1
|
Zhu L, Yang X, Fu X, Yang P, Lin X, Wang F, Shen Z, Wang J, Sun F, Qiu Z. Pheromone cCF10 inhibits the antibiotic persistence of Enterococcus faecalis by modulating energy metabolism. Front Microbiol 2024; 15:1408701. [PMID: 39040910 PMCID: PMC11260814 DOI: 10.3389/fmicb.2024.1408701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Bacterial resistance presents a major challenge to both the ecological environment and human well-being, with persistence playing a key role. Multiple studies were recently undertaken to examine the factors influencing the formation of persisters and the underlying process, with a primary focus on Gram-negative bacteria and Staphylococcus aureus (Gram-positive bacteria). Enterococcus faecalis (E. faecalis) is capable of causing a variety of infectious diseases, but there have been few studies of E. faecalis persisters. Previous studies have shown that the sex pheromone cCF10 secreted by E. faecalis induces conjugative plasmid transfer. However, whether the pheromone cCF10 regulates the persistence of E. faecalis has not been investigated. Methods As a result, we investigated the effect and potential molecular mechanism of pheromone cCF10 in regulating the formation of persisters in E. faecalis OG1RF using a persistent bacteria model. Results and discussion The metabolically active E. faecalis OG1RF reached a persistence state and temporarily tolerated lethal antibiotic concentrations after 8 h of levofloxacin hydrochloride (20 mg/mL) exposure, exhibiting a persistence rate of 0.109 %. During the growth of E. faecalis OG1RF, biofilm formation was a critical factor contributing to antibiotic persistence, whereas 10 ng/mL cCF10 blocked persister cell formation. Notably, cCF10 mediated the antibiotic persistence of E. faecalis OG1RF via regulating metabolic activity rather than suppressing biofilm formation. The addition of cCF10 stimulated the Opp system and entered bacterial cells, inhibiting (p)ppGpp accumulation, thus maintaining the metabolically active state of bacteria and reducing persister cell generation. These findings offer valuable insights into the formation, as well as the control mechanism of E. faecalis persisters.
Collapse
Affiliation(s)
- Li Zhu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinyue Fu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Panpan Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaoli Lin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Guizhou, China
| | - Feng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhiqiang Shen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Feilong Sun
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
2
|
Bareia T, Pollak S, Guler P, Puyesky S, Eldar A. Major distinctions between the two oligopeptide permease systems of Bacillus subtilis with respect to signaling, development and evolutionary divergence. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001382. [PMID: 37755230 PMCID: PMC10569065 DOI: 10.1099/mic.0.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023]
Abstract
Oligopeptide-permeases (Opps) are used by bacteria to import short peptides. In addition to their metabolic benefit, imported short peptides are used in many Gram-positive bacteria as signalling molecules of the RRNPP super-family of quorum-sensing systems, making Opps an integral part of cell–cell communication. In some Gram-positive bacteria there exist multiple Opps and the relative importance of those to RRNPP quorum sensing are not fully clear. Specifically, in Bacillus subtilis , the Gram-positive model species, there exist two homologous oligopeptide permeases named Opp and App. Previous work showed that the App system is mutated in lab strain 168 and its recovery partially complements an Opp mutation for several developmental processes. Yet, the nature of the impact of App on signalling and development in wild-type strains, where both permeases are active was not studied. Here we re-examine the impact of the two permease systems. We find that App has a minor contribution to biofilm formation, surfactin production and phage infection compared to the effect of Opp. This reduced effect is also reflected in its lower ability to import the signals of four different Rap-Phr RRNPP systems. Further analysis of the App system revealed that, unlike Opp, some App genes have undergone horizontal transfer, resulting in two distinct divergent alleles of this system in B. subtilis strains. We found that both alleles were substantially better adapted than the Opp system to import an exogenous RRNPP signal of the Bacillus cereus group PlcR-PapR system. In summary, we find that the App system has only a minor role in signalling but may still be crucial for the import of other peptides.
