1
|
Czajkowski K, Herbet M, Murias M, Piątkowska-Chmiel I. Senolytics: charting a new course or enhancing existing anti-tumor therapies? Cell Oncol (Dordr) 2025; 48:351-371. [PMID: 39633108 PMCID: PMC11996976 DOI: 10.1007/s13402-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Cell senescence is a natural response within our organisms. Initially, it was considered an effective anti-tumor mechanism. However, it is now believed that while cell senescence initially acts as a robust barrier against tumor initiation, the subsequent accumulation of senescent cells can paradoxically promote cancer recurrence and cause damage to neighboring tissues. This intricate balance between cell proliferation and senescence plays a pivotal role in maintaining tissue homeostasis. Moreover, senescence cells secrete many bioactive molecules collectively termed the senescence-associated secretory phenotype (SASP), which can induce chronic inflammation, alter tissue architecture, and promote tumorigenesis through paracrine signaling. Among the myriads of compounds, senotherapeutic drugs have emerged as exceptionally promising candidates in anticancer treatment. Their ability to selectively target senescent cells while sparing healthy tissues represents a paradigm shift in therapeutic intervention, offering new avenues for personalized oncology medicine. Senolytics have introduced new therapeutic possibilities by enabling the targeted removal of senescent cells. As standalone agents, they can clear tumor cells in a senescent state and, when combined with chemo- or radiotherapy, eliminate residual senescent cancer cells after treatment. This dual approach allows for the intentional use of lower-dose therapies or the removal of unintended senescent cells post-treatment. Additionally, by targeting non-cancerous senescent cells, senolytics may help reduce tumor formation risk, limit recurrence, and slow disease progression. This article examines the mechanisms of cellular senescence, its role in cancer treatment, and the importance of senotherapy, with particular attention to the therapeutic potential of senolytic drugs.
Collapse
Affiliation(s)
- Konrad Czajkowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
2
|
Gautam P, Ciuta I, Teif VB, Sinha SK. Predicting p53-dependent cell transitions from thermodynamic models. J Chem Phys 2024; 161:135101. [PMID: 39356070 DOI: 10.1063/5.0225166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
A cell's fate involves transitions among its various states, each defined by a distinct gene expression profile governed by the topology of gene regulatory networks, which are affected by 3D genome organization. Here, we develop thermodynamic models to determine the fate of a malignant cell as governed by the tumor suppressor p53 signaling network, taking into account long-range chromatin interactions in the mean-field approximation. The tumor suppressor p53 responds to stress by selectively triggering one of the potential transcription programs that influence many layers of cell signaling. These range from p53 phosphorylation to modulation of its DNA binding affinity, phase separation phenomena, and internal connectivity among cell fate genes. We use the minimum free energy of the system as a fundamental property of biological networks that influences the connection between the gene network topology and the state of the cell. We constructed models based on network topology and equilibrium thermodynamics. Our modeling shows that the binding of phosphorylated p53 to promoters of target genes can have properties of a first order phase transition. We apply our model to cancer cell lines ranging from breast cancer (MCF-7), colon cancer (HCT116), and leukemia (K562), with each one characterized by a specific network topology that determines the cell fate. Our results clarify the biological relevance of these mechanisms and suggest that they represent flexible network designs for switching between developmental decisions.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Isabella Ciuta
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Sudipta Kumar Sinha
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
3
|
Moreira H, Szyjka A, Bęben D, Siwiela O, Radajewska A, Stankiewicz N, Grzesiak M, Wiatrak B, Emhemmed F, Muller CD, Barg E. Genotoxic and Anti-Migratory Effects of Camptothecin Combined with Celastrol or Resveratrol in Metastatic and Stem-like Cells of Colon Cancer. Cancers (Basel) 2024; 16:3279. [PMID: 39409900 PMCID: PMC11476312 DOI: 10.3390/cancers16193279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Colorectal cancer is one of the leading and most lethal neoplasms. Standard chemotherapy is ineffective, especially in metastatic cancer, and does not target cancer stem cells. A promising approach to improve cancer treatment is the combination therapy of standard cytostatic drugs with natural compounds. Several plant-derived compounds have been proven to possess anticancer properties, including the induction of apoptosis and inhibition of cancer invasion. This study was focused on investigating in vitro the combination of camptothecin (CPT) with celastrol (CEL) or resveratrol (RSV) as a potential strategy to target metastatic (LOVO) and stem-like (LOVO/DX) colon cancer cells. Methods: The genotoxic effects that drive cancer cells into death-inducing pathways and the ability to inhibit the migratory properties of cancer cells were evaluated. The γH2AX+ assay and Fast-Halo Assay (FHA) were used to evaluate genotoxic effects, the annexin-V apoptosis assay to rate the level of apoptosis, and the scratch test to assess antimigratory capacity. Results: The results showed that both combinations CPT-CEL and CPT-RSV improve general genotoxicity of CPT alone on metastatic cells and CSCs. However, the assessment of specific double-stranded breaks (DSBs) indicated a better efficacy of the CPT-CEL combination on LOVO cells and CPT-RSV in LOVO/DX cells. Interestingly, the combinations CPT-CEL and CPT-RSV did not improve the pro-apoptotic effect of CPT alone, with both LOVO and LOVO/DX cells suggesting activation of different cell death mechanisms. Furthermore, it was found that the combinations of CPT-CEL and CPT-RSV improve the inhibitory effect of camptothecin on cell migration. Conclusions: These findings suggest the potential utility of combining camptothecin with celastrol or resveratrol in the treatment of colon cancer, including more aggressive forms of the disease. So far, no studies evaluating the effects of combinations of these compounds have been published in the available medical databases.
Collapse
Affiliation(s)
- Helena Moreira
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- The Hubert Curien pluridisciplinary Institute-IPHC, UMR 7178, University of Strasbourg, 67401 Illkirch, France
| | - Anna Szyjka
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Dorota Bęben
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Oliwia Siwiela
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Anna Radajewska
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Nadia Stankiewicz
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | - Benita Wiatrak
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Fathi Emhemmed
- The Hubert Curien pluridisciplinary Institute-IPHC, UMR 7178, University of Strasbourg, 67401 Illkirch, France
| | - Christian D. Muller
- The Hubert Curien pluridisciplinary Institute-IPHC, UMR 7178, University of Strasbourg, 67401 Illkirch, France
| | - Ewa Barg
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Abdelmoaty AAA, Chen J, Zhang K, Wu C, Li Y, Li P, Xu J. Senolytic effect of triterpenoid complex from Ganoderma lucidum on adriamycin-induced senescent human hepatocellular carcinoma cells model in vitro and in vivo. Front Pharmacol 2024; 15:1422363. [PMID: 39364046 PMCID: PMC11447279 DOI: 10.3389/fphar.2024.1422363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Background Ganoderma lucidum (G. lucidum) is a famous medicinal mushroom that has been reported to prevent and treat a variety of diseases. Different extractions from G. lucidum have been used to manage age-related diseases, including cancer. Nevertheless, the senolytic activity of G. lucidum against senescent cancer cells has not been investigated. Although cellular senescence causes tumor growth inhibition, senescent cells promote the growth of the neighboring tumor cells through paracrine effects. Therefore, the elimination of senescent cells is a new strategy for cancer treatment. Methods In this study, senescence was triggered in HCC cells by the chemotherapeutic agent Adriamycin (ADR), and subsequently, cells were treated with TC to assess its senolytic activity. Results We found for the first time that the triterpenoid complex (TC) from G. lucidum had senolytic effect, which could selectively eliminate adriamycin (ADR)-induced senescent cells (SCs) of hepatocellular carcinoma (HCC) cells via caspase-dependent and mitochondrial pathways-mediated apoptosis and reduce the levels of senescence markers, thereby inhibiting the progression of cancers caused by SCs. TC could block autophagy at the late stage in SCs, resulting in a significant activation of TC-induced apoptosis. Furthermore, TC inhibited the senescence-associated secretory phenotype (SASP) in SCs through the inhibition of NF-κB, TFEB, P38, ERK, and mTOR signaling pathways and reducing the number of SCs. Sequential administration of ADR and TC in vivo significantly reduced tumor growth and reversed the toxicity of ADR. Conclusion A triterpenoid complex isolated from G. lucidum may serve as a novel senolytic agent against SCs, and its combination with chemotherapeutic agents may enhance their antitumor efficacy.
