1
|
He Y, Zalenski N, Stephenson AA, Raper AT, Ghimire C, Suo Z. Conformational transitions of Streptococcus pyogenes Cas9 induced by salt and single-guide RNA binding. J Biol Chem 2025; 301:108120. [PMID: 39716488 PMCID: PMC11791316 DOI: 10.1016/j.jbc.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Streptococcus pyogenes (Sp) Cas9 has been widely utilized to edit genomes across diverse species. To achieve high efficiency and specificity as a gene-editing enzyme, Sp Cas9 undergoes a series of sequential conformational changes during substrate binding and catalysis. Here, we employed single-molecule FRET techniques to investigate the effect of different KCl concentrations on conformational dynamics of Sp Cas9 in the presence or the absence of a single-guide RNA (sgRNA). In the absence of sgRNA and at low KCl concentrations (75 mM), apo Cas9 surprisingly exhibited two distinct conformations: a primary autoinhibited open conformation (apo Cas9 conformation [Cas9apo]) and a secondary sgRNA-bound-like conformation (Cas9X). Interestingly, increase in buffer KCl concentration led to a linear increase in the Cas9X population and a corresponding decrease in the Cas9apo population. In contrast, changes in KCl concentration exerted the opposite effects on the Cas9X and Cas9apo populations in the presence of sgRNA. Collectively, our findings by using KCl concentration as the probe suggest that Cas9 might employ a conformational sampling mechanism, in addition to the more common induced-fit mechanism established by us previously, for sgRNA binding.
Collapse
Affiliation(s)
- Yufan He
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Nikita Zalenski
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | | | - Austin T Raper
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Chiran Ghimire
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
2
|
Millar DP. Conformational Dynamics of DNA Polymerases Revealed at the Single-Molecule Level. Front Mol Biosci 2022; 9:826593. [PMID: 35281261 PMCID: PMC8913937 DOI: 10.3389/fmolb.2022.826593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 12/25/2022] Open
Abstract
DNA polymerases are intrinsically dynamic macromolecular machines. The purpose of this review is to describe the single-molecule Förster resonance energy transfer (smFRET) methods that are used to probe the conformational dynamics of DNA polymerases, focusing on E. coli DNA polymerase I. The studies reviewed here reveal the conformational dynamics underpinning the nucleotide selection, proofreading and 5′ nuclease activities of Pol I. Moreover, the mechanisms revealed for Pol I are likely employed across the DNA polymerase family. smFRET methods have also been used to examine other aspects of DNA polymerase activity.
Collapse
|
3
|
Fu J, Wu L, Hu G, Li F, Ge Q, Lu Z, Tu J. Solid-state nanopore analysis on the conformation change of DNA polymerase I induced by a DNA substrate. Analyst 2022; 147:3087-3095. [DOI: 10.1039/d2an00567k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the conformational changes between a Klenow fragment and its monomer complex with a DNA substrate using a SiN nanopore and found that the monomer complex has a tighter structure and transports slower.
Collapse
Affiliation(s)
- Jiye Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Linlin Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fuyao Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
4
|
Mahzabeen F, Vermesh O, Levi J, Tan M, Alam IS, Chan CT, Gambhir SS, Harris JS. Real-time point-of-care total protein measurement with a miniaturized optoelectronic biosensor and fast fluorescence-based assay. Biosens Bioelectron 2021; 180:112823. [PMID: 33715946 DOI: 10.1016/j.bios.2020.112823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Measurement of total protein in urine is key to monitoring kidney health in diabetes. However, most total protein assays are performed using large, expensive laboratory chemistry analyzers that are not amenable to point-of-care analysis or home monitoring and cannot provide real-time readouts. We developed a miniaturized optoelectronic biosensor using a vertical cavity surface-emitting laser (VCSEL), coupled with a fast protein assay based on protein-induced fluorescence enhancement (PIFE), that can dynamically measure protein concentrations in protein-spiked buffer, serum, and urine in seconds with excellent sensitivity (urine LOD = 0.023 g/L, LOQ = 0.075 g/L) and over a broad range of physiologically relevant concentrations. Comparison with gold standard clinical assays and standard fluorimetry tools showed that the sensor can accurately and reliably quantitate total protein in clinical urine samples from patients with diabetes. Our VCSEL biosensor is amenable to integration with miniaturized electronics, which could afford a portable, low-cost, easy-to-use device for sensitive, accurate, and real-time total protein measurements from small biofluid volumes.
