1
|
Chang YH, Tseng YH, Wang JM, Tsai YS, Liu XL, Huang HS. Phosphorylation of TG-interacting factor 1 at carboxyl-terminal sites in response to insulin regulates adipocyte differentiation. FEBS Lett 2024; 598:945-955. [PMID: 38472156 DOI: 10.1002/1873-3468.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 03/14/2024]
Abstract
TG-interacting factor 1 (TGIF1) contributes to the differentiation of murine white preadipocyte and human adipose tissue-derived stem cells; however, its regulation is not well elucidated. Insulin is a component of the adipogenic cocktail that induces ERK signaling. TGIF1 phosphorylation and sustained stability in response to insulin were reduced through the use of specific MEK inhibitor U0126. Mutagenesis at T235 or T239 residue of TGIF1 in preadipocytes led to dephosphorylation of TGIF1. The reduced TGIF1 stability resulted in an increase in p27kip1 expression, a decrease in phosphorylated Rb expression and cellular proliferation, and a reduced accumulation of lipids compared to the TGIF1-overexpressed cells. These findings highlight that insulin/ERK-driven phosphorylation of the T235 or T239 residue at TGIF1 is crucial for adipocyte differentiation.
Collapse
Affiliation(s)
- Yu-Hao Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Xin-Lei Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Sarkar A, Liu NQ, Magallanes J, Tassey J, Lee S, Shkhyan R, Lee Y, Lu J, Ouyang Y, Tang H, Bian F, Tao L, Segil N, Ernst J, Lyons K, Horvath S, Evseenko D. STAT3 promotes a youthful epigenetic state in articular chondrocytes. Aging Cell 2023; 22:e13773. [PMID: 36638270 PMCID: PMC9924946 DOI: 10.1111/acel.13773] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Epigenetic mechanisms guiding articular cartilage regeneration and age-related disease such as osteoarthritis (OA) are poorly understood. STAT3 is a critical age-patterned transcription factor highly active in fetal and OA chondrocytes, but the context-specific role of STAT3 in regulating the epigenome of cartilage cells remain elusive. In this study, DNA methylation profiling was performed across human chondrocyte ontogeny to build an epigenetic clock and establish an association between CpG methylation and human chondrocyte age. Exposure of adult chondrocytes to a small molecule STAT3 agonist decreased DNA methylation, while genetic ablation of STAT3 in fetal chondrocytes induced global hypermethylation. CUT&RUN assay and subsequent transcriptional validation revealed DNA methyltransferase 3 beta (DNMT3B) as one of the putative STAT3 targets in chondrocyte development and OA. Functional assessment of human OA chondrocytes showed the acquisition of progenitor-like immature phenotype by a significant subset of cells. Finally, conditional deletion of Stat3 in cartilage cells increased DNMT3B expression in articular chondrocytes in the knee joint in vivo and resulted in a more prominent OA progression in a post-traumatic OA (PTOA) mouse model induced by destabilization of the medial meniscus (DMM). Taken together these data reveal a novel role for STAT3 in regulating DNA methylation in cartilage development and disease. Our findings also suggest that elevated levels of active STAT3 in OA chondrocytes may indicate an intrinsic attempt of the tissue to regenerate by promoting a progenitor-like phenotype. However, it is likely that chronic activation of this pathway, induced by IL-6 cytokines, is detrimental and leads to tissue degeneration.
