1
|
Stassen SV, Kobashi M, Lam EY, Huang Y, Ho JWK, Tsia KK. StaVia: spatially and temporally aware cartography with higher-order random walks for cell atlases. Genome Biol 2024; 25:224. [PMID: 39152459 PMCID: PMC11328412 DOI: 10.1186/s13059-024-03347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Single-cell atlases pose daunting computational challenges pertaining to the integration of spatial and temporal information and the visualization of trajectories across large atlases. We introduce StaVia, a computational framework that synergizes multi-faceted single-cell data with higher-order random walks that leverage the memory of cells' past states, fused with a cartographic Atlas View that offers intuitive graph visualization. This spatially aware cartography captures relationships between cell populations based on their spatial location as well as their gene expression and developmental stage. We demonstrate this using zebrafish gastrulation data, underscoring its potential to dissect complex biological landscapes in both spatial and temporal contexts.
Collapse
Affiliation(s)
- Shobana V Stassen
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong.
| | - Minato Kobashi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Edmund Y Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong
- AI Chip Center for Emerging Smart Systems, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Yuanhua Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Laboratory of Data Discovery for Health, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
2
|
Liu H, Xie L, Xiao Y, Ran R, Fang Y, Yang B, Tan L, Xu J, Lu S, Dong Y, Cui L. Conversion of Retinoids along the Marine Food Chain Contributes to Adverse Impacts on the Spine, Liver, and Intestinal Health of the Marine Medaka ( Oryzias melastigma). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12921-12932. [PMID: 38965053 PMCID: PMC11271003 DOI: 10.1021/acs.est.4c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Marine microalgae serve as an aquaculture bait. To enhance algal cell growth and breeding profits, high-intensity light conditions are standard for cultivating bait microalgae, potentially altering microalgal metabolite production. This research revealed that Thalassiosira pseudonana, when subjected to high-intensity light conditions, accumulated significant quantities of retinal (RAL) that transferred through the food chain and transformed into all-trans retinoic acid (atRA) in marine medaka. The study further explored the toxic effects on individual fish and specific tissues, as well as the mechanisms behind this toxicity. The accumulation of atRA in the liver, intestine, and spinal column resulted in structural damage and tissue inflammation, as well as oxidative stress. It also down-regulated the gene transcription levels of key pathways involved in immune function and growth. Furthermore, it disrupted the homeostasis of the intestinal microbial communities. The implications for wildlife and human health, which are influenced by the regulation of microalgal metabolite accumulation and their transfer via the food chain, require further investigation and could hold broader significance.
Collapse
Affiliation(s)
- Haisu Liu
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Lei Xie
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Yang Xiao
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Ruiwei Ran
- Guangzhou
Key Laboratory of Subtropical Biodiversity and Biomonitoring, College
of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuhang Fang
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Baoling Yang
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Liying Tan
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Juanchan Xu
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| | - Songhui Lu
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
- Southern
Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, PR China
| | - Yuelei Dong
- Guangzhou
Key Laboratory of Subtropical Biodiversity and Biomonitoring, College
of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Lei Cui
- Research
Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication
and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
3
|
Wu Y, Zhang X, Chen J, Cao J, Feng C, Luo Y, Lin Y. Self-recovery study of fluoride-induced ferroptosis in the liver of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106275. [PMID: 36007351 DOI: 10.1016/j.aquatox.2022.106275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Ferroptosis plays a key role in fluorosis in aquatic organisms, but whether it is involved in fluoride-induced liver damage remains unclear. Previous studies have indicated that fluoride toxicity has the reversible tendency, but the mechanism of self-recovery after fluorosis in aquatic animals has not been elucidated. In this study, adult zebrafish and embryos were exposed to 0, 20, 40, 80 mg/L of fluoride for 30, 60 and 90 d and 3, 4 and 5 d post-fertilization (dpf), respectively. After 90 d, adult zebrafish were transferred to clean water for self-recovery of 30 d. The results showed that fluoride induced the prominent histopathologial changes in liver of adults, and the developmental delay and dark liver area in larvae. Fluoride significantly increased the iron overload, while decreased the expression levels of transferrin (tf), transferrin receptor (tfr), ferroportin (fpn), membrane iron transporter (fpn), and ferritin heavy chain (fth) in adults and larvae. Fluoride also induced the oxidative stress in adults and larvae by increasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while decreasing the glutathione (GSH) content and the levels of glutathione peroxidase 4 (gpx4) and solute carrier family 7 member 11 (slc7a11). Self-recovery relieved fluoride-induced ferroptosis by reducing the histopathological damage and oxidative stress, reversing the expression levels of fth and slc7a11, Fe2+ metabolism and GSH synthesis. Lipid peroxidation and Fe2+ metabolism may be the key factor in alleviating effects of self-recovery on fluoride toxicity. Moreover, males are more sensitive than females. Our results provide a theoretical basis for studying the alleviating effects of self-recovery on fluoride toxicity and the underlying mechanism of its protective effect.