Collapse
Affiliation(s)
- Fariah Mahzabeen
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ophir Vermesh
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA.
| | - Jelena Levi
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Marilyn Tan
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Israt S Alam
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Carmel T Chan
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Stanford Bio-X, Stanford University, Stanford, CA, 94305, USA
| | - James S Harris
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Bocanegra R, Ismael Plaza GA, Pulido CR, Ibarra B. DNA replication machinery: Insights from in vitro single-molecule approaches. Comput Struct Biotechnol J 2021; 19:2057-2069. [PMID: 33995902 PMCID: PMC8085672 DOI: 10.1016/j.csbj.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
The replisome is the multiprotein molecular machinery that replicates DNA. The replisome components work in precise coordination to unwind the double helix of the DNA and replicate the two strands simultaneously. The study of DNA replication using in vitro single-molecule approaches provides a novel quantitative understanding of the dynamics and mechanical principles that govern the operation of the replisome and its components. ‘Classical’ ensemble-averaging methods cannot obtain this information. Here we describe the main findings obtained with in vitro single-molecule methods on the performance of individual replisome components and reconstituted prokaryotic and eukaryotic replisomes. The emerging picture from these studies is that of stochastic, versatile and highly dynamic replisome machinery in which transient protein-protein and protein-DNA associations are responsible for robust DNA replication.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - G A Ismael Plaza
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Carlos R Pulido
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Raper AT, Maxwell BA, Suo Z. Dynamic Processing of a Common Oxidative DNA Lesion by the First Two Enzymes of the Base Excision Repair Pathway. J Mol Biol 2021; 433:166811. [PMID: 33450252 DOI: 10.1016/j.jmb.2021.166811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 01/25/2023]
Abstract
Base excision repair (BER) is the primary pathway by which eukaryotic cells resolve single base damage. One common example of single base damage is 8-oxo-7,8-dihydro-2'-deoxoguanine (8-oxoG). High incidence and mutagenic potential of 8-oxoG necessitate rapid and efficient DNA repair. How BER enzymes coordinate their activities to resolve 8-oxoG damage while limiting cytotoxic BER intermediates from propagating genomic instability remains unclear. Here we use single-molecule Förster resonance energy transfer (smFRET) and ensemble-level techniques to characterize the activities and interactions of consecutive BER enzymes important for repair of 8-oxoG. In addition to characterizing the damage searching and processing mechanisms of human 8-oxoguanine glycosylase 1 (hOGG1), our data support the existence of a ternary complex between hOGG1, the damaged DNA substrate, and human AP endonuclease 1 (APE1). Our results indicate that hOGG1 is actively displaced from its abasic site containing product by protein-protein interactions with APE1 to ensure timely repair of damaged DNA.