Collapse
Affiliation(s)
- Tasneem Bareia
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
- Present address: Department of Plant & Environmental Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Shaul Pollak
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
- Present address: Division of Microbial Ecology, Centre for Microbiology and Environmental Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Polina Guler
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Shani Puyesky
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Avigdor Eldar
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
3
|
Yang Y, Yang X, Zhou H, Niu Y, Li J, Fu X, Wang S, Xue B, Li C, Zhao C, Zhang X, Shen Z, Wang J, Qiu Z. Bisphenols Promote the Pheromone-Responsive Plasmid-Mediated Conjugative Transfer of Antibiotic Resistance Genes in Enterococcus faecalis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17653-17662. [PMID: 36445841 DOI: 10.1021/acs.est.2c05349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The enrichment and spread of antibiotic resistance genes (ARGs) induced by environmental chemical pollution further exacerbated the threat to human health and ecological safety. Several compounds are known to induce R plasmid-mediated conjugation through inducing reactive oxygen species (ROS), increasing cell membrane permeability, enhancing regulatory genes expression, and so forth. Up to now, there has been no substantial breakthrough in the studies of models and related mechanisms. Here, we established a new conjugation model using pheromone-responsive plasmid pCF10 and confirmed that five kinds of bisphenols (BPs) at environmentally relevant concentrations could significantly promote the conjugation of ARGs mediated by plasmid pCF10 in E. faecalis by up to 4.5-fold compared with untreated cells. Using qPCR, gene knockout and UHPLC, we explored the mechanisms behind this phenomenon using bisphenol A (BPA) as a model of BPs and demonstrated that BPA could upregulate the expression of pheromone, promote bacterial aggregation, and even directly activate conjugation as a pheromone instead of producing ROS and enhancing cell membrane permeability. Interestingly, the result of mathematical analysis showed that the pheromone effect of most BPs is more potent than that of synthetic pheromone cCF10. These findings provide new insight into the environmental behavior and biological effect of BPs and provided new method and theory to study on enrichment and spread of ARGs induced by environmental chemical pollution.
Collapse
Affiliation(s)
- Yutong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Hongrui Zhou
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Yuanyuan Niu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
- Shanghai Ocean University, Shanghai201306, China
| | - Jing Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
- Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
| | - Xinyue Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
- Shanghai Ocean University, Shanghai201306, China
| | - Shang Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin300050, China
| |
Collapse
|
4
|
Segawa T, Manias DA, Dunny GM. Structural Differences in Complexes between the Master Regulator PrgX, Peptide Pheromones, and Operator Binding Sites Determine the Induction State for Conjugative Transfer of pCF10. J Bacteriol 2022; 204:e0029822. [PMID: 36354318 PMCID: PMC9764970 DOI: 10.1128/jb.00298-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022] Open
Abstract
Pheromone-inducible conjugation in the Enterococcus faecalis pCF10 system is regulated by the PrgX transcription factor through binding interactions at two operator binding sites (XBS1 and XBS2) upstream of the transcription start site of the prgQ operon encoding the conjugation machinery. Repression of transcription requires the interaction of a PrgX tetramer with both XBSs via formation of a DNA loop. The ability of PrgX to regulate prgQ transcription is modulated by its interaction with two antagonistic regulatory peptides, ICF10 (I) and cCF10 (C); the former peptide inhibits prgQ transcription, while the latter peptide enhances prgQ transcription. In this report, we used electrophoretic mobility shift assays (EMSAs) and DNase footprinting to examine binding interactions between the XBS operator sites and various forms of PrgX (Apo-X, PrgX/I, and PrgX/C). Whereas a previous model based on high-resolution structures of PrgX proposed that the functional differences between PrgX/C and PrgX/I resulted from differences in PrgX oligomerization state, the current results show that specific differences in XBS2 occupancy by bound tetramers account for the differential regulatory properties of the two peptide/PrgX complexes and for the effects of XBS mutations on regulation. The results also confirmed a DNA looping model of PrgX function. IMPORTANCE Peptide pheromones regulate antibiotic resistance transfer in Enterococcus faecalis. Here, we present new data showing that pheromone-dependent regulation of transfer genes is mediated via effects on the structures of complexes between peptides, the intracellular peptide receptor, and operator sites on the target DNA.