Collapse
Affiliation(s)
- Ahmed Attia Ahmed Abdelmoaty
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Jing Chen
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Kun Zhang
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Changhui Wu
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Peng Li
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jianhua Xu
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
6
|
Qi W, Bai J, Wang R, Zeng X, Zhang L. SATB1, senescence and senescence-related diseases. J Cell Physiol 2024; 239:e31327. [PMID: 38801120 DOI: 10.1002/jcp.31327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Aging leads to an accumulation of cellular mutations and damage, increasing the risk of senescence, apoptosis, and malignant transformation. Cellular senescence, which is pivotal in aging, acts as both a guard against cellular transformation and as a check against cancer progression. It is marked by stable cell cycle arrest, widespread macromolecular changes, a pro-inflammatory profile, and altered gene expression. However, it remains to be determined whether these differing subsets of senescent cells result from unique intrinsic programs or are influenced by their environmental contexts. Multiple transcription regulators and chromatin modifiers contribute to these alterations. Special AT-rich sequence-binding protein 1 (SATB1) stands out as a crucial regulator in this process, orchestrating gene expression by structuring chromatin into loop domains and anchoring DNA elements. This review provides an overview of cellular senescence and delves into the role of SATB1 in senescence-related diseases. It highlights SATB1's potential in developing antiaging and anticancer strategies, potentially contributing to improved quality of life and addressing aging-related diseases.
Collapse
Affiliation(s)
- Wenjing Qi
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Jinping Bai
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Lihui Zhang
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| |
Collapse
|
7
|
Elias MG, Aputen AD, Fatima S, Mann TJ, Karan S, Mikhael M, de Souza P, Gordon CP, Scott KF, Aldrich-Wright JR. Chemotherapeutic Potential of Chlorambucil-Platinum(IV) Prodrugs against Cisplatin-Resistant Colorectal Cancer Cells. Int J Mol Sci 2024; 25:8252. [PMID: 39125821 PMCID: PMC11312340 DOI: 10.3390/ijms25158252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Chlorambucil-platinum(IV) prodrugs exhibit multi-mechanistic chemotherapeutic activity with promising anticancer potential. The platinum(II) precursors of the prodrugs have been previously found to induce changes in the microtubule cytoskeleton, specifically actin and tubulin of HT29 colon cells, while chlorambucil alkylates the DNA. These prodrugs demonstrate significant anticancer activity in 2D cell and 3D spheroid viability assays. A notable production of reactive oxygen species has been observed in HT29 cells 72 h post treatment with prodrugs of this type, while the mitochondrial membrane potential was substantially reduced. The cellular uptake of the chlorambucil-platinum(IV) prodrugs, assessed by ICP-MS, confirmed that active transport was the primary uptake mechanism, with platinum localisation identified primarily in the cytoskeletal fraction. Apoptosis and necrosis were observed at 72 h of treatment as demonstrated by Annexin V-FITC/PI assay using flow cytometry. Immunofluorescence measured via confocal microscopy showed significant changes in actin and tubulin intensity and in architecture. Western blot analysis of intrinsic and extrinsic pathway apoptotic markers, microtubule cytoskeleton markers, cell proliferation markers, as well as autophagy markers were studied post 72 h of treatment. The proteomic profile was also studied with a total of 1859 HT29 proteins quantified by mass spectroscopy, with several dysregulated proteins. Network analysis revealed dysregulation in transcription, MAPK markers, microtubule-associated proteins and mitochondrial transport dysfunction. This study confirms that chlorambucil-platinum(IV) prodrugs are candidates with promising anticancer potential that act as multi-mechanistic chemotherapeutics.
Collapse
Affiliation(s)
- Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| | - Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Shadma Fatima
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Timothy J. Mann
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Shawan Karan
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Meena Mikhael
- Mass Spectrometry Facility, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Paul de Souza
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia;
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Kieran F. Scott
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| |
Collapse
|
8
|
Elias MG, Fatima S, Mann TJ, Karan S, Mikhael M, de Souza P, Gordon CP, Scott KF, Aldrich-Wright JR. Anticancer Effect of Pt IIPHEN SS, Pt II5ME SS, Pt II56ME SS and Their Platinum(IV)-Dihydroxy Derivatives against Triple-Negative Breast Cancer and Cisplatin-Resistant Colorectal Cancer. Cancers (Basel) 2024; 16:2544. [PMID: 39061185 PMCID: PMC11274883 DOI: 10.3390/cancers16142544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Development of resistance to cisplatin, oxaliplatin and carboplatin remains a challenge for their use as chemotherapies, particularly in breast and colorectal cancer. Here, we compare the anticancer effect of novel complexes [Pt(1,10-phenanthroline)(1S,2S-diaminocyclohexane)](NO3)2 (PtIIPHENSS), [Pt(5-methyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)](NO3)2 (PtII5MESS) and [Pt(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)](NO3)2 (PtII56MESS) and their platinum(IV)-dihydroxy derivatives with cisplatin. Complexes are greater than 11-fold more potent than cisplatin in both 2D and 3D cell line cultures with increased selectivity for cancer cells over genetically stable cells. ICP-MS studies showed cellular uptake occurred through an active transport mechanism with considerably altered platinum concentrations found in the cytoskeleton across all complexes after 24 h. Significant reactive oxygen species generation was observed, with reduced mitochondrial membrane potential at 72 h of treatment. Late apoptosis/necrosis was shown by Annexin V-FITC/PI flow cytometry assay, accompanied by increased sub-G0/G1 cells compared with untreated cells. An increase in S and G2+M cells was seen with all complexes. Treatment resulted in significant changes in actin and tubulin staining. Intrinsic and extrinsic apoptosis markers, MAPK/ERK and PI3K/AKT activation markers, together with autophagy markers showed significant activation of these pathways by Western blot. The proteomic profile investigated post-72 h of treatment identified 1597 MDA-MB-231 and 1859 HT29 proteins quantified by mass spectroscopy, with several differentially expressed proteins relative to no treatment. GO enrichment analysis revealed a statistically significant enrichment of RNA/DNA-associated proteins in both the cell lines and specific additional processes for individual drugs. This study shows that these novel agents function as multi-mechanistic chemotherapeutics, offering promising anticancer potential, and thereby supporting further research into their application as cancer therapeutics.
Collapse
Affiliation(s)
- Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.)
| | - Shadma Fatima
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Timothy J. Mann
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Shawan Karan
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
| | - Meena Mikhael
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
| | - Paul de Souza
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia;
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
| | - Kieran F. Scott
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| |
Collapse
|
9
|
Zhang T, Wen R, Fan H, Yu Y, Jia H, Peng Z, Zhou L, Yu G, Zhang W. Impact and potential value of immunosenescence on solid gastrointestinal tumors. Front Immunol 2024; 15:1375730. [PMID: 39007138 PMCID: PMC11239362 DOI: 10.3389/fimmu.2024.1375730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Solid gastrointestinal tumors often respond poorly to immunotherapy for the complex tumor microenvironment (TME), which is exacerbated by immune system alterations. Immunosenescence is the process of increased diversification of immune genes due to aging and other factors, leading to a decrease in the recognition function of the immune system. This process involves immune organs, immune cells, and the senescence-associated secretory phenotype (SASP). The most fundamental change is DNA damage, resulting in TME remodeling. The main manifestations are worsening inflammation, increased immunosuppressive SASP production, decreased immune cell antitumor activity, and the accumulation of tumor-associated fibroblasts and myeloid-derived suppressor cells, making antitumor therapy less effective. Senotherapy strategies to remove senescent cells and block key senescence processes can have synergistic effects with other treatments. This review focuses on immunoenescence and its impact on the solid TME. We characterize the immunosenescent TME and discuss future directions for antitumor therapies targeting senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Murphy MR, Ramadei A, Doymaz A, Varriano S, Natelson D, Yu A, Aktas S, Mazzeo M, Mazzeo M, Zakusilo G, Kleiman F. Long non-coding RNA generated from CDKN1A gene by alternative polyadenylation regulates p21 expression during DNA damage response. Nucleic Acids Res 2023; 51:11911-11926. [PMID: 37870464 PMCID: PMC10681730 DOI: 10.1093/nar/gkad899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
Alternative Polyadenylation (APA) is an emerging mechanism for dynamic changes in gene expression. Previously, we described widespread APA occurrence in introns during the DNA damage response (DDR). Here, we show that a DDR-activated APA event occurs in the first intron of CDKN1A, inducing an alternate last exon-containing lncRNA. We named this lncRNA SPUD (Selective Polyadenylation Upon DNA Damage). SPUD localizes to polysomes in the cytoplasm and is detectable as multiple isoforms in available high-throughput studies. SPUD has low abundance compared to the CDKN1A full-length isoform under non-stress conditions, and SPUD is induced in cancer and normal cells under a variety of DNA damaging conditions in part through p53. The RNA binding protein HuR binds to and promotes the stability of SPUD precursor RNA. SPUD induction increases p21 protein, but not mRNA levels, affecting p21 functions in cell-cycle, CDK2 expression and cell growth. Like CDKN1A full-length isoform, SPUD can bind two competitive p21 translational regulators, the inhibitor calreticulin and the activator CUGBP1; SPUD alters their association with CDKN1A full-length in a DDR-dependent manner, promoting CDKN1A translation. Together, these results show a new regulatory mechanism by which a lncRNA controls p21 expression post-transcriptionally, highlighting lncRNA relevance in DDR progression and cell-cycle.