Collapse
Affiliation(s)
- Austin T Raper
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Brian A Maxwell
- The Ohio State Biophysics Ph.D. Program, The Ohio State University, Columbus, OH 43210, USA
| | - Zucai Suo
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; The Ohio State Biophysics Ph.D. Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
7
|
Kumari N, Ciuba MA, Levitus M. Photophysical properties of the hemicyanine Dy-630 and its potential as a single-molecule fluorescent probe for biophysical applications. Methods Appl Fluoresc 2019; 8:015004. [PMID: 31585443 DOI: 10.1088/2050-6120/ab4b0d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protein-induced fluorescence enhancement (PIFE) is an increasingly used approach to investigate DNA-protein interactions at the single molecule level. The optimal probe for this type of application is highly photostable, has a high absorption extinction coefficient, and has a moderate fluorescence quantum yield that increases significantly when the dye is in close proximity to a large macromolecule such as a protein. So far, the green-absorbing symmetric cyanine known as Cy3 has been the probe of choice in this field because the magnitude of the increase observed upon protein binding (usually 2-4 -fold) is large enough to allow for the analysis of protein dynamics on the inherently noisy single-molecule signals. Here, we report the characterization of the photophysical properties of the red-absorbing hemicyanine dye Dy-630 in the context of its potential application as a single-molecule PIFE probe. The behavior of Dy-630 in solution is similar to that of Cy3; the fluorescence quantum yield and lifetime of Dy-630 increase with increasing viscosity, and decrease with increasing temperature indicating the existence of an activated nonradiative process that depopulates the singlet state of the dye. As in the case of Cy3, the results of transient spectroscopy experiments are consistent with the formation of a photoisomer that reverts to the ground state thermally in the microsecond timescale. Unfortunately, experiments with DNA samples paint a more complex scenario. As in the case of Cy3, the fluorescence quantum yield of Dy-630 increases significantly when the dye interacts with the DNA bases, but in the case of Dy-630 attachment to DNA results in an already long fluorescence lifetime that does not provide a significant window for the protein-induced enhancement observed with Cy3. Although we show that Dy-630 may not be well-suited for PIFE, our results shed light on the optimal design principles for probes for PIFE applications.
Collapse
|
8
|
Raper AT, Reed AJ, Suo Z. Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion. Chem Rev 2018; 118:6000-6025. [DOI: 10.1021/acs.chemrev.7b00685] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Austin T. Raper
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew J. Reed
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Gadkari VV, Harvey SR, Raper AT, Chu WT, Wang J, Wysocki VH, Suo Z. Investigation of sliding DNA clamp dynamics by single-molecule fluorescence, mass spectrometry and structure-based modeling. Nucleic Acids Res 2018; 46:3103-3118. [PMID: 29529283 PMCID: PMC5888646 DOI: 10.1093/nar/gky125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 12/20/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a trimeric ring-shaped clamp protein that encircles DNA and interacts with many proteins involved in DNA replication and repair. Despite extensive structural work to characterize the monomeric, dimeric, and trimeric forms of PCNA alone and in complex with interacting proteins, no structure of PCNA in a ring-open conformation has been published. Here, we use a multidisciplinary approach, including single-molecule Förster resonance energy transfer (smFRET), native ion mobility-mass spectrometry (IM-MS), and structure-based computational modeling, to explore the conformational dynamics of a model PCNA from Sulfolobus solfataricus (Sso), an archaeon. We found that Sso PCNA samples ring-open and ring-closed conformations even in the absence of its clamp loader complex, replication factor C, and transition to the ring-open conformation is modulated by the ionic strength of the solution. The IM-MS results corroborate the smFRET findings suggesting that PCNA dynamics are maintained in the gas phase and further establishing IM-MS as a reliable strategy to investigate macromolecular motions. Our molecular dynamic simulations agree with the experimental data and reveal that ring-open PCNA often adopts an out-of-plane left-hand geometry. Collectively, these results implore future studies to define the roles of PCNA dynamics in DNA loading and other PCNA-mediated interactions.
Collapse
Affiliation(s)
- Varun V Gadkari
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Austin T Raper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme. Nat Commun 2017; 8:15075. [PMID: 28462924 PMCID: PMC5418573 DOI: 10.1038/ncomms15075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/27/2017] [Indexed: 11/26/2022] Open
Abstract
Since their initial characterization over 30 years ago, it has been believed that the archaeal B-family DNA polymerases are single-subunit enzymes. This contrasts with the multi-subunit B-family replicative polymerases of eukaryotes. Here we reveal that the highly studied PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts. Two small subunits, PBP1 and PBP2, associate with distinct surfaces of the larger catalytic subunit and influence the enzymatic properties of the DNA polymerase. Thus, multi-subunit replicative DNA polymerase holoenzymes are present in all three domains of life. We reveal the architecture of the assembly by a combination of cross-linking coupled with mass spectrometry, X-ray crystallography and single-particle electron microscopy. The small subunits stabilize the holoenzyme assembly and the acidic tail of one small subunit mitigates the ability of the enzyme to perform strand-displacement synthesis, with important implications for lagging strand DNA synthesis. The current model for B-family DNA polymerases in archaea is one of single-subunit enzymes in contrast to the multi-subunit complexes in eukaryotes. Here the authors show that PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts.