Collapse
Affiliation(s)
- Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine of USCUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - Nancy Q. Liu
- Department of Orthopaedic Surgery, Keck School of Medicine of USCUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - Jenny Magallanes
- Department of Orthopaedic Surgery, Keck School of Medicine of USCUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - Jade Tassey
- Department of Orthopaedic Surgery, Keck School of Medicine of USCUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USCUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine of USCUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - Youngjoo Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USCUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - Jinxiu Lu
- Department of Orthopaedic Surgery, Keck School of Medicine of USCUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - Yuxin Ouyang
- Department of Orthopaedic Surgery, Keck School of Medicine of USCUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - Hanhan Tang
- Department of Orthopaedic Surgery, Keck School of Medicine of USCUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - Fangzhou Bian
- Department of Orthopaedic Surgery, Keck School of Medicine of USCUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - Litao Tao
- Department of Biomedical SciencesCreighton UniversityNebraskaOmahaUSA
| | - Neil Segil
- Department of Stem Cell and Regenerative MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Eli and Edythe Broad CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jason Ernst
- Department of Biological ChemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLALos AngelesCaliforniaUSA
- Computer Science DepartmentUniversity of CaliforniaLos AngelesCaliforniaUSA
- Jonsson Comprehensive Cancer Center, University of CaliforniaLos AngelesCaliforniaUSA
- Molecular Biology Institute, University of CaliforniaLos AngelesCaliforniaUSA
- Department of Computational MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Karen Lyons
- Department of Orthopaedic SurgeryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Human Genetics, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USCUniversity of Southern California (USC)Los AngelesCaliforniaUSA
- Department of Stem Cell and Regenerative MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Eli and Edythe Broad CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Yeo NJY, Wazny V, Nguyen NLU, Ng CY, Wu KX, Fan Q, Cheung CMG, Cheung C. Single-Cell Transcriptome of Wet AMD Patient-Derived Endothelial Cells in Angiogenic Sprouting. Int J Mol Sci 2022; 23:ijms232012549. [PMID: 36293401 PMCID: PMC9604336 DOI: 10.3390/ijms232012549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Age-related macular degeneration (AMD) is a global leading cause of visual impairment in older populations. ‘Wet’ AMD, the most common subtype of this disease, occurs when pathological angiogenesis infiltrates the subretinal space (choroidal neovascularization), causing hemorrhage and retinal damage. Gold standard anti-vascular endothelial growth factor (VEGF) treatment is an effective therapy, but the long-term prevention of visual decline has not been as successful. This warrants the need to elucidate potential VEGF-independent pathways. We generated blood out-growth endothelial cells (BOECs) from wet AMD and normal control subjects, then induced angiogenic sprouting of BOECs using a fibrin gel bead assay. To deconvolute endothelial heterogeneity, we performed single-cell transcriptomic analysis on the sprouting BOECs, revealing a spectrum of cell states. Our wet AMD BOECs share common pathways with choroidal neovascularization such as extracellular matrix remodeling that promoted proangiogenic phenotype, and our ‘activated’ BOEC subpopulation demonstrated proinflammatory hallmarks, resembling the tip-like cells in vivo. We uncovered new molecular insights that pathological angiogenesis in wet AMD BOECs could also be driven by interleukin signaling and amino acid metabolism. A web-based visualization of the sprouting BOEC single-cell transcriptome has been created to facilitate further discovery research.
Collapse
Affiliation(s)
- Natalie Jia Ying Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Vanessa Wazny
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Nhi Le Uyen Nguyen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Chun-Yi Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Kan Xing Wu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Qiao Fan
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chui Ming Gemmy Cheung
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Correspondence: (C.M.G.C.); (C.C.)
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
- Correspondence: (C.M.G.C.); (C.C.)
| |
Collapse
|
4
|
He Y, Tacconi C, Dieterich LC, Kim J, Restivo G, Gousopoulos E, Lindenblatt N, Levesque MP, Claassen M, Detmar M. Novel Blood Vascular Endothelial Subtype-Specific Markers in Human Skin Unearthed by Single-Cell Transcriptomic Profiling. Cells 2022; 11:cells11071111. [PMID: 35406678 PMCID: PMC8997372 DOI: 10.3390/cells11071111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Ample evidence pinpoints the phenotypic diversity of blood vessels (BVs) and site-specific functions of their lining endothelial cells (ECs). We harnessed single-cell RNA sequencing (scRNA-seq) to dissect the molecular heterogeneity of blood vascular endothelial cells (BECs) in healthy adult human skin and identified six different subpopulations, signifying arterioles, post-arterial capillaries, pre-venular capillaries, post-capillary venules, venules and collecting venules. Individual BEC subtypes exhibited distinctive transcriptomic landscapes associated with diverse biological pathways. These functionally distinct dermal BV segments were characterized by their unique compositions of conventional and novel markers (e.g., arteriole marker GJA5; arteriole capillary markers ASS1 and S100A4; pre-venular capillary markers SOX17 and PLAUR; venular markers EGR2 and LRG1), many of which have been implicated in vascular remodeling upon inflammatory responses. Immunofluorescence staining of human skin sections and whole-mount skin blocks confirmed the discrete expression of these markers along the blood vascular tree in situ, further corroborating BEC heterogeneity in human skin. Overall, our study molecularly refines individual BV compartments, whilst the identification of novel subtype-specific signatures provides more insights for future studies dissecting the responses of distinct vessel segments under pathological conditions.