Collapse
Affiliation(s)
- Michael R Murphy
- Chemistry Department, Hunter College, The City University of New York, New York, NY 10021, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Anthony Ramadei
- Chemistry Department, Hunter College, The City University of New York, New York, NY 10021, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Ahmet Doymaz
- Chemistry Department, Hunter College, The City University of New York, New York, NY 10021, USA
| | - Sophia Varriano
- Chemistry Department, Hunter College, The City University of New York, New York, NY 10021, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Devorah M Natelson
- Chemistry Department, Hunter College, The City University of New York, New York, NY 10021, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Amy Yu
- Chemistry Department, Hunter College, The City University of New York, New York, NY 10021, USA
| | - Sera Aktas
- Chemistry Department, Hunter College, The City University of New York, New York, NY 10021, USA
| | - Marie Mazzeo
- Chemistry Department, Hunter College, The City University of New York, New York, NY 10021, USA
| | - Michael Mazzeo
- Chemistry Department, Hunter College, The City University of New York, New York, NY 10021, USA
| | - George Zakusilo
- Chemistry Department, Hunter College, The City University of New York, New York, NY 10021, USA
| | - Frida E Kleiman
- Chemistry Department, Hunter College, The City University of New York, New York, NY 10021, USA
- Biology Program, The Graduate Center, The City University of New York, New York, NY 10016, USA
| |
Collapse
|
11
|
Affiliation(s)
- Marta Redrado
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Vanesa Fernández‐Moreira
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
12
|
Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol 2022; 19:619-636. [PMID: 36045302 PMCID: PMC9428886 DOI: 10.1038/s41571-022-00668-4] [Citation(s) in RCA: 394] [Impact Index Per Article: 131.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable, terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory, pro-inflammatory phenotype. Entry of cells into senescence can act as a barrier to tumorigenesis and, thus, could in principle constitute a desired outcome for any anticancer therapy. Paradoxically, studies published in the past decade have demonstrated that, in certain conditions and contexts, malignant and non-malignant cells with lastingly persistent senescence can acquire pro-tumorigenic properties. In this Review, we first discuss the major mechanisms involved in the antitumorigenic functions of senescent cells and then consider the cell-intrinsic and cell-extrinsic factors that participate in their switch towards a tumour-promoting role, providing an overview of major translational and emerging clinical findings. Finally, we comprehensively describe various senolytic and senomorphic therapies and their potential to benefit patients with cancer. The entry of cells into senescence can act as a barrier to tumorigenesis; however, in certain contexts senescent malignant and non-malignant cells can acquire pro-tumorigenic properties. The authors of this Review discuss the cell-intrinsic and cell-extrinsic mechanisms involved in both the antitumorigenic and tumour-promoting roles of senescent cells, and describe the potential of various senolytic and senomorphic therapeutic approaches in oncology. Cellular senescence is a natural barrier to tumorigenesis; senescent cells are widely detected in premalignant lesions from patients with cancer. Cellular senescence is induced by anticancer therapy and can contribute to some treatment-related adverse events (TRAEs). Senescent cells exert both protumorigenic and antitumorigenic effects via cell-autonomous and paracrine mechanisms. Pharmacological modulation of senescence-associated phenotypes has the potential to improve therapy efficacy and reduce the incidence of TRAEs.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Johannes Kepler University, Linz, Austria.,Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.,Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
13
|
Valdez L, Cheng B, Gonzalez D, Rodriguez R, Campano P, Tsin A, Fang X. Combined treatment with niclosamide and camptothecin enhances anticancer effect in U87 MG human glioblastoma cells. Oncotarget 2022; 13:642-658. [PMID: 35548329 PMCID: PMC9084225 DOI: 10.18632/oncotarget.28227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Laura Valdez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- These authors contributed equally to this work
| | - Benxu Cheng
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- These authors contributed equally to this work
| | - Daniela Gonzalez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Reanna Rodriguez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Paola Campano
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Andrew Tsin
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Xiaoqian Fang
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
14
|
Fakhri S, Zachariah Moradi S, DeLiberto LK, Bishayee A. Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochem Pharmacol 2022; 199:114989. [DOI: 10.1016/j.bcp.2022.114989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022]
|
15
|
Fatt MP, Tran LM, Vetere G, Storer MA, Simonetta JV, Miller FD, Frankland PW, Kaplan DR. Restoration of hippocampal neural precursor function by ablation of senescent cells in the aging stem cell niche. Stem Cell Reports 2022; 17:259-275. [PMID: 35063124 PMCID: PMC8828532 DOI: 10.1016/j.stemcr.2021.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 10/31/2022] Open
Abstract
Senescent cells are responsible, in part, for tissue decline during aging. Here, we focused on CNS neural precursor cells (NPCs) to ask if this is because senescent cells in stem cell niches impair precursor-mediated tissue maintenance. We demonstrate an aging-dependent accumulation of senescent cells, largely senescent NPCs, within the hippocampal stem cell niche coincident with declining adult neurogenesis. Pharmacological ablation of senescent cells via acute systemic administration of the senolytic drug ABT-263 (Navitoclax) caused a rapid increase in NPC proliferation and neurogenesis. Genetic ablation of senescent cells similarly activated hippocampal NPCs. This acute burst of neurogenesis had long-term effects in middle-aged mice. One month post-ABT-263, adult-born hippocampal neuron numbers increased and hippocampus-dependent spatial memory was enhanced. These data support a model where senescent niche cells negatively influence neighboring non-senescent NPCs during aging, and ablation of these senescent cells partially restores neurogenesis and hippocampus-dependent cognition. Senescent neural precursor cells accumulate in the hippocampus with age Senescent precursor accumulation is coincident with declining adult neurogenesis Ablating senescent precursors increases precursor proliferation and neurogenesis Ablating senescent precursors improves hippocampus-dependent spatial memory
Collapse
|
16
|
Stojiljković A, Gaschen V, Forterre F, Rytz U, Stoffel MH, Bluteau J. Novel immortalization approach defers senescence of cultured canine adipose-derived mesenchymal stromal cells. GeroScience 2021; 44:1301-1323. [PMID: 34806133 DOI: 10.1007/s11357-021-00488-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
In the last decades, the scientific community spared no effort to elucidate the therapeutic potential of mesenchymal stromal cells (MSCs). Unfortunately, in vitro cellular senescence occurring along with a loss of proliferative capacity is a major drawback in view of future therapeutic applications of these cells in the field of regenerative medicine. Even though insight into the mechanisms of replicative senescence in human medicine has evolved dramatically, knowledge about replicative senescence of canine MSCs is still scarce. Thus, we developed a high-content analysis workflow to simultaneously investigate three important characteristics of senescence in canine adipose-derived MSCs (cAD-MSCs): morphological changes, activation of the cell cycle arrest machinery, and increased activity of the senescence-associated β-galactosidase. We took advantage of this tool to demonstrate that passaging of cAD-MSCs results in the appearance of a senescence phenotype and proliferation arrest. This was partially prevented upon immortalization of these cells using a newly designed PiggyBac™ Transposon System, which allows for the expression of the human polycomb ring finger proto-oncogene BMI1 and the human telomerase reverse transcriptase under the same promotor. Our results indicate that cAD-MSCs immortalized with this new vector maintain their proliferation capacity and differentiation potential for a longer time than untreated cAD-MSCs. This study not only offers a workflow to investigate replicative senescence in eukaryotic cells with a high-content analysis approach but also paves the way for a rapid and effective generation of immortalized MSC lines. This promotes a better understanding of these cells in view of future applications in regenerative medicine.
