1
|
Sabo J, Dujava Zdimalova M, Slater PG, Dostal V, Herynek S, Libusova L, Lowery LA, Braun M, Lansky Z. CKAP5 enables formation of persistent actin bundles templated by dynamically instable microtubules. Curr Biol 2024; 34:260-272.e7. [PMID: 38086388 PMCID: PMC10841699 DOI: 10.1016/j.cub.2023.11.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
Cytoskeletal rearrangements and crosstalk between microtubules and actin filaments are vital for living organisms. Recently, an abundantly present microtubule polymerase, CKAP5 (XMAP215 homolog), has been reported to play a role in mediating crosstalk between microtubules and actin filaments in the neuronal growth cones. However, the molecular mechanism of this process is unknown. Here, we demonstrate, in a reconstituted system, that CKAP5 enables the formation of persistent actin bundles templated by dynamically instable microtubules. We explain the templating by the difference in CKAP5 binding to microtubules and actin filaments. Binding to the microtubule lattice with higher affinity, CKAP5 enables the formation of actin bundles exclusively on the microtubule lattice, at CKAP5 concentrations insufficient to support any actin bundling in the absence of microtubules. Strikingly, when the microtubules depolymerize, actin bundles prevail at the positions predetermined by the microtubules. We propose that the local abundance of available CKAP5-binding sites in actin bundles allows the retention of CKAP5, resulting in persisting actin bundles. In line with our observations, we found that reducing CKAP5 levels in vivo results in a decrease in actin-microtubule co-localization in growth cones and specifically decreases actin intensity at microtubule plus ends. This readily suggests a mechanism explaining how exploratory microtubules set the positions of actin bundles, for example, in cytoskeleton-rich neuronal growth cones.
Collapse
Affiliation(s)
- Jan Sabo
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, Prague West, Prague 25250, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 12800, Czech Republic
| | - Michaela Dujava Zdimalova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, Prague West, Prague 25250, Czech Republic
| | - Paula G Slater
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencias, Universidad San Sebastián, Campus Los Leones, Lota 2465, Providencia, Santiago 7510602, Chile
| | - Vojtech Dostal
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 12800, Czech Republic
| | - Stepan Herynek
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, Prague West, Prague 25250, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 7, Prague 12800, Czech Republic
| | - Lenka Libusova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 12800, Czech Republic
| | - Laura A Lowery
- Department of Medicine, Section of Hematology/Oncology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, Prague West, Prague 25250, Czech Republic.
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, Prague West, Prague 25250, Czech Republic.
| |
Collapse
|
2
|
Baro L, Islam A, Brown HM, Bell ZA, Juanes MA. APC-driven actin nucleation powers collective cell dynamics in colorectal cancer cells. iScience 2023; 26:106583. [PMID: 37128612 PMCID: PMC10148130 DOI: 10.1016/j.isci.2023.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Cell remodeling relies on dynamic rearrangements of cell contacts powered by the actin cytoskeleton. The tumor suppressor adenomatous polyposis coli (APC) nucleate actin filaments (F-actin) and localizes at cell junctions. Whether APC-driven actin nucleation acts in cell junction remodeling remains unknown. By combining bioimaging and genetic tools with artificial intelligence algorithms applied to colorectal cancer cell, we found that the APC-dependent actin pool contributes to sustaining levels of F-actin, as well as E-cadherin and occludin protein levels at cell junctions. Moreover, this activity preserved cell junction length and angle, as well as vertex motion and integrity. Loss of this F-actin pool led to larger cells with slow and random cell movement within a sheet. Our findings suggest that APC-driven actin nucleation promotes cell junction integrity and dynamics to facilitate collective cell remodeling and motility. This offers a new perspective to explore the relevance of APC-driven cytoskeletal function in gut morphogenesis.