Collapse
Affiliation(s)
- Takaya Segawa
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Dawn A. Manias
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M. Dunny
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Hughes AM, Darby JF, Dodson EJ, Wilson SJ, Turkenburg JP, Thomas GH, Wilkinson AJ. Peptide transport in Bacillus subtilis - structure and specificity in the extracellular solute binding proteins OppA and DppE. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748525 DOI: 10.1099/mic.0.001274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Peptide transporters play important nutritional and cell signalling roles in Bacillus subtilis, which are pronounced during stationary phase adaptations and development. Three high-affinity ATP-binding cassette (ABC) family transporters are involved in peptide uptake - the oligopeptide permease (Opp), another peptide permease (App) and a less well-characterized dipeptide permease (Dpp). Here we report crystal structures of the extracellular substrate binding proteins, OppA and DppE, which serve the Opp and Dpp systems, respectively. The structure of OppA was determined in complex with endogenous peptides, modelled as Ser-Asn-Ser-Ser, and with the sporulation-promoting peptide Ser-Arg-Asn-Val-Thr, which bind with K d values of 0.4 and 2 µM, respectively, as measured by isothermal titration calorimetry. Differential scanning fluorescence experiments with a wider panel of ligands showed that OppA has highest affinity for tetra- and penta-peptides. The structure of DppE revealed the unexpected presence of a murein tripeptide (MTP) ligand, l-Ala-d-Glu-meso-DAP, in the peptide binding groove. The mode of MTP binding in DppE is different to that observed in the murein peptide binding protein, MppA, from Escherichia coli, suggesting independent evolution of these proteins from an OppA-like precursor. The presence of MTP in DppE points to a role for Dpp in the uptake and recycling of cell wall peptides, a conclusion that is supported by analysis of the genomic context of dpp, which revealed adjacent genes encoding enzymes involved in muropeptide catabolism in a gene organization that is widely conserved in Firmicutes.
Collapse
Affiliation(s)
- Adam M Hughes
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - John F Darby
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Eleanor J Dodson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Samuel J Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Johan P Turkenburg
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, York YO10 5DD, UK
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
6
|
Chai HH, Ham JS, Kim TH, Lim D. Identifying ligand-binding specificity of the oligopeptide receptor OppA from Bifidobacterium longum KACC91563 by structure-based molecular modeling. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Segawa T, Johnson CM, Berntsson RPA, Dunny GM. Two ABC transport systems carry out peptide uptake in Enterococcus faecalis: Their roles in growth and in uptake of sex pheromones. Mol Microbiol 2021; 116:459-469. [PMID: 33817866 DOI: 10.1111/mmi.14725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Enterococcal pheromone-inducible plasmids encode a predicted OppA-family secreted lipoprotein. In the case of plasmid pCF10, the protein is PrgZ, which enhances the mating response to cCF10 pheromone. OppA proteins generally function with associated OppBCDF ABC transporters to import peptides. In this study, we analyzed the potential interactions of PrgZ with two host-encoded Opp transporters using two pheromone-inducible fluorescent reporter constructs. Based on our results, we propose renaming these loci opp1 (OG1RF_10634-10639) and opp2 (OG1RF_12366-12370). We also examined the ability of the Opp1 and Opp2 systems to mediate import in the absence of PrgZ. Cells expressing PrgZ were able to import pheromone if either opp1 or opp2 was functional, but not if both opp loci were disrupted. In the absence of PrgZ, pheromone import was dependent on a functional opp2 system, including opp2A. Comparative structural analysis of the peptide-binding pockets of PrgZ, Opp1A, Opp2A, and the related Lactococcus lactis OppA protein, suggested that the robust pheromone-binding ability of PrgZ relates to a nearly optimal fit of the hydrophobic peptide, whereas binding ability of Opp2A likely results from a more open, promiscuous peptide-binding pocket similar to L. lactis OppA.