Collapse
Affiliation(s)
- Ana Stojiljković
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland. .,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Véronique Gaschen
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Franck Forterre
- Division of Small Animal Surgery and Orthopaedics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ulrich Rytz
- Division of Small Animal Surgery and Orthopaedics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jasmin Bluteau
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Elias MG, Mehanna S, Elias E, Khnayzer RS, Daher CF. A photoactivatable chemotherapeutic Ru(II) complex bearing bathocuproine ligand efficiently induces cell death in human malignant melanoma cells through a multi-mechanistic pathway. Chem Biol Interact 2021; 348:109644. [PMID: 34508709 DOI: 10.1016/j.cbi.2021.109644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/03/2021] [Accepted: 09/06/2021] [Indexed: 11/15/2022]
Abstract
Photoactivated chemotherapy (PACT) is an emerging strategy for targeted cancer therapy. Strained Ru complexes with pseudo-octahedral geometry may undergo photo-induced ligand dissociation, forming aquated photoproducts that are significantly more cytotoxic compared to the precursor complex. The complexes investigated were the strained complex [Ru(bpy)2BC]Cl2 (where bpy = 2,2'-bipyridine and BC = bathocuproine) and its unstrained control [Ru(bpy)2phen]Cl2 (where phen = 1,10-phenanthroline). The uptake of [Ru(bpy)2BC]Cl2, assessed by ICP/MS, started immediately post-incubation and plateaued after 24 h. Active transport was found as the main mode of intracellular transport. Cell viability assays on A375 cells indicated a mean phototoxicity index of 340-fold, and the effect was shown to be primarily mediated by the aquated photoproducts rather than the dissociating ligands. A significant increase in ROS production and DNA damage was also observed. Flow cytometry confirmed the induction of early apoptosis at 48 h that proceeds to late apoptosis/necrosis by 72 h post-treatment. Western blot analysis of pro- and anti-apoptotic proteins revealed that apoptosis was mediated through an interplay between the intrinsic and extrinsic pathways, as well as autophagy and via inhibition of the MAPK and PI3K pathways. In conclusion, this study demonstrates that [Ru(bpy)2BC]Cl2 is a multi-mechanistic PACT drug which exhibits promising anticancer potential.
Collapse
Affiliation(s)
- Maria George Elias
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Stephanie Mehanna
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Elias Elias
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, Beirut, 1102-2801, Lebanon
| | - Costantine F Daher
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
18
|
Garwain O, Sun X, Iyer DR, Li R, Zhu LJ, Kaufman PD. The chromatin-binding domain of Ki-67 together with p53 protects human chromosomes from mitotic damage. Proc Natl Acad Sci U S A 2021; 118:e2021998118. [PMID: 34353903 PMCID: PMC8364191 DOI: 10.1073/pnas.2021998118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vertebrate mammals express a protein called Ki-67 which is most widely known as a clinically useful marker of highly proliferative cells. Previous studies of human cells indicated that acute depletion of Ki-67 can elicit a delay at the G1/S boundary of the cell cycle, dependent on induction of the checkpoint protein p21. Consistent with those observations, we show here that acute Ki-67 depletion causes hallmarks of DNA damage, and the damage occurs even in the absence of checkpoint signaling. This damage is not observed in cells traversing S phase but is instead robustly detected in mitotic cells. The C-terminal chromatin-binding domain of Ki-67 is necessary and sufficient to protect cells from this damage. We also observe synergistic effects when Ki-67 and p53 are simultaneously depleted, resulting in increased levels of chromosome bridges at anaphase, followed by the appearance of micronuclei. Therefore, these studies identify the C terminus of Ki-67 as an important module for genome stability.
Collapse
Affiliation(s)
- Osama Garwain
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Xiaoming Sun
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Divya Ramalingam Iyer
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
19
|
Mohiuddin M, Kasahara K. Cisplatin Activates the Growth Inhibitory Signaling Pathways by Enhancing the Production of Reactive Oxygen Species in Non-small Cell Lung Cancer Carrying an EGFR Exon 19 Deletion. Cancer Genomics Proteomics 2021; 18:471-486. [PMID: 33994369 DOI: 10.21873/cgp.20273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND/AIM Cisplatin is a potent anticancer drug for treating several types of cancer, including non-small-cell lung cancer (NSCLC). In this study, we investigated the cytotoxicity and mechanism of action of cisplatin in the human NSCLC cell line PC9. MATERIALS AND METHODS PC9 cells were treated with cisplatin for 72 h and then evaluated by a cell viability assay, DAPI staining, Giemsa staining, apoptosis assay, membrane permeability assay, cell cycle assay, ROS assay, SA-β-gal staining, TUNEL assay and Western blotting. RESULTS Our findings revealed that the cytotoxic activity was associated with an apoptotic signaling pathway in response to DNA damage. Cisplatin exerted a significant concentration-dependent antiproliferative effect on PC9 cells. Cells subjected to cisplatin treatment showed morphological indications of apoptosis. Cell cycle arrest was related to the restriction of E2F-1 action by the cyclin-dependent protein kinase inhibitor p21WAF1/CIP1 Cisplatin induced apoptosis of PC9 cells by upregulating Fas, FasL, Bak, and tBID expression and PARP proteolytic cleavage. Cisplatin also reduced the mitochondrial membrane potential (MMP) and initiated a caspase cascade. Furthermore, the apoptotic impact of cisplatin depended on reactive oxygen species (ROS), as confirmed by ROS generation. CONCLUSION Cisplatin induced anticancer effects through cell cycle arrest, ROS generation and caspase activation, resulting in cell apoptosis. Overall, the results show the mechanism by which cisplatin works as an anticancer drug in the treatment of NSCLC.
Collapse
Affiliation(s)
- Md Mohiuddin
- Department of Respiratory Medicine, Kanazawa University, Ishikawa, Japan
| | - Kazuo Kasahara
- Department of Respiratory Medicine, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
20
|
Talukdar S, Das SK, Emdad L, Fisher PB. Autophagy and senescence: Insights from normal and cancer stem cells. Adv Cancer Res 2021; 150:147-208. [PMID: 33858596 DOI: 10.1016/bs.acr.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a fundamental cellular process, which allows cells to adapt to metabolic stress through the degradation and recycling of intracellular components to generate macromolecular precursors and produce energy. Autophagy is also critical in maintaining cellular/tissue homeostasis, as well preserving immunity and preventing human disease. Deregulation of autophagic processes is associated with cancer, neurodegeneration, muscle and heart disease, infectious diseases and aging. Research on a variety of stem cell types establish that autophagy plays critical roles in normal and cancer stem cell quiescence, activation, differentiation, and self-renewal. Considering its critical function in regulating the metabolic state of stem cells, autophagy plays a dual role in the regulation of normal and cancer stem cell senescence, and cellular responses to various therapeutic strategies. The relationships between autophagy, senescence, dormancy and apoptosis frequently focus on responses to various forms of stress. These are interrelated processes that profoundly affect normal and abnormal human physiology that require further elucidation in cancer stem cells. This review provides a current perspective on autophagy and senescence in both normal and cancer stem cells.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
21
|
Kuang Y, Kang J, Li H, Liu B, Zhao X, Li L, Jin X, Li Q. Multiple functions of p21 in cancer radiotherapy. J Cancer Res Clin Oncol 2021; 147:987-1006. [PMID: 33547489 DOI: 10.1007/s00432-021-03529-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Greater than half of cancer patients experience radiation therapy, for both radical and palliative objectives. It is well known that researches on radiation response mechanisms are conducive to improve the efficacy of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, transcriptionally modulated by p53 and a marker of cellular senescence. It was once considered that p21 acts as a tumour suppressor mainly to restrain cell cycle progression, thereby resulting in growth suppression. With the deepening researches on p21, p21 has been found to regulate radiation responses via participating in multiple cellular processes, including cell cycle arrest, apoptosis, DNA repair, senescence and autophagy. Hence, a comprehensive summary of the p21's functions in radiation response will provide a new perspective for radiotherapy against cancer. METHODS We summarize the recent pertinent literature from various electronic databases, including PubMed and analyzed several datasets from Gene Expression Omnibus database. This review discusses how p21 influences the effect of cancer radiotherapy via involving in multiple signaling pathways and expounds the feasibility, barrier and risks of using p21 as a biomarker as well as a therapeutic target of radiotherapy. CONCLUSION p21's complicated and important functions in cancer radiotherapy make it a promising therapeutic target. Besides, more thorough insights of p21 are needed to make it a safe therapeutic target.