Collapse
Affiliation(s)
- Yuliang He
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland; (Y.H.); (C.T.); (L.C.D.); (J.K.)
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland; (Y.H.); (C.T.); (L.C.D.); (J.K.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland; (Y.H.); (C.T.); (L.C.D.); (J.K.)
| | - Jihye Kim
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland; (Y.H.); (C.T.); (L.C.D.); (J.K.)
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zürich, 8091 Zürich, Switzerland; (G.R.); (M.P.L.)
| | - Epameinondas Gousopoulos
- Department of Plastic Surgery and Hand Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (E.G.); (N.L.)
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zürich, 8091 Zürich, Switzerland; (E.G.); (N.L.)
| | - Mitchell P. Levesque
- Department of Dermatology, University Hospital Zürich, 8091 Zürich, Switzerland; (G.R.); (M.P.L.)
| | - Manfred Claassen
- Department of Internal Medicine I, University of Tübingen, 72074 Tübingen, Germany;
- Department of Computer Science, University of Tübingen, 72074 Tübingen, Germany
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland; (Y.H.); (C.T.); (L.C.D.); (J.K.)
- Correspondence:
| |
Collapse
|
5
|
El-Meguid MA, Dawood RM, Ibrahim MK, Salum GM, Ahmed Abd Alla MD, El Awady MK. Reactivation of human cytomegalovirus inhibits expression of liver fibrosis related cytokines in patients chronically infected with hepatitis C virus genotype 4a. Microb Pathog 2021; 152:104596. [PMID: 33127535 DOI: 10.1016/j.micpath.2020.104596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The impact of human cytomegalovirus (HCMV) reactivation on the expression pattern of matrix metalloproteinases, their inhibitors and related cytokines during HCV infection poorly understood. METHODS Reactivation of CMV in 95 subjects (75 chronically infected HCV patients and 20 healthy subjects) was examined. All studied subjects had detectable IgG antibodies for CMV, but only 35/75 of HCV patients (46.7%) had detectable CMV DNA. The expressions of 11 fibrosis related genes by quantitative real-time PCR were analyzed in subjects' PBMCs. The serum levels of TGFβ2 and PDGFα have been measured by ELISA. RESULTS Chronically infected HCV patients with reactivated CMV had less expression of TGF-β1, TGF-β2, PDGFα and STAT1 transcripts than HCV patients with latent CMV (p = 0.037, 0.006, 0.001 and 0.009; respectively) and normal controls (TGF-β2, p = 0.008). Moreover the expression of (TGFβ2 and PDGFα) genes decreased significantly in CMV-reactivated patients during the early stage of fibrosis relative to the comparable stage of HCV infection (p = 0.004 and 0.008; respectively). Besides, the mRNA abundance of STAT1 gene in CMV-reactivated patients decreased dramatically as compared to HCV infections during the late stage of fibrosis (p = 0.014). The TGFβ2 protein level has been declined dramatically in CMV-reactivated patients compared to HCV infected patients and control group (p = 0.001 and 0.033; respectively). Our results suggest that CMV reactivation disrupts the expression of several cytokines as compared to solitary infection with HCV. Noticeably, the expressions of matrix metalloproteinases genes and their inhibitors have not been significantly influenced by reactivation of CMV. CONCLUSION The current data reveal that reactivation of CMV partially blocks the upregulation of 2 important pro-inflammatory cytokines i.e. TGFβ 2 and PDGFα at early stages of fibrosis, moreover this CMV mediated blockage of the STAT1 shows statistical significance at late stage of fibrosis.