Collapse
Affiliation(s)
- Yijie Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiuling Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Cuiping Feng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China.
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China.
| |
Collapse
|
4
|
Qian L, Liu J, Lin Z, Chen X, Yuan L, Shen G, Yang W, Wang D, Huang Y, Pang S, Mu X, Wang C, Li Y. Evaluation of the spinal effects of phthalates in a zebrafish embryo assay. CHEMOSPHERE 2020; 249:126144. [PMID: 32086060 DOI: 10.1016/j.chemosphere.2020.126144] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Phthalates (phthalate esters, PAEs) are commonly used as plasticizers and are emerging concerns worldwide for their potential influence on the environment and general public health. Thus, identification of the negative effects and involved mechanisms of PAEs is necessary. Herein, we found that embryonic exposure of zebrafish to di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) significantly induced spinal defects, such as inhibited spontaneous movement at 24 h post-fertilization (hpf), spine curvature and body length decrease at 96 hpf. The transcriptional level of the genes that are related to the development of the notochord (col8a1a and ngs), muscle (stac3, klhl41a and smyd2b) and skeleton (bmp2, spp1) were significantly altered by DEHP and DBP at 50 and 250 μg/L, which might be associated with the observed morphological changes. Notably, DBP and DEHP altered the locomotor activity of zebrafish larvae at 144 hpf, which might be due to the abnormal development of the spine and skeletal system. In conclusion, phthalates caused spinal birth defects in zebrafish embryos, induced transcriptional alterations of the spinal developmental genes, and led to abnormal behavior.
Collapse
Affiliation(s)
- Le Qian
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China; College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China; College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Zhipeng Lin
- College of Resources and Environmental Sciences, Nanjing Agricultural University, People's Republic of China
| | - Xiaofeng Chen
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Donghui Wang
- College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China.
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Mu X, Liu J, Yuan L, Yang K, Huang Y, Wang C, Yang W, Shen G, Li Y. The mechanisms underlying the developmental effects of bisphenol F on zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:877-884. [PMID: 31412491 DOI: 10.1016/j.scitotenv.2019.05.489] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
With the increasing use of bisphenol F (BPF) as BPA alternative, BPF are widely distributed in multiple environment media. Our previous study demonstrated that BPF possess equivalent toxicity towards zebrafish as BPA, while its toxic mechanism remains largely unknown. To investigate the mechanisms mediating the developmental effects of BPF, zebrafish embryos were exposed to 0.0005, 0.5, and 5.0 mg/L BPF. Morphological examination indicated that BPF exposure led to depigmentation, decreased heart rate, inhibited spontaneous movement, hatch inhibition, and spinal deformation. Motor neuron-green fluorescence zebrafish assay indicated that exposure to 0.5 or 5.0 mg/L BPF affected embryonic motor neuron development, which is consistent with the spinal defect and spontaneous movement inhibition. Transcriptomic analysis showed that genes associated with the observed symptoms, including neuron development (ngln2a, socs3a, fosb), cardiac development (klf2a), and spinal deformation (ngs, col8a1a, egr2a), were down-regulated after exposure to either 0.0005 (environmental relevant concentration) or 0.5 mg/L BPF. This partially explained the mechanisms underlying the effects of BPF. In conclusion, BPF had the potential to affect zebrafish development even at environmental level through down-regulating associated genes.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ke Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Restović I, Vukojević K, Paladin A, Saraga-Babić M, Bočina I. Immunohistochemical Studies of Cytoskeletal and Extracellular Matrix Components in Dogfish Scyliorhinus canicula L. Notochordal Cells. Anat Rec (Hoboken) 2015; 298:1700-9. [PMID: 26147227 DOI: 10.1002/ar.23195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/09/2022]
