1
|
Yoblinski AR, Chung S, Robinson SB, Forester KE, Strahl BD, Dronamraju R. Catalysis-dependent and redundant roles of Dma1 and Dma2 in maintenance of genome stability in Saccharomyces cerevisiae. J Biol Chem 2021; 296:100721. [PMID: 33933452 PMCID: PMC8165551 DOI: 10.1016/j.jbc.2021.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 10/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the deleterious lesions that are both endogenous and exogenous in origin and are repaired by nonhomologous end joining or homologous recombination. However, the molecular mechanisms responsible for maintaining genome stability remain incompletely understood. Here, we investigate the role of two E3 ligases, Dma1 and Dma2 (homologs of human RNF8), in the maintenance of genome stability in budding yeast. Using yeast spotting assays, chromatin immunoprecipitation and plasmid and chromosomal repair assays, we establish that Dma1 and Dma2 act in a redundant and a catalysis-dependent manner in the maintenance of genome stability, as well as localize to transcribed regions of the genome and increase in abundance upon phleomycin treatment. In addition, Dma1 and Dma2 are required for the normal kinetics of histone H4 acetylation under DNA damage conditions, genetically interact with RAD9 and SAE2, and are in a complex with Rad53 and histones. Taken together, our results demonstrate the requirement of Dma1 and Dma2 in regulating DNA repair pathway choice, preferentially affecting homologous recombination over nonhomologous end joining, and open up the possibility of using these candidates in manipulating the repair pathways toward precision genome editing.
Collapse
Affiliation(s)
- Andrew R Yoblinski
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Seoyoung Chung
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sophie B Robinson
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kaitlyn E Forester
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
2
|
Carballar R, Martínez-Láinez JM, Samper B, Bru S, Bállega E, Mirallas O, Ricco N, Clotet J, Jiménez J. CDK-mediated Yku80 Phosphorylation Regulates the Balance Between Non-homologous End Joining (NHEJ) and Homologous Directed Recombination (HDR). J Mol Biol 2020; 432:166715. [PMID: 33217428 DOI: 10.1016/j.jmb.2020.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022]
Abstract
There are two major pathways for repairing DNA double-strand breaks (DSBs): homologous directed recombination (HDR) and non-homologous end-joining (NHEJ). While NHEJ functions throughout the cell cycle, HDR is only possible during S/G2 phases, suggesting that there are cell cycle-specific mechanisms regulating the balance between the two repair systems. The regulation exerted by CDKs on HDR has been extensively demonstrated, and here we present evidence that the CDK Pho85, in association with the G1 cyclin Pcl1, phosphorylates Yku80 on Ser 623 to regulate NHEJ activity. Cells bearing a non-phosphorylatable version of Yku80 show increased NHEJ and reduced HDR activity. Accordingly, yku80S623A cells present diminished viability upon treatment with the DSB-producer bleomycin, specifically in the G2 phase of the cell cycle. Interestingly, the mutation of the equivalent residue in human Ku80 increases sensitivity to bleomycin in several cancer cell lines, suggesting that this mechanism is conserved in humans. Altogether, our results reveal a new mechanism whereby G1-CDKs mediate the choice between HDR and NHEJ repair pathways, putting the error prone NHEJ on a leash and enabling error free HDR in G2 when homologous sequences are available.
Collapse
Affiliation(s)
- Reyes Carballar
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Joan M Martínez-Láinez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Bàrbara Samper
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Samuel Bru
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elisabet Bállega
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Oriol Mirallas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natalia Ricco
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Josep Clotet
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Javier Jiménez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
3
|
Münzner U, Klipp E, Krantz M. A comprehensive, mechanistically detailed, and executable model of the cell division cycle in Saccharomyces cerevisiae. Nat Commun 2019; 10:1308. [PMID: 30899000 PMCID: PMC6428898 DOI: 10.1038/s41467-019-08903-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/24/2019] [Indexed: 01/31/2023] Open
Abstract
Understanding how cellular functions emerge from the underlying molecular mechanisms is a key challenge in biology. This will require computational models, whose predictive power is expected to increase with coverage and precision of formulation. Genome-scale models revolutionised the metabolic field and made the first whole-cell model possible. However, the lack of genome-scale models of signalling networks blocks the development of eukaryotic whole-cell models. Here, we present a comprehensive mechanistic model of the molecular network that controls the cell division cycle in Saccharomyces cerevisiae. We use rxncon, the reaction-contingency language, to neutralise the scalability issues preventing formulation, visualisation and simulation of signalling networks at the genome-scale. We use parameter-free modelling to validate the network and to predict genotype-to-phenotype relationships down to residue resolution. This mechanistic genome-scale model offers a new perspective on eukaryotic cell cycle control, and opens up for similar models-and eventually whole-cell models-of human cells.