Collapse
Affiliation(s)
- Mai Abd El-Meguid
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, 33 EL Bohouth St. (former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Reham M Dawood
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, 33 EL Bohouth St. (former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Marwa K Ibrahim
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, 33 EL Bohouth St. (former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Ghada M Salum
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, 33 EL Bohouth St. (former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Mohamed Darwish Ahmed Abd Alla
- Tropical Medicine Department, Faculty of Medicine, Al-Azhar University, Gouhar Al-Kaed Street, El-Hussein University Hospital, Al-Darasah, Cairo, 11675, Egypt
| | - Mostafa K El Awady
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, 33 EL Bohouth St. (former El Tahrir St.), Dokki, Giza, 12622, Egypt.
| |
Collapse
|
6
|
Ding J, Zhou H, Luo L, Xiao L, Yang K, Yang L, Zheng Y, Xu K, He C, Han C, Luo H, Qin C, Akinyemi FT, Gu C, Zhou Z, Huang Q, Meng H. Heritable Gut Microbiome Associated with Salmonella enterica Serovar Pullorum Infection in Chickens. mSystems 2021; 6:e01192-20. [PMID: 33402350 PMCID: PMC7786134 DOI: 10.1128/msystems.01192-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Pullorum disease is one of the most common diarrhea-related diseases caused by Salmonella enterica subspecies enterica serovar Gallinarum biovar Pullorum (S Pullorum); it negatively affects the poultry industry. However, limited studies have explored the association between the gut microbiota and S Pullorum infection in chickens. In the present study, we performed a microbiome comparison and a microbiome genome-wide association study (mGWAS) to investigate the association among the host genetics, the gut microbiota, and pullorum disease in chickens. We found that S Pullorum infection in chickens could alter the abundance of 39 bacterial genera (P < 0.05). The altered structure and composition of the gut microbiota were also detected in the offspring. mGWAS results revealed host genetic variants to be prominently associated with gut microbial diversity and individual microbes. The pathogens Pelomonas and Brevundimonas, which had a high abundance in positive parent chickens and their offspring, were significantly associated with several genetic mutations in immunity-related genes, such as TGIF1, TTLL12, and CCR7 This finding explained why Pelomonas and Brevundimonas were heritable in S Pullorum-infected chickens. The heritable gut microbes and identified genetic variants could provide references for the selection of resistant chickens and the elimination of pullorum disease.IMPORTANCE The present study investigated the association among the host genome, the gut microbiome, and S Pullorum infection in chickens. The results suggested that the gut microbial structure is altered in S Pullorum-infected chickens. The diversity and abundance of the gut microbiota remarkably differed between the offspring coming from S Pullorum-positive and S Pullorum-negative chickens. Heritable gut microbiota were detected in the offspring. Moreover, host genetic variants were associated with microbial diversity and individual gut microbes. The pathogens Pelomonas and Brevundimonas, which exhibited a high heritability in S Pullorum-positive parents and their offspring, were associated with several genetic mutations in immunity-related genes.
Collapse
Affiliation(s)
- Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hao Zhou
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lingxiao Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lu Xiao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kaixuan Yang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai, People's Republic of China
| | - Lingyu Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuming Zheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ke Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chuan He
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chengxiao Han
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Huaixi Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chao Qin
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fisayo T Akinyemi
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Caiju Gu
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai, People's Republic of China
| | - Zhenxiang Zhou
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai, People's Republic of China
| | - Qizhong Huang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai, People's Republic of China
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Abstract
Hepatic fibrosis is a complex mechanism defined by the net deposition of the extracellular matrix (ECM) owing to liver injury caused by multiple etiologies such as viral hepatitis and nonalcoholic fatty liver disease. Many cell types are implicated in liver fibrosis development and progression. In general, liver fibrosis starts with the recruitment of inflammatory immune cells to generate cytokines, growth factors, and other activator molecules. Such chemical mediators drive the hepatic stellate cells (HSCs) to activate the production of the ECM component. The activation of HSC is thus a crucial event in the fibrosis initiation, and a significant contributor to collagen deposition (specifically type I). This review explores the causes and mechanisms of hepatic fibrosis and focuses on the roles of key molecules involved in liver fibro genesis, some of which are potential targets for therapeutics to hamper liver fibro genesis.
