BTK results in splicing defects, consequently preventing the formation of protein-coding mRNA. Antisense oligonucleotides (ASOs) are therapeutic compounds that have the ability to modulate pre-mRNA splicing and alter gene expression. The potential of ASOs has been exploited for a few severe diseases, both in pre-clinical and clinical studies. Recently, advances have also been made in using ASOs as a personalized therapy for XLA. Splice-correction of BTK has been shown to be feasible for different mutations in vitro, and a recent proof-of-concept study demonstrated the feasibility of correcting splicing and restoring BTK both ex vivo and in vivo in a humanized bacterial artificial chromosome (BAC)-transgenic mouse model. This review summarizes the advances in splice correction, as a personalized medicine for XLA, and outlines the promises and challenges of using this technology as a curative long-term treatment option.
Collapse
Affiliation(s)
- Burcu Bestas
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, Novum Hälsovägen 7, 141 57, Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
12
|
T cell exhaustion and Interleukin 2 downregulation. Cytokine 2015; 71:339-47. [DOI: 10.1016/j.cyto.2014.11.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/30/2023]
|
13
|
Krisenko MO, Geahlen RL. Calling in SYK: SYK's dual role as a tumor promoter and tumor suppressor in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:254-63. [PMID: 25447675 DOI: 10.1016/j.bbamcr.2014.10.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
SYK (spleen tyrosine kinase) is well-characterized in the immune system as an essential enzyme required for signaling through multiple classes of immune recognition receptors. As a modulator of tumorigenesis, SYK has a bit of a schizophrenic reputation, acting in some cells as a tumor promoter and in others as a tumor suppressor. In many hematopoietic malignancies, SYK provides an important survival function and its inhibition or silencing frequently leads to apoptosis. In cancers of non-immune cells, SYK provides a pro-survival signal, but can also suppress tumorigenesis by restricting epithelial-mesenchymal transition, enhancing cell-cell interactions and inhibiting migration.
Collapse
Affiliation(s)
- Mariya O Krisenko
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|