Collapse
Affiliation(s)
- Takaya Segawa
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christopher M Johnson
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umea University, Umea, Sweden.,Wallenberg Center for Molecular Medicine, Umea University, Umea, Sweden
| | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
8
|
Pinto L, Torres C, Gil C, Santos HM, Capelo JL, Borges V, Gomes JP, Silva C, Vieira L, Poeta P, Igrejas G. Multiomics Substrates of Resistance to Emerging Pathogens? Transcriptome and Proteome Profile of a Vancomycin-Resistant Enterococcus faecalis Clinical Strain. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:81-95. [PMID: 32073998 DOI: 10.1089/omi.2019.0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Antibiotic resistance and hospital acquired infections are on the rise worldwide. Vancomycin-resistant enterococci have been reported in clinical settings in recent decades. In this multiomics study, we provide comprehensive proteomic and transcriptomic analyses of a vancomycin-resistant Enterococcus faecalis clinical isolate from a patient with a urinary tract infection. The previous genotypic profile of the strain C2620 indicated the presence of antibiotic resistance genes characteristic of the vanB cluster. To further investigate the transcriptome of this pathogenic strain, we used whole genome sequencing and RNA-sequencing to detect and quantify the genes expressed. In parallel, we used two-dimensional gel electrophoresis followed by MALDI-TOF/MS (Matrix-assisted laser desorption/ionization-Time-of-flight/Mass spectrometry) to identify the proteins in the proteome. We studied the membrane and cytoplasm subproteomes separately. From a total of 207 analysis spots, we identified 118 proteins. The protein list was compared to the results obtained from the full transcriptome assay. Several genes and proteins related to stress and cellular response were identified, as well as some linked to antibiotic and drug responses, which is consistent with the known state of multiresistance. Even though the correlation between transcriptome and proteome data is not yet fully understood, the use of multiomics approaches has proven to be increasingly relevant to achieve deeper insights into the survival ability of pathogenic bacteria found in health care facilities.
Collapse
Affiliation(s)
- Luís Pinto
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Concha Gil
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Hugo M Santos
- LAQV-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| | - José Luís Capelo
- LAQV-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Catarina Silva
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Patrícia Poeta
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| |
Collapse
|
9
|
Banderas A, Carcano A, Sia E, Li S, Lindner AB. Ratiometric quorum sensing governs the trade-off between bacterial vertical and horizontal antibiotic resistance propagation. PLoS Biol 2020; 18:e3000814. [PMID: 32797039 PMCID: PMC7449403 DOI: 10.1371/journal.pbio.3000814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/26/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
Plasmid-mediated horizontal gene transfer of antibiotic resistance and virulence in pathogenic bacteria underlies a major public health issue. Understanding how, in the absence of antibiotic-mediated selection, plasmid-bearing cells avoid being outnumbered by plasmid-free cells is key to developing counterstrategies. Here, we quantified the induction of the plasmidial sex pheromone pathway of Enterococcus faecalis to show that the integration of the stimulatory (mate-sensing) and inhibitory (self-sensing) signaling modules from the pCF10 conjugative plasmid provides a precise measure of the recipient-to-donor ratio, agnostic to variations in population size. Such ratiometric control of conjugation favors vertical plasmid transfer under low mating likelihood and allows activation of conjugation functions only under high mating likelihood. We further show that this strategy constitutes a cost-effective investment into mating effort because overstimulation produces unproductive self-aggregation and growth rate reduction. A mathematical model suggests that ratiometric control of conjugation increases plasmid fitness and predicts a robust long-term, stable coexistence of donors and recipients. Our results demonstrate how population-level parameters can control transfer of antibiotic resistance in bacteria, opening the door for biotic control strategies. The pathogenic bacterium Enterococcus faecalis controls the horizontal gene transfer of antibiotic resistance according to the ratio of non-resistant to resistant bacteria, while remaining agnostic to variation in the total culture density. This ratiometric twist on the well-known phenomenon of quorum-sensing allows investment in expensive conjugative transfer of plasmids only when chances are high, akin to sexual systems in more complex organisms.