Collapse
Affiliation(s)
- Reham M Dawood
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mai A El-Meguid
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Ghada Maher Salum
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mostafa K El Awady
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| |
Collapse
|
8
|
Toullec A, Buard V, Rannou E, Tarlet G, Guipaud O, Robine S, Iruela-Arispe ML, François A, Milliat F. HIF-1α Deletion in the Endothelium, but Not in the Epithelium, Protects From Radiation-Induced Enteritis. Cell Mol Gastroenterol Hepatol 2017; 5:15-30. [PMID: 29276749 PMCID: PMC5738457 DOI: 10.1016/j.jcmgh.2017.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Radiation therapy in the pelvic area is associated with side effects that impact the quality of life of cancer survivors. Interestingly, the gastrointestinal tract is able to adapt to significant changes in oxygen availability, suggesting that mechanisms related to hypoxia sensing help preserve tissue integrity in this organ. However, hypoxia-inducible factor (HIF)-dependent responses to radiation-induced gut toxicity are unknown. Radiation-induced intestinal toxicity is a complex process involving multiple cellular compartments. Here, we investigated whether epithelial or endothelial tissue-specific HIF-1α deletion could affect acute intestinal response to radiation. METHODS Using constitutive and inducible epithelial or endothelial tissue-specific HIF-1α deletion, we evaluated the consequences of epithelial or endothelial HIF-1α deletion on radiation-induced enteritis after localized irradiation. Survival, radiation-induced tissue injury, molecular inflammatory profile, tissue hypoxia, and vascular injury were monitored. RESULTS Surprisingly, epithelium-specific HIF-1α deletion does not alter radiation-induced intestinal injury. However, irradiated VECad-Cre+/-HIF-1αFL/FL mice present with lower radiation-induced damage, showed a preserved vasculature, reduced hypoxia, and reduced proinflammatory response compared with irradiated HIF-1αFL/FL mice. CONCLUSIONS We demonstrate in vivo that HIF-1α impacts radiation-induced enteritis and that this role differs according to the targeted cell type. Our work provides a new role for HIF-1α and endothelium-dependent mechanisms driving inflammatory processes in gut mucosae. Results presented show that effects on normal tissues have to be taken into account in approaches aiming to modulate hypoxia or hypoxia-related molecular mechanisms.
Collapse
Key Words
- EndoMT, endothelial-to-mesenchymal transition
- Endothelium
- HIF, hypoxia-inducible factor
- HIF-1α
- HIF-1αFl/FL, HIF-1α floxed mice
- HIMEC, human intestinal microvascular endothelial cells
- HUVEC, human umbilical vein endothelial cells
- IL, interleukin
- PAI-1, plasminogen activator inhibitor type-1
- PCR, polymerase chain reaction
- ROSA, ROSA26R LacZ reporter mice
- Radiation
- Sham-IR, sham-irradiation
- TBI, total body irradiation
- VECad-Cre, VE-cadherin-Cre mice
Collapse
Affiliation(s)
- Aurore Toullec
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Valérie Buard
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Emilie Rannou
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California
| | - Georges Tarlet
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Olivier Guipaud
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | | | - M. Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California
| | - Agnès François
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Fabien Milliat
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
- Correspondence Address correspondence to: Fabien Milliat, PhD, Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, 92265 Fontenay-aux-Roses, France.Research Laboratory of Radiobiology and RadiopathologyInstitute for Radiological Protection and Nuclear Safety92265 Fontenay-aux-RosesFrance
| |
Collapse
|
9
|
Use antibiotics in cell culture with caution: genome-wide identification of antibiotic-induced changes in gene expression and regulation. Sci Rep 2017; 7:7533. [PMID: 28790348 PMCID: PMC5548911 DOI: 10.1038/s41598-017-07757-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/29/2017] [Indexed: 01/29/2023] Open
Abstract
Standard cell culture guidelines often use media supplemented with antibiotics to prevent cell contamination. However, relatively little is known about the effect of antibiotic use in cell culture on gene expression and the extent to which this treatment could confound results. To comprehensively characterize the effect of antibiotic treatment on gene expression, we performed RNA-seq and ChIP-seq for H3K27ac on HepG2 cells, a human liver cell line commonly used for pharmacokinetic, metabolism and genomic studies, cultured in media supplemented with penicillin-streptomycin (PenStrep) or vehicle control. We identified 209 PenStrep-responsive genes, including transcription factors such as ATF3 that are likely to alter the regulation of other genes. Pathway analyses found a significant enrichment for "xenobiotic metabolism signaling" and "PXR/RXR activation" pathways. Our H3K27ac ChIP-seq identified 9,514 peaks that are PenStrep responsive. These peaks were enriched near genes that function in cell differentiation, tRNA modification, nuclease activity and protein dephosphorylation. Our results suggest that PenStrep treatment can significantly alter gene expression and regulation in a common liver cell type such as HepG2, advocating that antibiotic treatment should be taken into account when carrying out genetic, genomic or other biological assays in cultured cells.