Collapse
|
11
|
Raper AT, Reed AJ, Gadkari VV, Suo Z. Advances in Structural and Single-Molecule Methods for Investigating DNA Lesion Bypass and Repair Polymerases. Chem Res Toxicol 2016; 30:260-269. [PMID: 28092942 DOI: 10.1021/acs.chemrestox.6b00342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Innovative advances in X-ray crystallography and single-molecule biophysics have yielded unprecedented insight into the mechanisms of DNA lesion bypass and damage repair. Time-dependent X-ray crystallography has been successfully applied to view the bypass of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG), a major oxidative DNA lesion, and the incorporation of the triphosphate form, 8-oxo-dGTP, catalyzed by human DNA polymerase β. Significant findings of these studies are highlighted here, and their contributions to the current mechanistic understanding of mutagenic translesion DNA synthesis (TLS) and base excision repair are discussed. In addition, single-molecule Förster resonance energy transfer (smFRET) techniques have recently been adapted to investigate nucleotide binding and incorporation opposite undamaged dG and 8-oxoG by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. The mechanistic response of Dpo4 to a DNA lesion and the complex smFRET technique are described here. In this perspective, we also describe how time-dependent X-ray crystallography and smFRET can be used to achieve the spatial and temporal resolutions necessary to answer some of the mechanistic questions that remain in the fields of TLS and DNA damage repair.
Collapse
Affiliation(s)
- Austin T Raper
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Andrew J Reed
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Varun V Gadkari
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Raper AT, Suo Z. Investigation of Intradomain Motions of a Y-Family DNA Polymerase during Substrate Binding and Catalysis. Biochemistry 2016; 55:5832-5844. [PMID: 27685341 DOI: 10.1021/acs.biochem.6b00878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA polymerases catalyze DNA synthesis through a stepwise kinetic mechanism that begins with binding to DNA, followed by selection, binding, and incorporation of a nucleotide into an elongating primer. It is hypothesized that subtle active site adjustments in a polymerase to align reactive moieties limit the rate of correct nucleotide incorporation. DNA damage can impede this process for many DNA polymerases, causing replication fork stalling, genetic mutations, and potentially cell death. However, specialized Y-family DNA polymerases are structurally evolved to efficiently bypass DNA damage in vivo, albeit at the expense of replication fidelity. Dpo4, a model Y-family polymerase from Sulfolobus solfataricus, has been well-studied kinetically, structurally, and computationally, which yielded a mechanistic understanding of how the Y-family DNA polymerases achieve their unique catalytic properties. We previously employed a real-time Förster resonance energy transfer (FRET) technique to characterize the global conformational motions of Dpo4 during DNA binding as well as nucleotide binding and incorporation by monitoring changes in distance between sites on the polymerase and DNA, and even between domains of Dpo4. Here, we extend the utility of our FRET methodology to observe conformational transitions within individual domains of Dpo4 during DNA binding and nucleotide incorporation. The results of this novel, intradomain FRET approach unify findings from many studies to fully clarify the complex DNA binding mechanism of Dpo4. Furthermore, intradomain motions in the Finger domain during nucleotide binding and incorporation, for the first time, report on the rate-limiting step of a single-nucleotide addition catalyzed by Dpo4.