Collapse
Affiliation(s)
- Alvaro Banderas
- INSERM U1284, Systems engineering and evolution dynamics, Paris, France
- Center for Research and Interdisciplinarity, Université de Paris, Paris, France
- * E-mail: (AB); (ABL)
| | - Arthur Carcano
- INRIA Saclay–Ile-de-France, Palaiseau, France
- USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Elisa Sia
- INSERM U1284, Systems engineering and evolution dynamics, Paris, France
- Center for Research and Interdisciplinarity, Université de Paris, Paris, France
| | - Shuang Li
- INSERM U1284, Systems engineering and evolution dynamics, Paris, France
- Center for Research and Interdisciplinarity, Université de Paris, Paris, France
| | - Ariel B. Lindner
- INSERM U1284, Systems engineering and evolution dynamics, Paris, France
- Center for Research and Interdisciplinarity, Université de Paris, Paris, France
- * E-mail: (AB); (ABL)
| |
Collapse
|
10
|
Possible drugs for the treatment of bacterial infections in the future: anti-virulence drugs. J Antibiot (Tokyo) 2020; 74:24-41. [PMID: 32647212 DOI: 10.1038/s41429-020-0344-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Antibiotic resistance is a global threat that should be urgently resolved. Finding a new antibiotic is one way, whereas the repression of the dissemination of virulent pathogenic bacteria is another. From this point of view, this paper summarizes first the mechanisms of conjugation and transformation, two important processes of horizontal gene transfer, and then discusses the approaches for disarming virulent pathogenic bacteria, that is, virulence factor inhibitors. In contrast to antibiotics, anti-virulence drugs do not impose a high selective pressure on a bacterial population, and repress the dissemination of antibiotic resistance and virulence genes. Disarmed virulence factors make virulent pathogens avirulent bacteria or pathobionts, so that we human will be able to coexist with these disarmed bacteria peacefully.
Collapse
|
11
|
Sterling AJ, Snelling WJ, Naughton PJ, Ternan NG, Dooley JSG. Competent but complex communication: The phenomena of pheromone-responsive plasmids. PLoS Pathog 2020; 16:e1008310. [PMID: 32240270 PMCID: PMC7117660 DOI: 10.1371/journal.ppat.1008310] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Enterococci are robust gram-positive bacteria that are found in a variety of surroundings and that cause a significant number of healthcare-associated infections. The genus possesses a high-efficiency pheromone-responsive plasmid (PRP) transfer system for genetic exchange that allows antimicrobial-resistance determinants to spread within bacterial populations. The pCF10 plasmid system is the best characterised, and although other PRP systems are structurally similar, they lack exact functional homologues of pCF10-encoded genes. In this review, we provide an overview of the enterococcal PRP systems, incorporating functional details for the less-well-defined systems. We catalogue the virulence-associated elements of the PRPs that have been identified to date, and we argue that this reinforces the requirement for elucidation of the less studied systems.