Collapse
|
10
|
Razzaque MS, Atfi A. TGIF function in oncogenic Wnt signaling. Biochim Biophys Acta Rev Cancer 2015; 1865:101-4. [PMID: 26522669 DOI: 10.1016/j.bbcan.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/17/2023]
Abstract
Transforming growth-interacting factor (TGIF) has been implicated in the pathogenesis of many types of human cancer, but the underlying mechanisms remained mostly enigmatic. Our recent study has revealed that TGIF functions as a mediator of oncogenic Wnt/β-catenin signaling. We found that TGIF can interact with and sequesters Axin1 and Axin2 into the nucleus, thereby culminating in disassembly of the β-catenin-destruction complex and attendant accumulation of β-catenin in the nucleus, where it activates expression of Wnt target genes, including TGIF itself. We have provided proof-of-concept evidences that high levels of TGIF expression correlate with poor prognosis in patients with triple negative breast cancer (TNBC), and that TGIF empowers Wnt-driven mammary tumorigenesis in vivo. Here, we will briefly summarize how TGIF influences Wnt signaling to promote tumorigenesis.
Collapse
Affiliation(s)
- Mohammed S Razzaque
- Department of Applied Oral Sciences, The Forsyth Institute, Harvard School of Dental Medicine Affiliate, 245 First Street, Cambridge, MA 02142, USA; Department of Pathology, Saba University School of Medicine, Church Street, Saba, Dutch Caribbean.
| | - Azeddine Atfi
- Cancer Institute and Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; INSERM UMRS 938, Laboratory of Cell Signaling and Carcinogenesis, Hôpital Saint-Antoine, 34 rue Crozatier, 75012 Paris, France
| |
Collapse
|
11
|
Chio CC, Chang CP, Lin MT, Su FC, Yang CZ, Tseng HY, Liu ZM, Huang HS. Involvement of TG-interacting factor in microglial activation during experimental traumatic brain injury. J Neurochem 2014; 131:816-24. [PMID: 25319900 DOI: 10.1111/jnc.12971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/13/2014] [Accepted: 10/06/2014] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) is a complex injury involving several physiological alterations, potentially leading to neurological impairment. Previous mouse studies using high-density oligonucleotide array analysis have confirmed the upregulation of transforming growth-interacting factor (TGIF) mRNA in TBI. TGIF is a transcriptional corepressor of transforming growth factor beta (TGF-β) signaling which plays a protective role in TBI. However, the functional roles of TGIF in TBI are not well understood. In this study, we used confocal microscopy after immunofluorescence staining to demonstrate the increase of TGIF levels in the activated microglia of the pericontusional cortex of rats with TBI. Intracerebral knockdown of TGIF in the pericontusional cortex significantly downregulated TGIF expression, attenuated microglial activation, reduced the volume of damaged brain tissue, and facilitated recovery of limb motor function. Collectively, our results indicate that TGIF is involved in TBI-induced microglial activation, resulting in secondary brain injury and motor dysfunction. This study investigated the roles of transforming growth-interacting factor (TGIF) in a traumatic brain injury (TBI)-rat model. We demonstrated the increase of TGIF levels in the activated microglia of the pericontusional cortex of rats with TBI. Intracerebral knockdown of TGIF in the pericontusional cortex of the TBI rats significantly attenuated micoglial activation, reduced the volume of damaged brain tissue, and facilitated recovery of limb motor function. We suggest that inhibition of TGIF might provide a promising therapeutic strategy for TBI.