Collapse
Affiliation(s)
- Austin T Raper
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States.,Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States.,Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Lerner E, Ploetz E, Hohlbein J, Cordes T, Weiss S. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET). J Phys Chem B 2016; 120:6401-10. [PMID: 27184889 PMCID: PMC4939467 DOI: 10.1021/acs.jpcb.6b03692] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Single-molecule,
protein-induced fluorescence enhancement (PIFE)
serves as a molecular ruler at molecular distances inaccessible to
other spectroscopic rulers such as Förster-type resonance energy
transfer (FRET) or photoinduced electron transfer. In order to provide
two simultaneous measurements of two distances on different molecular
length scales for the analysis of macromolecular complexes, we and
others recently combined measurements of PIFE and FRET (PIFE-FRET)
on the single molecule level. PIFE relies on steric hindrance of the
fluorophore Cy3, which is covalently attached to a biomolecule of
interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate.
In this work, we provide a theoretical framework that accounts for
relevant photophysical and kinetic parameters of PIFE-FRET, show how
this framework allows the extraction of the fold-decrease in isomerization
mobility from experimental data, and show how these results provide
information on changes in the accessible volume of Cy3. The utility
of this model is then demonstrated for experimental results on PIFE-FRET
measurement of different protein–DNA interactions. The proposed
model and extracted parameters could serve as a benchmark to allow
quantitative comparison of PIFE effects in different biological systems.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Chemistry and Biochemistry, University of California Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Evelyn Ploetz
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research , Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.,Microspectroscopy Centre, Wageningen University and Research , Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
14
|
Raper AT, Gadkari VV, Maxwell BA, Suo Z. Single-Molecule Investigation of Response to Oxidative DNA Damage by a Y-Family DNA Polymerase. Biochemistry 2016; 55:2187-96. [PMID: 27002236 DOI: 10.1021/acs.biochem.6b00166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Y-family DNA polymerases are known to bypass DNA lesions in vitro and in vivo and rescue stalled DNA replication machinery. Dpo4, a well-characterized model Y-family DNA polymerase, is known to catalyze translesion synthesis across a variety of DNA lesions including 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxo-dG). Our previous X-ray crystallographic, stopped-flow Förster resonance energy transfer (FRET), and computational simulation studies have revealed that Dpo4 samples a variety of global conformations as it recognizes and binds DNA. Here we employed single-molecule FRET (smFRET) techniques to investigate the kinetics and conformational dynamics of Dpo4 when it encountered 8-oxo-dG, a major oxidative lesion with high mutagenic potential. Our smFRET data indicated that Dpo4 bound the DNA substrate in multiple conformations, as suggested by three observed FRET states. An incoming correct or incorrect nucleotide affected the distribution and stability of these states with the correct nucleotide completely shifting the equilibrium toward a catalytically competent complex. Furthermore, the presence of the 8-oxo-dG lesion in the DNA stabilized both the binary and ternary complexes of Dpo4. Thus, our smFRET analysis provided a basis for the enhanced efficiency which Dpo4 is known to exhibit when replicating across from 8-oxo-dG.
Collapse
Affiliation(s)
- Austin T Raper
- Department of Chemistry and Biochemistry, †Ohio State Biochemistry Program and ‡Ohio State Biophysics Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Varun V Gadkari
- Department of Chemistry and Biochemistry, †Ohio State Biochemistry Program and ‡Ohio State Biophysics Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Brian A Maxwell
- Department of Chemistry and Biochemistry, †Ohio State Biochemistry Program and ‡Ohio State Biophysics Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, †Ohio State Biochemistry Program and ‡Ohio State Biophysics Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Chao J, Zhang P, Wang Q, Wu N, Zhang F, Hu J, Fan CH, Li B. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy. NANOSCALE 2016; 8:5842-5846. [PMID: 26932823 DOI: 10.1039/c5nr06544e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.