Collapse
Affiliation(s)
- Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueshan Zhao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Cai J, Wang N, Lin G, Zhang H, Xie W, Zhang Y, Xu N. MBNL2 Regulates DNA Damage Response via Stabilizing p21. Int J Mol Sci 2021; 22:ijms22020783. [PMID: 33466733 PMCID: PMC7829980 DOI: 10.3390/ijms22020783] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
RNA-binding proteins are frequently dysregulated in human cancer and able to modulate tumor cell proliferation as well as tumor metastasis through post-transcriptional regulation on target genes. Abnormal DNA damage response and repair mechanism are closely related to genome instability and cell transformation. Here, we explore the function of the RNA-binding protein muscleblind-like splicing regulator 2 (MBNL2) on tumor cell proliferation and DNA damage response. Transcriptome and gene expression analysis show that the PI3K/AKT pathway is enriched in MBNL2-depleted cells, and the expression of cyclin-dependent kinase inhibitor 1A (p21CDKN1A) is significantly affected after MBNL2 depletion. MBNL2 modulates the mRNA and protein levels of p21, which is independent of its canonical transcription factor p53. Moreover, depletion of MBNL2 increases the phosphorylation levels of checkpoint kinase 1 (Chk1) serine 345 (S345) and DNA damage response, and the effect of MBNL2 on DNA damage response is p21-dependent. MBNL2 would further alter tumor cell fate after DNA damage, MBNL2 knockdown inhibiting DNA damage repair and DNA damage-induced senescence, but promoting DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Jin Cai
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ningchao Wang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guanglan Lin
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haowei Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yaou Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.C.); (N.W.); (G.L.); (H.Z.); (W.X.); (Y.Z.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
23
|
Abstract
Cellular senescence is a cell cycle arrest in damaged or aged cells. Although this represents a critical mechanism of tumor suppression, persistence of senescent cells during aging induces chronic inflammation and tissue dysfunction through the adoption of the senescence-associated secretory phenotype (SASP). This has been shown to promote the progression of age-associated diseases such as Alzheimer's disease, pulmonary fibrosis, and atherosclerosis. As the global population ages, the role of cellular senescence in disease is becoming a more critical area of research. In this review, mechanisms, biomarkers, and pathology of cellular senescence and SASP are described with a brief discussion of literature supporting a role for cellular senescence in veterinary diseases. Cell culture and mouse models used in senescence studies are also reviewed including the senescence-accelerated mouse-prone (SAMP), senescence pathway knockout mice (p53, p21 [CDKN1A], and p16 [CDKN2A]), and the more recently developed senolysis mice, which allow for direct visualization and elimination (or lysis) of senescent cells in live mice (p16-3MR and INK-ATTAC). These and other mouse models have demonstrated the importance of cellular senescence in embryogenesis and wound healing but have also identified a therapeutic benefit for targeting persistent senescent cells in age-associated diseases including neurodegeneration, diabetes, and cardiac fibrosis.
Collapse
Affiliation(s)
- Jessica Beck
- Laboratory of Human Carcinogenesis, 313611National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Purdue University, West Lafayette, IN, USA
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, 313611National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Curtis Harris
- Laboratory of Human Carcinogenesis, 313611National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Wang T, Wu X, Al Rudaisat M, Song Y, Cheng H. Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells. J Cancer 2020; 11:6704-6715. [PMID: 33046993 PMCID: PMC7545669 DOI: 10.7150/jca.45176] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Our study explored the tumor-suppressive effect of curcumin on cervical cancer cells. Cervical cancer is one of the most common cancers among women worldwide. Acquired resistance to chemotherapeutics and toxicity of such drugs has undermined the effectiveness of cervical cancer treatments. Therefore, the identification of novel chemotherapeutics is key to improving the survival of patients with cervical cancer. Curcumin has been shown to have various bioactivities, including antioxidant and antitumor effects; however, its effect on cervical cancer remains elusive. Here, we used the SiHa human cervical cancer cell line to test various concentrations of curcumin on the proliferation and apoptosis of cervical cancer cells. The involvement of autophagy and reactive oxygen species (ROS) in these effects were also tested by using specific autophagy inhibitors and ROS scavengers. Our results showed that curcumin induced ROS accumulation, apoptosis, autophagy, cell cycle arrest, and cellular senescence accompanied by upregulation of p53 and p21 proteins in SiHa cells.
Collapse
Affiliation(s)
- Tuan Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 3 Qingchun Road, Zhejiang, 310016, P.R. China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 3 Qingchun Road, Zhejiang, 310016, P.R. China
| | - Mus'ab Al Rudaisat
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 3 Qingchun Road, Zhejiang, 310016, P.R. China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 3 Qingchun Road, Zhejiang, 310016, P.R. China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 3 Qingchun Road, Zhejiang, 310016, P.R. China
| |
Collapse
|
25
|
Werner Syndrome Protein Expression in Breast Cancer. Clin Breast Cancer 2020; 21:57-73.e7. [PMID: 32919863 DOI: 10.1016/j.clbc.2020.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Werner protein (WRN) plays an important role in DNA repair, replication, transcription, and consequently genomic stability via its DNA-helicase and exonuclease activity. Loss of function of WRN is associated with Werner syndrome (WS), which is characterized by premature aging and cancer predisposition. Malignancies that are commonly linked to WS are thyroid carcinoma, melanoma, breast cancer, meningioma, and soft tissue and bone sarcomas. Currently, the clinicopathologic significance of WRN in breast cancer is largely unknown. PATIENTS AND METHODS We investigated the clinicopathologic and prognostic significance of WRN protein expression in a cohort of clinically annotated series of sporadic (n = 1650) and BRCA-mutated (n = 75) invasive breast cancers. We correlated WRN protein expression to clinicopathologic characteristics, DNA repair protein expression, and survival outcomes. RESULTS There is strong evidence of association between low nuclear and cytoplasmic WRN co-expression and low levels of KU70/KU80, DNA-PK, DNA Pol-B, CKD18, cytoplasmic RECQL4, and nuclear BLM protein expression (adjusted P-values < .05). Tumors with low nuclear or cytoplasmic WRN expression have worse overall breast cancer-specific survival (BCSS) (adjusted P-values < .05). In topoisomerase I overexpressed tumors, low WRN nuclear expression was associated with poor BCSS (P-value < .05). In BRCA-mutated tumors, low WRN cytoplasmic expression conferred shortest BCSS (P < .05). CONCLUSIONS Low WRN protein expression is associated with poor BCSS in patients with breast cancer. This can be used to optimize the risk stratification for personalized treatment.
Collapse
|
26
|
Li M, Liu B, Yi J, Yang Y, Wang J, Zhu WG, Luo J. MIB1-mediated degradation of WRN promotes cellular senescence in response to camptothecin treatment. FASEB J 2020; 34:11488-11497. [PMID: 32652764 DOI: 10.1096/fj.202000268rrr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 11/11/2022]
Abstract
Werner syndrome protein (WRN) plays critical roles in DNA replication, recombination, and repair, as well as transcription and cellular senescence. Ubiquitination and degradation of WRN have been reported, however, the E3 ubiquitin ligase of WRN is little known. Here, we identify mindbomb E3 ubiquitin protein ligase 1 (MIB1) as a novel E3 ubiquitin ligase for WRN protein. MIB1 physically interacts with WRN in vitro and in vivo and induces ubiquitination and degradation of WRN in the ubiquitin-proteasome pathway. Camptothecin (CPT) enhances the interaction between MIB1 and WRN, and promotes WRN degradation in a MIB1-dependent manner. In addition, CPT-induced cellular senescence is facilitated by the expression of MIB1 and attenuated by WRN expression. Our results show that MIB1-mediated degradation of WRN promotes cellular senescence and reveal a novel model executed by MIB1 and WRN to regulate cellular senescence.
Collapse
Affiliation(s)
- Meiting Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Boya Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Jingjie Yi
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Yang Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Jiadong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China.,Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
27
|
Wang B, Kohli J, Demaria M. Senescent Cells in Cancer Therapy: Friends or Foes? Trends Cancer 2020; 6:838-857. [PMID: 32482536 DOI: 10.1016/j.trecan.2020.05.004] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023]
Abstract
Several cancer interventions induce DNA damage and promote senescence in cancer and nonmalignant cells. Senescent cells secrete a collection of proinflammatory factors collectively termed the senescence-associated secretory phenotype (SASP). SASP factors are able to potentiate various aspects of tumorigenesis, including proliferation, metastasis, and immunosuppression. Moreover, the accumulation and persistence of therapy-induced senescent cells can promote tissue dysfunction and the early onset of various age-related symptoms in treated cancer patients. Here, we review in detail the mechanisms by which cellular senescence contributes to cancer development and the side effects of cancer therapies. We also review how pharmacological interventions to eliminate senescent cells or inhibit SASP production can mitigate these negative effects and propose therapeutic strategies based on the age of the patient.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Jaskaren Kohli
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713AV Groningen, The Netherlands.
| |
Collapse
|
28
|
Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Semin Cancer Biol 2020; 62:182-191. [DOI: 10.1016/j.semcancer.2019.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
|
29
|
Senescence in polyploid giant cancer cells: A road that leads to chemoresistance. Cytokine Growth Factor Rev 2020; 52:68-75. [DOI: 10.1016/j.cytogfr.2019.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023]
|
30
|
He A, Ma L, Huang Y, Zhang H, Duan W, Li Z, Fei T, Yuan J, Wu H, Liu L, Bai Y, Dai W, Wang Y, Li H, Sun Y, Wang Y, Wang C, Yuan T, Yang Q, Tian S, Dong M, Sheng R, Xiang D. CDKL3 promotes osteosarcoma progression by activating Akt/PKB. Life Sci Alliance 2020; 3:3/5/e202000648. [PMID: 32234750 PMCID: PMC7119369 DOI: 10.26508/lsa.202000648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone neoplasm with high frequencies of tumor metastasis and recurrence. Although the Akt/PKB signaling pathway is known to play key roles in tumorigenesis, the roles of cyclin-dependent kinase-like 3 (CDKL3) in OS progression remain largely elusive. We have demonstrated the high expression levels of CDKL3 in OS human specimens and comprehensively investigated the role of CDKL3 in promoting OS progression both in vitro and in vivo. We found that CDKL3 regulates Akt activation and its downstream effects, including cell growth and autophagy. The up-regulation of CDKL3 in OS specimens appeared to be associated with Akt activation and shorter overall patient survival (P = 0.003). Our findings identify CDKL3 as a critical regulator that stimulates OS progression by enhancing Akt activation. CDKL3 represents both a biomarker for OS prognosis, and a potential therapeutic target in precision medicine by targeting CDKL3 to treat Akt hyper-activated OS.