Collapse
|
12
|
X-ray-induced changes in the expression of inflammation-related genes in human peripheral blood. Int J Mol Sci 2014; 15:19516-34. [PMID: 25350114 PMCID: PMC4264126 DOI: 10.3390/ijms151119516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/28/2023] Open
Abstract
Using quantitative real-time polymerase chain reaction (PCR) array, we explored and compared the expression changes of inflammation-related genes in human peripheral blood irradiated with 0.5, 3, and 10 Gy doses of X-rays 24 h after exposure. Results indicated that the expression of 62 out of 84 genes was significantly altered after X-ray radiation. Among these 62 genes, 35 (such as TNFSF4) are known to be associated with radiation response, but others are novel. At a low radiation dose (0.5 Gy), 9 genes were up-regulated and 19 were down-regulated. With further increased dose to 3 Gy, 8 unique genes were up-regulated and 19 genes were down-regulated. We also identified 48 different genes that were differentially expressed significantly after 10 Gy of irradiation, and among these transcripts, up-regulated genes accounted for only one-third (16 genes) of the total. Of the 62 genes, 31 were significantly altered only at a specific dose, and a total of 10 genes were significantly expressed at all 3 doses. The dose- and time-dependent expression of CCL2 was confirmed by quantitative real-time reverse-transcription PCR. A number of candidate genes reported herein may be useful molecular biomarkers of radiation exposure in human peripheral blood.
Collapse
|
13
|
Pramfalk C, Eriksson M, Parini P. Role of TG-interacting factor (Tgif) in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:9-12. [PMID: 25088698 DOI: 10.1016/j.bbalip.2014.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/17/2014] [Accepted: 07/24/2014] [Indexed: 11/18/2022]
Abstract
TG interacting factors (Tgifs) 1 and 2 are members of the TALE (three-amino-acid loop extension) superfamily of homeodomain proteins. These two proteins bind to the same DNA sequence and share a conserved C-terminal repression domain. Mutations in TGIF1 have been linked to holoprosencephaly, which is a human genetic disease that affects craniofacial development. As these proteins can interact with the ligand binding domain of retinoid X receptor α, a common heterodimeric partner of several nuclear receptors [e.g., liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs)], Tgif1 and Tgif2 might repress other transcriptional pathways activated by lipids. In line with this, Tgif1 interacts with LXRα and Tgif1 null mice have increased expression of the two Lxrα target genes apolipoproteins (Apo) c2 and a4. Also, we have recently identified Tgif1 to function as a transcriptional repressor of the cholesterol esterifying enzyme acyl-coenzyme A:cholesterol acyltransferase 2 (gene name SOAT2). As no studies yet have shown involvement of Tgif2 in the lipid metabolism, this review will focus on the role of Tgif1 in lipid and cholesterol metabolism. This article is part of a Special Issue entitled: Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
- Camilla Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden; Molecular Nutrition Unit, Department of Biosciences and Nutrition, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden
| | - Mats Eriksson
- Molecular Nutrition Unit, Department of Biosciences and Nutrition, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden; Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, and Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden; Molecular Nutrition Unit, Department of Biosciences and Nutrition, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Sweden.