Collapse
Affiliation(s)
- Amy J. Sterling
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
- * E-mail:
| | - William J. Snelling
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| | - Patrick J. Naughton
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| | - Nigel G. Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| | - James S. G. Dooley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| |
Collapse
|
12
|
Hughes A, Wilson S, Dodson EJ, Turkenburg JP, Wilkinson AJ. Crystal structure of the putative peptide-binding protein AppA from Clostridium difficile. Acta Crystallogr F Struct Biol Commun 2019; 75:246-253. [PMID: 30950825 PMCID: PMC6450515 DOI: 10.1107/s2053230x1900178x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Peptides play an important signalling role in Bacillus subtilis, where their uptake by one of two ABC-type oligopeptide transporters, Opp and App, is required for efficient sporulation. Homologues of these transporters in Clostridium difficile have been characterized, but their role, and hence that of peptides, in regulating sporulation in this organism is less clear. Here, the oligopeptide-binding receptor proteins for these transporters, CdAppA and CdOppA, have been purified and partially characterized, and the crystal structure of CdAppA has been determined in an open unliganded form. Peptide binding to either protein could not be observed in Thermofluor assays with a set of ten peptides of varying lengths and compositions. Re-examination of the protein sequences together with structure comparisons prompts the proposal that CdAppA is not a versatile peptide-binding protein but instead may bind a restricted set of peptides. Meanwhile, CdOppA is likely to be the receptor protein for a nickel-uptake system.
Collapse
Affiliation(s)
- Adam Hughes
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Samuel Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Eleanor J. Dodson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Johan P. Turkenburg
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| |
Collapse
|
13
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| |
Collapse
|
14
|
Tanaka KJ, Pinkett HW. Oligopeptide-binding protein from nontypeable Haemophilus influenzae has ligand-specific sites to accommodate peptides and heme in the binding pocket. J Biol Chem 2018; 294:1070-1082. [PMID: 30455346 DOI: 10.1074/jbc.ra118.004479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/14/2018] [Indexed: 11/06/2022] Open
Abstract
In nontypeable Haemophilus influenzae (NTHi), the oligopeptide-binding protein (OppA) serves as the substrate-binding protein (SBP) of the oligopeptide transport system responsible for the import of peptides. We solved the crystal structure of nthiOppA in complex with hydrophobic peptides of various sizes. Our novel hexapeptide complex demonstrates the flexibility of the nthiOppA-binding cavity to expand and accommodate the longer peptide while maintaining similar protein-peptide interactions of smaller peptide complexes. In addition to acquiring peptides from the host environment, as a heme auxotroph NTHi utilizes host hemoproteins as a source of essential iron. OppA is a member of the Cluster C SBP family, and unlike other SBP families, some members recognize two distinctly different substrates. DppA (dipeptide), MppA (murein tripeptide), and SapA (antimicrobial peptides) are Cluster C proteins known to also transport heme. We observed nthiOppA shares this heme-binding characteristic and established heme specificity and affinity by surface plasmon resonance (SPR) of the four Cluster C proteins in NTHi. Ligand-docking studies predicted a distinct heme-specific cleft in the binding pocket, and using SPR competition assays, we observed that heme does not directly compete with peptide in the substrate-binding pocket. Additionally, we identified that the individual nthiOppA domains differentially contribute to substrate binding, with one domain playing a dominant role in heme binding and the other in peptide binding. Our results demonstrate the multisubstrate specificity of nthiOppA and the role of NTHi Cluster C proteins in the heme-uptake pathway for this pathogen.