Collapse
Affiliation(s)
- Aina He
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China .,Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lanjing Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, PR China
| | - Yujing Huang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Haijiao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, PR China
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, PR China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, PR China
| | - Junqing Yuan
- Department of Pathology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Hao Wu
- Department of Vascular Biology, Boston Children's Hospital, Boston, MA, USA
| | - Liguo Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueqing Bai
- Department of Pathology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology and Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai, PR China
| | - Yonggang Wang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Hongtao Li
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Yong Sun
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Yaling Wang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Chunyan Wang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Ting Yuan
- Department of Orthopedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Songhai Tian
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, PR China
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA .,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Shanghai Research Center of Biliary Tract Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Saleh T, Bloukh S, Carpenter VJ, Alwohoush E, Bakeer J, Darwish S, Azab B, Gewirtz DA. Therapy-Induced Senescence: An "Old" Friend Becomes the Enemy. Cancers (Basel) 2020; 12:cancers12040822. [PMID: 32235364 PMCID: PMC7226427 DOI: 10.3390/cancers12040822] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 01/10/2023] Open
Abstract
For the past two decades, cellular senescence has been recognized as a central component of the tumor cell response to chemotherapy and radiation. Traditionally, this form of senescence, termed Therapy-Induced Senescence (TIS), was linked to extensive nuclear damage precipitated by classical genotoxic chemotherapy. However, a number of other forms of therapy have also been shown to induce senescence in tumor cells independently of direct genomic damage. This review attempts to provide a comprehensive summary of both conventional and targeted anticancer therapeutics that have been shown to induce senescence in vitro and in vivo. Still, the utility of promoting senescence as a therapeutic endpoint remains under debate. Since senescence represents a durable form of growth arrest, it might be argued that senescence is a desirable outcome of cancer therapy. However, accumulating evidence suggesting that cells have the capacity to escape from TIS would support an alternative conclusion, that senescence provides an avenue whereby tumor cells can evade the potentially lethal action of anticancer drugs, allowing the cells to enter a temporary state of dormancy that eventually facilitates disease recurrence, often in a more aggressive state. Furthermore, TIS is now strongly connected to tumor cell remodeling, potentially to tumor dormancy, acquiring more ominous malignant phenotypes and accounts for several untoward adverse effects of cancer therapy. Here, we argue that senescence represents a barrier to effective anticancer treatment, and discuss the emerging efforts to identify and exploit agents with senolytic properties as a strategy for elimination of the persistent residual surviving tumor cell population, with the goal of mitigating the tumor-promoting influence of the senescent cells and to thereby reduce the likelihood of cancer relapse.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (T.S.); (S.D.)
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Valerie J. Carpenter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Enas Alwohoush
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Jomana Bakeer
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Sarah Darwish
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (T.S.); (S.D.)
| | - Belal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Correspondence:
| |
Collapse
|
32
|
Wang S, Wang Q, Wang H, Qin C, Cui X, Li L, Liu Y, Chang H. Induction of ROS and DNA damage-dependent senescence by icaritin contributes to its antitumor activity in hepatocellular carcinoma cells. PHARMACEUTICAL BIOLOGY 2019; 57:424-431. [PMID: 31407933 PMCID: PMC8871611 DOI: 10.1080/13880209.2019.1628073] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/06/2019] [Accepted: 05/21/2019] [Indexed: 05/30/2023]
Abstract
Context: Icaritin (ICT), a prenylflavonoid derivative extracted from the Epimedium (Berberidaceae) genus, has been identified to exhibit antitumor effect in hepatocellular carcinoma (HCC) cells by inducing apoptosis. However, its effect on cellular senescence has not been elucidated. Objective: To investigate the mechanism for low concentrations of ICT exerting antitumor activity through induction of cellular senescence. Materials and methods: Human HepG2 and Huh7 cells were treated with low concentrations of ICT (1 and 2 μM) once per day for a week. Cellular senescence was evaluated through cell viability and senescence-associated-β-galactosidase activity. Cell cycle distribution and ROS levels were measured with flow cytometry. Gene expression was detected using qRT-PCR and western blotting. Fluorescent punctuates formation of γH2AX was analyzed by immunofluorescence. Results: ICT (1 and 2 μM) promoted cellular senescence in HepG2 and Huh7 cells, as observed by enlarged and flattened morphology and increased senescence-associated-β-galactosidase activity (∼7-8-fold and ∼11-12-fold of vehicle controls, respectively), accompanied by significant cell cycle arrest and decrease in DNA synthesis. Mechanistically, ICT-induced senescence occurred through accumulation of ROS (∼1.3-fold and ∼1.8-fold of vehicle controls in response to 1 and 2 μM ICT, respectively), which further resulted in DNA damage response, as evidenced by strong induction of γH2AX through immunofluorescence and western blotting assays. Pharmacological inhibition of ROS production with N-acetylcysteine attenuated ICT-induced γH2AX and senescence-associated-β-galactosidase activity (∼0.28-0.30-fold decrease, p < 0.05). Discussion and conclusions: Induction of cellular senescence by ICT defines a novel anticancer mechanism of ICT and provides a rationale for generalizing the study design to a broader study population to further developing ICT as a novel therapeutic agent for treatment of HCC.
Collapse
Affiliation(s)
- Shikang Wang
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qian Wang
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Huijun Wang
- Department of Internal Medicine, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xianping Cui
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Li
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yongqing Liu
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Hong Chang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
33
|
Johnson ACM, Zager RA. Mechanisms and consequences of oxidant-induced renal preconditioning: an Nrf2-dependent, P21-independent, anti-senescence pathway. Nephrol Dial Transplant 2019. [PMID: 29522116 DOI: 10.1093/ndt/gfy029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background P21, a cyclin kinase inhibitor, is upregulated by renal 'ischemic preconditioning' (IPC), and induces a 'cytoresistant' state. However, P21-induced cell cycle inhibition can also contribute to cellular senescence, a potential adverse renal event. Hence, this study assessed whether: (i) IPC-induced P21 upregulation is associated with subsequent renal senescence; and (ii) preconditioning can be established 'independent' of P21 induction and avoid a post-ischemic senescent state? Methods CD-1 mice were subjected to either IPC (5-15 min) or to a recently proposed 'oxidant-induced preconditioning' (OIP) strategy (tin protoporphyrin-induced heme oxygenase inhibition +/- parental iron administration). P21 induction [messenger RNA (mRNA)/protein], cell proliferation (KI-67, phosphohistone H3 nuclear staining), kidney senescence (P16ink4a; P19Arf mRNAs; senescence-associated beta-galactosidase levels) and resistance to ischemic acute kidney injury were assessed. Results IPC induced dramatic (10-25×) and persistent P21 activation and 'downstream' tubular senescence. Conversely, OIP did not upregulate P21, it increased, rather than decreased, cell proliferation markers, and it avoided a senescence state. OIP markedly suppressed ischemia-induced P21 up-regulation, it inhibited the development of post-ischemic senescence and it conferred near-complete protection against ischemic acute renal failure (ARF). To assess OIP's impact on a non-P21-dependent cytoprotective pathway, its ability to activate Nrf2, the so-called 'master regulator' of endogenous cell defenses, was assessed. Within 4 h, OIP activated each of three canonical Nrf2-regulated genes (NQO1, SRXN1, GCLC; 3- to 5-fold mRNA increases). Conversely, this gene activation pathway was absent in Nrf2-/- mice, confirming Nrf2 specificity. Nrf2-/- mice also did not develop significant OIP-mediated protection against ischemic ARF. Conclusions OIP (i) activates the cytoprotective Nrf2, but not the P21, pathway; (ii) suppresses post-ischemic P21 induction and renal senescence; and (iii) confers marked protection against ischemic ARF. In sum, these findings suggest that OIP may be a clinically feasible approach for safely activating the Nrf2 pathway, and thereby confer protection against clinical renal injury.