Abstract
Immunofluorescence and immunohistochemical techniques were used to define the distribution of cytoskeletal (cytokeratin 8, vimentin) and extracellular matrix components (collagen type I, collagen type II, hyaluronic acid, and aggrecan) and bone morphogenetic proteins 4 and 7 (BMP4 and BMP7) in the notochord of the lesser spotted dogfish Scyliorhinus canicula L. Immunolocalization of hyaluronic acid was observed in the notochord, vertebral centrum, and neural and hemal arches, while positive labeling to aggrecan was observed in the ossified centrum, notochord, and the perichondrium of the hyaline cartilage. Type I collagen was observed in the mineralized cartilage of the vertebral bodies, the notochord, the fibrocartilage of intervertebral disc, and the perichondrium. A positive labeling to type II collagen was observed in the inner part of the cartilaginous vertebral centrum and the notochord, as well as in the neural arch and muscle tissue, but there was no appreciable labeling of the hyaline cartilage. The presence of both BMP4 and BMP7 was seen in the mineralized vertebral centrum, notochordal cells, and neural arch. The notochordal cells expressed both cytokeratin 8 and vimentin, but predominantly vimentin. Hyaluronic acid, collagen type I, and collagen type II expression confirmed the presence of a mixture of notochordal and fibrocartilaginous tissue in the intervertebral disc, while BMPs confirmed the presence of an ossification in the cartilaginous skeleton of the spotted dogfish.
Collapse
Affiliation(s)
- Ivana Restović
- Faculty of Philosophy, University of Split, Teslina 12, 21 000 Split, Croatia
| | - Katarina Vukojević
- School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia
| | - Antonela Paladin
- Faculty of Science, University of Split, Teslina 12, 21 000 Split, Croatia
| | - Mirna Saraga-Babić
- School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia
| | - Ivana Bočina
- Faculty of Science, University of Split, Teslina 12, 21 000 Split, Croatia
| |
Collapse
|
7
|
Xia Z, Tong X, Liang F, Zhang Y, Kuok C, Zhang Y, Liu X, Zhu Z, Lin S, Zhang B. Eif3ba regulates cranial neural crest development by modulating p53 in zebrafish. Dev Biol 2013; 381:83-96. [PMID: 23791820 DOI: 10.1016/j.ydbio.2013.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/01/2013] [Accepted: 06/06/2013] [Indexed: 02/05/2023]
Abstract
Congenital diseases caused by abnormal development of the cranial neural crest usually present craniofacial malformations and heart defects while the precise mechanism is not fully understood. Here, we show that the zebrafish eif3ba mutant caused by pseudo-typed retrovirus insertion exhibited a similar phenotype due to the hypogenesis of cranial neural crest cells (NCCs). The derivatives of cranial NCCs, including the NCC-derived cell population of pharyngeal arches, craniofacial cartilage, pigment cells and the myocardium derived from cardiac NCCs, were affected in this mutant. The expression of several neural crest marker genes, including crestin, dlx2a and nrp2b, was specifically reduced in the cranial regions of the eif3ba mutant. Through fluorescence-tracing of the cranial NCC migration marker nrp2b, we observed reduced intensity of NCC-derived cells in the heart. In addition, p53 was markedly up-regulated in the eif3ba mutant embryos, which correlated with pronounced apoptosis in the cranial area as shown by TUNEL staining. These findings suggest a novel function of eif3ba during embryonic development and a novel level of regulation in the process of cranial NCC development, in addition to providing a potential animal model to mimic congenital diseases due to cranial NCC defects. Furthermore, we report the identification of a novel transgenic fish line Et(gata2a:EGFP)pku418 to trace the migration of cranial NCCs (including cardiac NCCs); this may serve as an invaluable tool for investigating the development and dynamics of cranial NCCs during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Zhidan Xia
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|