Collapse
Affiliation(s)
- J Chao
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Stennett EMS, Ciuba MA, Lin S, Levitus M. Demystifying PIFE: The Photophysics Behind the Protein-Induced Fluorescence Enhancement Phenomenon in Cy3. J Phys Chem Lett 2015; 6:1819-1823. [PMID: 26263254 DOI: 10.1021/acs.jpclett.5b00613] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein-induced fluorescence enhancement (PIFE) is a term used to describe the increase in fluorescence intensity observed when a protein binds to a nucleic acid in the proximity of a fluorescent probe. PIFE using the single-molecule dye Cy3 is gaining popularity as an approach to investigate the dynamics of proteins that interact with nucleic acids. In this work, we used complexes of DNA and Klenow fragment and a combination of time-resolved fluorescence and transient spectroscopy techniques to elucidate the photophysical mechanism that leads to protein-enhanced fluorescence emission of Cy3 when in close proximity to a protein (PIFE). By monitoring the formation of the cis isomer directly, we proved that the enhancement of Cy3 fluorescence correlates with a decrease in the efficiency of photoisomerization, and occurs in conditions where the dye is sterically constrained by the protein.
Collapse
Affiliation(s)
- Elana M S Stennett
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, P.O. Box 875601, Tempe, Arizona 85287, United States
| | - Monika A Ciuba
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, P.O. Box 875601, Tempe, Arizona 85287, United States
| | - Su Lin
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, P.O. Box 875601, Tempe, Arizona 85287, United States
| | - Marcia Levitus
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, P.O. Box 875601, Tempe, Arizona 85287, United States
| |
Collapse
|
17
|
Al Balushi AA, Gordon R. A label-free untethered approach to single-molecule protein binding kinetics. NANO LETTERS 2014; 14:5787-91. [PMID: 25211555 DOI: 10.1021/nl502665n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Single molecule approaches provide rich real-time dynamics of molecular interactions that are not accessible to ensemble measurements. Previous single molecule studies have relied on labeling and tethering, which alters the natural state of the protein. Here we use the double-nanohole (DNH) optical tweezer approach to measure protein binding kinetics at the single molecule level in a label-free, free-solution (untethered) way. The binding kinetics of human serum albumin (HSA) to tolbutamide and to phenytoin are in quantitative agreement with previous measurements, and our single-molecule approach reveals a biexponential behavior characteristic of a multistep process. The DNH optical tweezer is an inexpensive platform for studying the real-time binding kinetics of protein-small molecule interactions in a label-free, free-solution environment, which will be of interest to future studies including drug discovery.
Collapse
Affiliation(s)
- Ahmed A Al Balushi
- Department of Electrical Engineering, University of Victoria , Victoria, British Columbia V8W 3P6, Canada
| | | |
Collapse
|
18
|
Xu C, Maxwell BA, Suo Z. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis. J Mol Biol 2014; 426:2901-2917. [PMID: 24931550 DOI: 10.1016/j.jmb.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/02/2014] [Accepted: 06/07/2014] [Indexed: 11/15/2022]
Abstract
Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been performed to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol.
Collapse
Affiliation(s)
- Cuiling Xu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Brian A Maxwell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Towle-Weicksel JB, Dalal S, Sohl CD, Doublié S, Anderson KS, Sweasy JB. Fluorescence resonance energy transfer studies of DNA polymerase β: the critical role of fingers domain movements and a novel non-covalent step during nucleotide selection. J Biol Chem 2014; 289:16541-50. [PMID: 24764311 DOI: 10.1074/jbc.m114.561878] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During DNA repair, DNA polymerase β (Pol β) is a highly dynamic enzyme that is able to select the correct nucleotide opposite a templating base from a pool of four different deoxynucleoside triphosphates (dNTPs). To gain insight into nucleotide selection, we use a fluorescence resonance energy transfer (FRET)-based system to monitor movement of the Pol β fingers domain during catalysis in the presence of either correct or incorrect dNTPs. By labeling the fingers domain with ((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS) and the DNA substrate with Dabcyl, we are able to observe rapid fingers closing in the presence of correct dNTPs as the IAEDANS comes into contact with a Dabcyl-labeled, one-base gapped DNA. Our findings show that not only do the fingers close after binding to the correct dNTP, but that there is a second conformational change associated with a non-covalent step not previously reported for Pol β. Further analyses suggest that this conformational change corresponds to the binding of the catalytic metal into the polymerase active site. FRET studies with incorrect dNTP result in no changes in fluorescence, indicating that the fingers do not close in the presence of incorrect dNTP. Together, our results show that nucleotide selection initially occurs in an open fingers conformation and that the catalytic pathways of correct and incorrect dNTPs differ from each other. Overall, this study provides new insight into the mechanism of substrate choice by a polymerase that plays a critical role in maintaining genome stability.