Collapse
Affiliation(s)
| | - Richard A Zager
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
34
|
Connecting cancer relapse with senescence. Cancer Lett 2019; 463:50-58. [DOI: 10.1016/j.canlet.2019.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023]
|
35
|
Kreis NN, Louwen F, Yuan J. The Multifaceted p21 (Cip1/Waf1/ CDKN1A) in Cell Differentiation, Migration and Cancer Therapy. Cancers (Basel) 2019; 11:cancers11091220. [PMID: 31438587 PMCID: PMC6770903 DOI: 10.3390/cancers11091220] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Loss of cell cycle control is characteristic of tumorigenesis. The protein p21 is the founding member of cyclin-dependent kinase inhibitors and an important versatile cell cycle protein. p21 is transcriptionally controlled by p53 and p53-independent pathways. Its expression is increased in response to various intra- and extracellular stimuli to arrest the cell cycle ensuring genomic stability. Apart from its roles in cell cycle regulation including mitosis, p21 is involved in differentiation, cell migration, cytoskeletal dynamics, apoptosis, transcription, DNA repair, reprogramming of induced pluripotent stem cells, autophagy and the onset of senescence. p21 acts either as a tumor suppressor or as an oncogene depending largely on the cellular context, its subcellular localization and posttranslational modifications. In the present review, we briefly mention the general functions of p21 and summarize its roles in differentiation, migration and invasion in detail. Finally, regarding its dual role as tumor suppressor and oncogene, we highlight the potential, difficulties and risks of using p21 as a biomarker as well as a therapeutic target.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.
| | - Frank Louwen
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
36
|
Wang S, Wang H, Sun B, Li D, Wu J, Li J, Tian X, Qin C, Chang H, Liu Y. Acetyl-11-keto-β-boswellic acid triggers premature senescence via induction of DNA damage accompanied by impairment of DNA repair genes in hepatocellular carcinoma cells in vitro and in vivo. Fundam Clin Pharmacol 2019; 34:65-76. [PMID: 31141202 DOI: 10.1111/fcp.12488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/28/2019] [Accepted: 05/24/2019] [Indexed: 01/25/2023]
Abstract
Cellular senescence, a state of irreversible growth arrest, occurs in all somatic cells and causes the cells to exhaust replicative capacity. Recently, cellular senescence has been emerging as one of the principal mechanisms of tumor suppression, which can be induced by low doses of therapeutic drugs in cancer cells. Acetyl-11-keto-β-boswellic acid (AKBA), an active ingredient isolated from the plant Boswellia serrata, has been identified to induce apoptosis in hepatocellular carcinoma (HCC) cells. In this study, we found that low concentrations of AKBA treatment triggered cell growth arrest at G0/G1 phase with features of premature cellular senescence phenotype in both HCC cell lines HepG2 and SMMC7721, as observed by enlarged and flattened morphology, significant increase in cells with senescence-associated β-galactosidase staining, and decrease in cell proliferation and DNA synthesis. Furthermore, cellular senescence induced by AKBA occurred via activation of DNA damage response and impairment of DNA repair, as evidenced by strong induction of γH2AX and p53, and downregulated expressions of multiple DNA repair associated genes. Induction of p53 by AKBA caused a significant increase in p21CIP1 , which had a critical involvement in the induction of cellular senescence. Additionally, in vivo study demonstrated that induction of senescence contributed to the anticancer efficacy of AKBA. Therefore, our findings suggested that induction of premature senescence by AKBA through DNA damage response accompanied by impairment of DNA repair genes defines a novel mechanism contributing to its growth suppression in HCC cells.
Collapse
Affiliation(s)
- Shikang Wang
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Huijun Wang
- Department of Internal Medicine, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Baoyou Sun
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Duanfeng Li
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Jing Wu
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Juan Li
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Xiaona Tian
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Hong Chang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Yongqing Liu
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| |
Collapse
|
37
|
Vimentin activation in early apoptotic cancer cells errands survival pathways during DNA damage inducer CPT treatment in colon carcinoma model. Cell Death Dis 2019; 10:467. [PMID: 31197132 PMCID: PMC6565729 DOI: 10.1038/s41419-019-1690-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/24/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Epithelial to mesenchymal transitions (EMT) is a preparatory process for cancer cells to attain motility and further metastasis to distant sites. Majority of DNA damaging drugs have shown to develop EMT as one of the major mechanisms to attain drug resistance. Here we sought to understand the resistance/survival instincts of cancer cells during initial phase of drug treatment. We provide a tangible evidence of stimulation of EMT factors in Apc knockout colorectal carcinoma model. Our results implied that CPT-treated Apc knockout cohorts depicted increased pro-invasive and pro-survival factors (Vimentin/pser38Vimentin & NFκB). Moreover, by cell sorting experiment, we have observed the expression of Vimentin in early apoptotic cells (AnnexinV positive) from 36 to 48 h of CPT treatment. We also observed the expression of chimeric Sec-AnnexinV-mvenus protein in migrated cells on transwell membrane recapitulating signatures of early apoptosis. Notably, induction of Vimentin-mediated signaling (by CPT) delayed apoptosis progression in cells conferring survival responses by modulating the promoter activity of NFκB. Furthermore, our results unveiled a novel link between Vimentin and ATM signaling, orchestrated via binding interaction between Vimentin and ATM kinase. Finally, we observed a significant alteration of crypt-villus morphology upon combination of DIM (EMT inhibitor) with CPT nullified the background EMT signals thus improving the efficacy of the DNA damaging agent. Thus, our findings revealed a resistance strategy of cancer cells within a very initial period of drug treatment by activating EMT program, which hinders the cancer cells to achieve later phases of apoptosis thus increasing the chances of early migration.
Collapse
|
38
|
|
39
|
Hsu CH, Altschuler SJ, Wu LF. Patterns of Early p21 Dynamics Determine Proliferation-Senescence Cell Fate after Chemotherapy. Cell 2019; 178:361-373.e12. [PMID: 31204100 DOI: 10.1016/j.cell.2019.05.041] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 12/27/2018] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
Chemotherapy is designed to induce cell death. However, at non-lethal doses, cancer cells can choose to remain proliferative or become senescent. The slow development of senescence makes studying this decision challenging. Here, by analyzing single-cell p21 dynamics before, during, and days after drug treatment, we link three distinct patterns of early p21 dynamics to final cell fate. Surprisingly, while high p21 expression is classically associated with senescence, we find the opposite at early times during drug treatment: most senescence-fated cells express much lower p21 levels than proliferation-fated cells. We demonstrate that these dynamics lead to a p21 "Goldilocks zone" for proliferation, in which modest increases of p21 expression can lead to an undesirable increase of cancer cell proliferation. Our study identifies a counter-intuitive role for early p21 dynamics in the cell-fate decision and pinpoints a source of proliferative cancer cells that can emerge after exposure to non-lethal doses of chemotherapy.
Collapse
Affiliation(s)
- Chien-Hsiang Hsu
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
40
|
The Cytotoxic Effects of Thymol as the Major Component of Trachyspermum ammi on Breast Cancer (MCF-7) Cells. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01961-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Wang X, Xin X, Sun Y, Zou L, Li H, Zhao Y, Li R, Peng Y, Zheng J. Chemical Reactivity of Aloe-Emodin and Its Hydroxylation Metabolites to Thiols. Chem Res Toxicol 2019; 32:234-244. [DOI: 10.1021/acs.chemrestox.8b00248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xin Xin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Ying Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Lizhu Zou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Hui Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yufei Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Ruihong Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
42
|
Hari R, Kumar Reddy P, Durairaj P, Thiruvanavukkarasu P. Effect of ethanolic extract of Excoecaria agallocha leaves on the cytotoxic activity and cell cycle arrest of human breast cancer cell lines – MCF-7. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_237_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Wang Y, Wang Y, Liu S, Liu Y, Xu H, Liang J, Zhu J, Zhang G, Su W, Dong W, Guo Q. Upregulation of EID3 sensitizes breast cancer cells to ionizing radiation-induced cellular senescence. Biomed Pharmacother 2018; 107:606-614. [PMID: 30114644 DOI: 10.1016/j.biopha.2018.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/23/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022] Open
Abstract
Previous studies have shown that BMS-345541 (BMS, a specific IκB kinase β inhibitor) sensitized various tumor cells including MCF-7 breast cancer cells to ionizing radiation (IR). However, the mechanisms of BMS action are unknown. Since the expression of E1A-like inhibitor of differentiation 3 (EID3) was highly upregulated in MCF-7 cells after BMS treatment, we investigated the role of EID3 in the response of MCF-7 cells to IR. We found that BMS induced EID3 expression in MCF-7 cells in a time- and dose-dependent manner. Knockdown of EID3 by specific shRNA attenuated BMS-induced radiosensitization in MCF-7 cells. In contrast, induction of EID3 expression in an inducible EID3 expressing MCF-7 cell line with doxycycline sensitized the cells to IR. EID3-mediated sensitization of MCF-7 cells to IR was not attributed to an increase in apoptosis. Instead, EID3-expressing MCF-7 cells exhibited significantly higher levels of senescence associated β-galactosidase (SA-β-gal) activity and higher levels of p21 and p57 than EID3-MCF-7 cells without induction of EID3 after exposure to IR. Similar findings were observed when EID3-expressing MCF-7 cells were treated with etoposide, a topoisomerase II inhibitor. Taken together, our findings reveal a novel function of EID3 and suggest that the induction of EID3 by BMS may be exploited as a new strategy to sensitize breast cancer cells to IR and chemotherapy by inducing cancer cell senescence.