Collapse
Affiliation(s)
- Ulrike Münzner
- Humboldt-Universität zu Berlin, Institute of Biology, Theoretical Biophysics, Berlin, 10099, Germany
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Edda Klipp
- Humboldt-Universität zu Berlin, Institute of Biology, Theoretical Biophysics, Berlin, 10099, Germany
| | - Marcus Krantz
- Humboldt-Universität zu Berlin, Institute of Biology, Theoretical Biophysics, Berlin, 10099, Germany.
| |
Collapse
|
4
|
Mirallas O, Ballega E, Samper-Martín B, García-Márquez S, Carballar R, Ricco N, Jiménez J, Clotet J. Intertwined control of the cell cycle and nucleocytoplasmic transport by the cyclin-dependent kinase Pho85 and RanGTPase Gsp1 in Saccharomyces cerevisiae. Microbiol Res 2017; 206:168-176. [PMID: 29146254 DOI: 10.1016/j.micres.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
Deciphering the molecular mechanisms that connect cell cycle progression and nucleocytoplasmic transport is of particular interest: this intertwined relationship, once understood, may provide useful insight on the diseases resulting from the malfunction of these processes. In the present study we report on findings that indicate a biochemical connection between the cell cycle regulator CDK Pho85 and Ran-GTPase Gsp1, an essential nucleocytoplasmic transport component. When Gsp1 cannot be phosphorylated by Pho85, the cell cycle progression is impaired. Accordingly, a nonphosphorylatable version of Gsp1 abnormally localizes to the nucleus, which impairs the nuclear transport of molecules, including key components of cell cycle progression. Furthermore, our results suggest that the physical interaction of Gsp1 and the Kap95 karyopherin, essential to the release of nuclear cargoes, is altered. Altogether, the present findings point to the involvement of a biochemical mechanism in the interlocked regulation of the cell cycle and nuclear transport.
Collapse
Affiliation(s)
- Oriol Mirallas
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elisabet Ballega
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Bàrbara Samper-Martín
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sergio García-Márquez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Reyes Carballar
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natalia Ricco
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Javier Jiménez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Josep Clotet
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
5
|
Jiménez J, Ricco N, Grijota-Martínez C, Fadó R, Clotet J. Redundancy or specificity? The role of the CDK Pho85 in cell cycle control. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 4:140-149. [PMID: 24049669 PMCID: PMC3776146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
It is generally accepted that progression through the eukaryotic cell cycle is driven by cyclin-dependent kinases (CDKs), which are regulated by interaction with oscillatory expressed proteins called cyclins. CDKs may be separated into 2 categories: essential and non-essential. Understandably, more attention has been focused on essential CDKs because they are shown to control cell cycle progression to a greater degree. After clearly determining the basic and "core" mechanisms of essential CDKs, several questions arise. What role do non-essential CDKs play? Are these CDKs functionally redundant and do they serve as a mere backup? Or might they be responsible for some accessory tasks in cell cycle progression or control? In the present review we will try to answer these questions based on recent findings on the involvement of non-essential CDKs in cell cycle progression. We will analyse the most recent information with regard to these questions in the yeast Saccharomyces cerevisiae, a well-established eukaryotic model, and in its unique non-essential CDK involved in the cell cycle, Pho85. We will also briefly extend our discussion to higher eukaryotic systems.
Collapse
Affiliation(s)
- Javier Jiménez
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, International University of Catalonia Barcelona, Catalonia
| | | | | | | | | |
Collapse
|
6
|
Phosphate-activated cyclin-dependent kinase stabilizes G1 cyclin to trigger cell cycle entry. Mol Cell Biol 2013; 33:1273-84. [PMID: 23339867 DOI: 10.1128/mcb.01556-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
G1 cyclins, in association with a cyclin-dependent kinase (CDK), are universal activators of the transcriptional G1-S machinery during entry into the cell cycle. Regulation of cyclin degradation is crucial for coordinating progression through the cell cycle, but the mechanisms that modulate cyclin stability to control cell cycle entry are still unknown. Here, we show that a lack of phosphate downregulates Cln3 cyclin and leads to G1 arrest in Saccharomyces cerevisiae. The stability of Cln3 protein is diminished in strains with low activity of Pho85, a phosphate-sensing CDK. Cln3 is an in vitro substrate of Pho85, and both proteins interact in vivo. More interestingly, cells that carry a CLN3 allele encoding aspartic acid substitutions at the sites of Pho85 phosphorylation maintain high levels of Cln3 independently of Pho85 activity. Moreover, these cells do not properly arrest in G1 in the absence of phosphate and they die prematurely. Finally, the activity of Pho85 is essential for accumulating Cln3 and for reentering the cell cycle after phosphate refeeding. Taken together, our data indicate that Cln3 is a molecular target of the Pho85 kinase that is required to modulate cell cycle entry in response to environmental changes in nutrient availability.
Collapse
|