| |
Collapse
|
14
|
Cary LH, Noutai D, Salber RE, Williams MS, Ngudiankama BF, Whitnall MH. Interactions between Endothelial Cells and T Cells Modulate Responses to Mixed Neutron/Gamma Radiation. Radiat Res 2014; 181:592-604. [DOI: 10.1667/rr13550.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Larroque-Cardoso P, Mucher E, Grazide MH, Josse G, Schmitt AM, Nadal-Wolbold F, Zarkovic K, Salvayre R, Nègre-Salvayre A. 4-Hydroxynonenal impairs transforming growth factor-β1-induced elastin synthesis via epidermal growth factor receptor activation in human and murine fibroblasts. Free Radic Biol Med 2014; 71:427-436. [PMID: 24561579 DOI: 10.1016/j.freeradbiomed.2014.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 01/17/2023]
Abstract
Elastin is a long-lived protein and a key component of connective tissues. The tissular elastin content decreases during chronological aging, and the mechanisms underlying its slow repair are not known. Lipid oxidation products that accumulate in aged tissues may generate protein dysfunction. We hypothesized that 4-hydroxynonenal (4-HNE), a highly reactive α,β-aldehydic product generated from polyunsaturated fatty acid peroxidation, could contribute to inhibiting elastin repair by antagonizing the elastogenic signaling of transforming growth factor-β1 (TGF-β1) in skin fibroblasts. We report that a low 4-HNE concentration (2µmol/L) inhibits the upregulation of tropoelastin expression stimulated by TGF-β1 in human and murine fibroblasts. The study of signaling pathways potentially involved in the regulation of elastin expression showed that 4-HNE did not block the phosphorylation of Smad3, an early step of TGF-β1 signaling, but inhibited the nuclear translocation of Smad2. Concomitantly, 4-HNE modified and stimulated the phosphorylation of the epidermal growth factor receptor (EGFR) and subsequently ERK1/2 activation, leading to the phosphorylation/stabilization of the Smad transcriptional corepressor TGIF, which antagonizes TGF-β1 signaling. Inhibitors of EGFR (AG1478) and MEK/ERK (PD98059), and EGFR-specific siRNAs, reversed the inhibitory effect of 4-HNE on TGF-β1-induced nuclear translocation of Smad2 and tropoelastin synthesis. In vivo studies on aortas from aged C57BL/6 mice showed that EGFR is modified by 4-HNE, in correlation with an increased 4-HNE-adduct accumulation and decreased elastin content. Altogether, these data suggest that 4-HNE inhibits the elastogenic activity of TGF-β1, by modifying and activating the EGFR/ERK/TGIF pathway, which may contribute to altering elastin repair in chronological aging and oxidative stress-associated aging processes.
Collapse
Affiliation(s)
| | - Elodie Mucher
- INSERM UMR-1048, 31432 Toulouse Cedex 4, France; University of Toulouse, Toulouse, France
| | | | - Gwendal Josse
- Centre Européen de Recherche sur la Peau, Pierre Fabre Dermocosmetique, Toulouse, France
| | - Anne-Marie Schmitt
- Centre Européen de Recherche sur la Peau, Pierre Fabre Dermocosmetique, Toulouse, France
| | - Florence Nadal-Wolbold
- Centre Européen de Recherche sur la Peau, Pierre Fabre Dermocosmetique, Toulouse, France
| | | | - Robert Salvayre
- INSERM UMR-1048, 31432 Toulouse Cedex 4, France; University of Toulouse, Toulouse, France
| | - Anne Nègre-Salvayre
- INSERM UMR-1048, 31432 Toulouse Cedex 4, France; University of Toulouse, Toulouse, France.
| |
Collapse
|
16
|
miR-7641 modulates the expression of CXCL1 during endothelial differentiation derived from human embryonic stem cells. Arch Pharm Res 2013; 36:353-8. [PMID: 23444042 DOI: 10.1007/s12272-013-0067-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/26/2012] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that negatively regulate gene expression through binding to 3' untranslated region. We identified and characterized the novel miRNA, miR-7641, in human mesenchymal stem cells. The expression of miR-7641 was downregulated during differentiation from human embryonic stem cells to endothelial cells. The CXCL1, a member of the CXC chemokine family, is known as promoting neovascularization by binding G-protein coupled receptors and is related to endothelial cells biogenesis such as angiogenesis, and it was predicted as target gene of miR-7641 by computerized analysis and the luciferase reporter assay. The miR-7641 significantly suppressed CXCL1 of transcriptional and post-translational levels. These data suggest that miR-7641 might be related with differentiation of human endothelial cells.
Collapse
|