Collapse
Affiliation(s)
- Yan Wang
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China; Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Yuxuan Wang
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Sihong Liu
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Yamin Liu
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China; Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Huihua Xu
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Junbo Liang
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Jianwei Zhu
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Guiqiang Zhang
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Wenzhou Su
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Weihua Dong
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Qifeng Guo
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| |
Collapse
|
44
|
Abstract
Senescence is a double-edged sword that can function in opposite directions. It is a potential mechanism for a cell to avoid malignant transformation. However, senescence can also promote cancer development by altering the cellular microenvironment through a senescence-associated secretory phenotype (SASP). At least, three types of cellular stress such as activation of oncogenes, loss of tumor suppressor genes, and chemo/radiotherapy can induce cell senescence. Oncogene-induced senescence can be intertwiningly associated with the replicative senescence. Early-stage senescence may protect cell from transformation, while prolonged senescence often promotes cancer development. This review will focus on the characteristics of senescence, discuss the regulation of senescence during cancer development, and highlight the complexity of senescence that makes cancer treatment challenging.
Collapse
Affiliation(s)
- Sulin Zeng
- Department of Microbiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, USA
| | - Li Liu
- Department of Microbiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Song YW, Lim Y, Cho SK. 2,4‑Di‑tert‑butylphenol, a potential HDAC6 inhibitor, induces senescence and mitotic catastrophe in human gastric adenocarcinoma AGS cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:675-683. [PMID: 29427610 DOI: 10.1016/j.bbamcr.2018.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 02/08/2023]
Abstract
The natural product 2,4‑di‑tert‑butylphenol (DTBP) has a wide spectrum of biological functions, including anticancer activities, although the underlying mechanisms are poorly understood. Here, we found that DTBP induces senescence in human gastric adenocarcinoma AGS cells as evidenced by upregulation of p21 and Rb and increased β‑galactosidase activity. DTBP also induces mitotic catastrophe and generates multinucleated cells, which is accompanied by an increase in the proportion of polymerized tubulin, possibly caused by inhibition of HDAC6 enzyme activity. In silico docking analysis showed that DTBP docked at the entrance of the ligand-binding pocket of the HDAC6 enzyme. Accordingly, DTBP represents a promising lead structure for the development of HDAC6 inhibitors, with an improvement in specificity conferred by modification of the cap group. We propose for the first time that the underlying mechanism of the anticancer activity of DTBP is attributed to inhibition of HDAC6 activity.
Collapse
Affiliation(s)
- Yeon Woo Song
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Somi Kim Cho
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea.
| |
Collapse
|
46
|
Shamanna RA, Lu H, Croteau DL, Arora A, Agarwal D, Ball G, Aleskandarany MA, Ellis IO, Pommier Y, Madhusudan S, Bohr VA. Camptothecin targets WRN protein: mechanism and relevance in clinical breast cancer. Oncotarget 2017; 7:13269-84. [PMID: 26959889 PMCID: PMC4924640 DOI: 10.18632/oncotarget.7906] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/09/2016] [Indexed: 12/22/2022] Open
Abstract
Werner syndrome protein (WRN) is a RecQ helicase that participates in DNA repair, genome stability and cellular senescence. The five human RecQ helicases, RECQL1, Bloom, WRN, RECQL4 and RECQL5 play critical roles in DNA repair and cell survival after treatment with the anticancer drug camptothecin (CPT). CPT derivatives are widely used in cancer chemotherapy to inhibit topoisomerase I and generate DNA double-strand breaks during replication. Here we studied the effects of CPT on the stability and expression dynamics of human RecQ helicases. In the cells treated with CPT, we observed distinct effects on WRN compared to other human RecQ helicases. CPT altered the cellular localization of WRN and induced its degradation by a ubiquitin-mediated proteasome pathway. WRN knockdown cells as well as CPT treated cells became senescent and stained positive for senescence-associated β-galactosidase at a higher frequency compared to control cells. However, the senescent phenotype was attenuated by ectopic expression of WRN suggesting functional implication of WRN degradation in CPT treated cells. Approximately 5-23% of breast cancer tumors are known to respond to CPT-based chemotherapy. Interestingly, we found that the extent of CPT-induced WRN degradation correlates with increasing sensitivity of breast cancer cells to CPT. The abundance of WRN decreased in CPT-treated sensitive cells; however, WRN remained relatively stable in CPT-resistant breast cancer cells. In a large clinical cohort of breast cancer patients, we find that WRN and topoisomerase I expression correlate with an aggressive tumor phenotype and poor prognosis. Our novel observations suggest that WRN abundance along with CPT-induced degradation could be a promising strategy for personalizing CPT-based cancer chemotherapeutic regimens.
Collapse
Affiliation(s)
- Raghavendra A Shamanna
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Huiming Lu
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Arvind Arora
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Mohammed A Aleskandarany
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian O Ellis
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, USA
| | - Srinivasan Madhusudan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
48
|
Mohanraj S, Rajiv S. Preparation and characterization of camptothecin-loaded alginate/poly[ N-(2-hydroxypropyl) methacrylamide] hydrogel beads for anticancer treatment. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1269104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Sheeja Rajiv
- Department of Chemistry, Anna University, Chennai, India
| |
Collapse
|
49
|
Critical role of p21 on olaquindox-induced mitochondrial apoptosis and S-phase arrest involves activation of PI3K/AKT and inhibition of Nrf2/HO-1pathway. Food Chem Toxicol 2017; 108:148-160. [DOI: 10.1016/j.fct.2017.07.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
|
50
|
Hu B, An HM, Wang SS, Zheng JL, Yan X, Huang XW, Tian JH. Teng-Long-Bu-Zhong-Tang induces p21-dependent cell senescence in colorectal carcinoma LS174T cells via histone acetylation. J Exp Pharmacol 2017; 9:67-72. [PMID: 28572741 PMCID: PMC5441675 DOI: 10.2147/jep.s129272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Teng-Long-Bu-Zhong-Tang (TLBZT) is a Chinese herbal formula for colorectal carcinoma treatment. TLBZT effectively induces cell senescence in colorectal carcinoma, accompanied by p21 upregulation. In this study, we further explored the role of p21 in TLBZT-induced cell senescence, as well as the mechanism by which TLBZT upregulates p21. Specific knockdown of p21 expression by small interfering RNA significantly attenuated TLBZT-induced cell senescence in human colorectal carcinoma LS174T cells. Silencing of p53 by small interfering RNA did not affect TLBZT-induced p21 upregulation. Meanwhile, TLBZT inhibited histone deacetylase activity. Furthermore, TLBZT increased acetylation levels of histone H3 and H4, enhancing their binding to the p21 promoter. These data suggested that TLBZT induces cell senescence in LS174T cells through a mechanism involving p21 upregulation via histone H3 and H4 acetylation. This study provides new insights into the application of TLBZT for colorectal carcinoma treatment.
Collapse
Affiliation(s)
- Bing Hu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine.,Institute of Traditional Chinese Medicine in Oncology, Shanghai Academy of Traditional Chinese Medicine
| | - Hong-Mei An
- Department of Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shuang-Shuang Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine.,Institute of Traditional Chinese Medicine in Oncology, Shanghai Academy of Traditional Chinese Medicine
| | - Jia-Lu Zheng
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine.,Institute of Traditional Chinese Medicine in Oncology, Shanghai Academy of Traditional Chinese Medicine
| | - Xia Yan
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine.,Institute of Traditional Chinese Medicine in Oncology, Shanghai Academy of Traditional Chinese Medicine
| | - Xiao-Wei Huang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine.,Institute of Traditional Chinese Medicine in Oncology, Shanghai Academy of Traditional Chinese Medicine
| | - Jian-Hui Tian
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine.,Institute of Traditional Chinese Medicine in Oncology, Shanghai Academy of Traditional Chinese Medicine
| |
Collapse
|