Collapse
Affiliation(s)
- Kari J Tanaka
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Heather W Pinkett
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
15
|
Chen Y, Bandyopadhyay A, Kozlowicz BK, Haemig HAH, Tai A, Hu W, Dunny GM. Mechanisms of peptide sex pheromone regulation of conjugation in Enterococcus faecalis. Microbiologyopen 2017; 6:e00492. [PMID: 28523739 PMCID: PMC5552905 DOI: 10.1002/mbo3.492] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
In many gram positive bacteria, horizontal transfer and virulence are regulated by peptide-mediated cell-cell signaling. The heptapeptide cCF10 (C) activates conjugative transfer of the Enterococcus faecalis plasmid pCF10, whereas the iCF10 (I) peptide inhibits transfer. Both peptides bind to the same domain of the master transcription regulator PrgX, a repressor of transcription of the prgQ operon encoding conjugation genes. We show that repression of prgQ by PrgX tetramers requires formation of a pCF10 DNA loop where each of two PrgX DNA-binding sites is occupied by a dimer. I binding to PrgX enhances prgQ repression, while C binding has the opposite effect. Previous models suggested that differential effects of these two peptides on the PrgX oligomerization state accounted for their distinct functions. Our new results demonstrate that both peptides have similar, high-binding affinity for PrgX, and that both peptides actually promote formation of PrgX tetramers with higher DNA-binding affinity than Apo-PrgX. We propose that differences in repression ability of PrgX/peptide complexes result from subtle differences in the structures of DNA-bound PrgX/peptide complexes. Changes in the induction state of a donor cell likely results from replacement of one type of DNA-bound peptide/PrgX tetramer with the other.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
| | - Arpan Bandyopadhyay
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMNUSA
| | - Briana K. Kozlowicz
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
- Present address:
Cargill Biotechnology R&DPlymouthMNUSA
| | - Heather A. H. Haemig
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
- Present address:
Department of ChemistryGustavus Adolphus CollegeSt. PeterMNUSA
| | | | - Wei‐Shou Hu
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMNUSA
| | - Gary M. Dunny
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
16
|
The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity. Biochem Soc Trans 2016; 43:1011-7. [PMID: 26517916 DOI: 10.1042/bst20150135] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
ATP-binding cassette (ABC) transporters, although being ubiquitous in biology, often feature a subunit that is limited primarily to bacteria and archaea. This subunit, the substrate-binding protein (SBP), is a key determinant of the substrate specificity and high affinity of ABC uptake systems in these organisms. Most prokaryotes have many SBP-dependent ABC transporters that recognize a broad range of ligands from metal ions to amino acids, sugars and peptides. Herein, we review the structure and function of a number of more unusual SBPs, including an ABC transporter involved in the transport of rare furanose forms of sugars and an SBP that has evolved to specifically recognize the bacterial cell wall-derived murein tripeptide (Mtp). Both these examples illustrate that subtle changes in binding-site architecture, including changes in side chains not directly involved in ligand co-ordination, can result in significant alteration of substrate range in novel and unpredictable ways.
Collapse
|
17
|
Enterococcal Sex Pheromones: Evolutionary Pathways to Complex, Two-Signal Systems. J Bacteriol 2016; 198:1556-1562. [PMID: 27021562 DOI: 10.1128/jb.00128-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gram-positive bacteria carry out intercellular communication using secreted peptides. Important examples of this type of communication are the enterococcal sex pheromone systems, in which the transfer of conjugative plasmids is controlled by intercellular signaling among populations of donors and recipients. This review focuses on the pheromone response system of the conjugative plasmid pCF10. The peptide pheromones regulating pCF10 transfer act by modulating the ability of the PrgX transcription factor to repress the transcription of an operon encoding conjugation functions. Many Gram-positive bacteria regulate important processes, including the production of virulence factors, biofilm formation, sporulation, and genetic exchange using peptide-mediated signaling systems. The key master regulators of these systems comprise the RRNPP (RggRap/NprR/PlcR/PrgX) family of intracellular peptide receptors; these regulators show conserved structures. While many RRNPP systems include a core module of two linked genes encoding the regulatory protein and its cognate signaling peptide, the enterococcal sex pheromone plasmids have evolved to a complex system that also recognizes a second host-encoded signaling peptide. Additional regulatory genes not found in most RRNPP systems also modulate signal production and signal import in the enterococcal pheromone plasmids. This review summarizes several structural studies that cumulatively demonstrate that the ability of three pCF10 regulatory proteins to recognize the same 7-amino-acid pheromone peptide arose by convergent evolution of unrelated proteins from different families. We also focus on the selective pressures and structure/function constraints that have driven the evolution of pCF10 from a simple, single-peptide system resembling current RRNPPs in other bacteria to the current complex inducible plasmid transfer system.
Collapse
|
18
|
Affiliation(s)
- Gary M. Dunny
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455;
| |
Collapse
|