Collapse
Affiliation(s)
| | | | - Christal D Sohl
- Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Sylvie Doublié
- the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Karen S Anderson
- Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | | |
Collapse
|
20
|
Maxwell BA, Suo Z. Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases. Biochemistry 2014; 53:2804-14. [PMID: 24716482 PMCID: PMC4018064 DOI: 10.1021/bi5000405] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
The
kinetic mechanisms by which DNA polymerases catalyze DNA replication
and repair have long been areas of active research. Recently discovered
Y-family DNA polymerases catalyze the bypass of damaged DNA bases
that would otherwise block replicative DNA polymerases and stall replication
forks. Unlike DNA polymerases from the five other families, the Y-family
DNA polymerases have flexible, solvent-accessible active sites that
are able to tolerate various types of damaged template bases and allow
for efficient lesion bypass. Their promiscuous active sites, however,
also lead to fidelities that are much lower than those observed for
other DNA polymerases and give rise to interesting mechanistic properties.
Additionally, the Y-family DNA polymerases have several other unique
structural features and undergo a set of conformational changes during
substrate binding and catalysis different from those observed for
replicative DNA polymerases. In recent years, pre-steady-state kinetic
methods have been extensively employed to reveal a wealth of information
about the catalytic properties of these fascinating noncanonical DNA
polymerases. Here, we review many of the recent findings on the kinetic
mechanisms of DNA polymerization with undamaged and damaged DNA substrates
by the Y-family DNA polymerases, and the conformational dynamics employed
by these error-prone enzymes during catalysis.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and ‡Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
21
|
Maxwell BA, Xu C, Suo Z. Conformational dynamics of a Y-family DNA polymerase during substrate binding and catalysis as revealed by interdomain Förster resonance energy transfer. Biochemistry 2014; 53:1768-78. [PMID: 24568554 PMCID: PMC3985488 DOI: 10.1021/bi5000146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Numerous kinetic, structural, and
theoretical studies have established
that DNA polymerases adjust their domain structures to enclose nucleotides
in their active sites and then rearrange critical active site residues
and substrates for catalysis, with the latter conformational change
acting to kinetically limit the correct nucleotide incorporation rate.
Additionally, structural studies have revealed a large conformational
change between the apoprotein and the DNA–protein binary state
for Y-family DNA polymerases. In previous studies [Xu, C., Maxwell,
B. A., Brown, J. A., Zhang, L., and Suo, Z. (2009) PLoS Biol.7, e1000225], a real-time Förster resonance
energy transfer (FRET) method was developed to monitor the global
conformational transitions of DNA polymerase IV from Sulfolobus
solfataricus (Dpo4), a prototype Y-family enzyme, during
nucleotide binding and incorporation by measuring changes in distance
between locations on the enzyme and the DNA substrate. To elucidate
further details of the conformational transitions of Dpo4 during substrate
binding and catalysis, in this study, the real-time FRET technique
was used to monitor changes in distance between various pairs of locations
in the protein itself. In addition to providing new insight into the
conformational changes as revealed in previous studies, the results
here show that the previously described conformational change between
the apo and DNA-bound states of Dpo4 occurs in a mechanistic step
distinct from initial formation or dissociation of the binary complex
of Dpo4 and DNA.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and ‡Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | | | |
Collapse
|
22
|
Trakselis MA, Bauer RJ. Archaeal DNA Polymerases: Enzymatic Abilities, Coordination, and Unique Properties. NUCLEIC ACID POLYMERASES 2014. [DOI: 10.1007/978-3-642-39796-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|