Collapse
Affiliation(s)
- Lautaro Baro
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Asifa Islam
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Hannah M. Brown
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Zoë A. Bell
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - M. Angeles Juanes
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
3
|
Molina-Pelayo C, Olguin P, Mlodzik M, Glavic A. The conserved Pelado/ZSWIM8 protein regulates actin dynamics by promoting linear actin filament polymerization. Life Sci Alliance 2022; 5:e202201484. [PMID: 35940847 PMCID: PMC9375228 DOI: 10.26508/lsa.202201484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Actin filament polymerization can be branched or linear, which depends on the associated regulatory proteins. Competition for actin monomers occurs between proteins that induce branched or linear actin polymerization. Cell specialization requires the regulation of actin filaments to allow the formation of cell type-specific structures, like cuticular hairs in <i>Drosophila</i>, formed by linear actin filaments. Here, we report the functional analysis of CG34401/<i>pelado</i>, a gene encoding a SWIM domain-containing protein, conserved throughout the animal kingdom, called ZSWIM8 in mammals. Mutant <i>pelado</i> epithelial cells display actin hair elongation defects. This phenotype is reversed by increasing actin monomer levels or by either pushing linear actin polymerization or reducing branched actin polymerization. Similarly, in hemocytes, Pelado is essential to induce filopodia, a linear actin-based structure. We further show that this function of Pelado/ZSWIM8 is conserved in human cells, where Pelado inhibits branched actin polymerization in a cell migration context. In summary, our data indicate that the function of Pelado/ZSWIM8 in regulating actin cytoskeletal dynamics is conserved, favoring linear actin polymerization at the expense of branched filaments.
Collapse
Affiliation(s)
- Claudia Molina-Pelayo
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Olguin
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Neurociencia, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Glavic
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Juanes MA, Isnardon D, Badache A, Brasselet S, Mavrakis M, Goode BL. The role of APC-mediated actin assembly in microtubule capture and focal adhesion turnover. J Cell Biol 2019; 218:3415-3435. [PMID: 31471457 PMCID: PMC6781439 DOI: 10.1083/jcb.201904165] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Actin assembly by APC maintains proper organization and dynamics of F-actin at focal adhesions. This, in turn, impacts the organization of other molecular components and the responsiveness of focal adhesions to microtubule capture and autophagosome-induced disassembly. Focal adhesion (FA) turnover depends on microtubules and actin. Microtubule ends are captured at FAs, where they induce rapid FA disassembly. However, actin’s roles are less clear. Here, we use polarization-resolved microscopy, FRAP, live cell imaging, and a mutant of Adenomatous polyposis coli (APC-m4) defective in actin nucleation to investigate the role of actin assembly in FA turnover. We show that APC-mediated actin assembly is critical for maintaining normal F-actin levels, organization, and dynamics at FAs, along with organization of FA components. In WT cells, microtubules are captured repeatedly at FAs as they mature, but once a FA reaches peak maturity, the next microtubule capture event leads to delivery of an autophagosome, triggering FA disassembly. In APC-m4 cells, microtubule capture frequency and duration are altered, and there are long delays between autophagosome delivery and FA disassembly. Thus, APC-mediated actin assembly is required for normal feedback between microtubules and FAs, and maintaining FAs in a state “primed” for microtubule-induced turnover.
Collapse
Affiliation(s)
| | - Daniel Isnardon
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Sophie Brasselet
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Manos Mavrakis
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA
| |
Collapse
|
5
|
Schaefer KN, Peifer M. Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates. Dev Cell 2019; 48:429-444. [PMID: 30782412 PMCID: PMC6386181 DOI: 10.1016/j.devcel.2019.01.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
Wnt/β-Catenin signaling plays key roles in tissue homeostasis and cell fate decisions in embryonic and post-embryonic development across the animal kingdom. As a result, pathway mutations are associated with developmental disorders and many human cancers. The multiprotein destruction complex keeps signaling off in the absence of Wnt ligands and needs to be downregulated for pathway activation. We discuss new insights into destruction complex activity and regulation, highlighting parallels to the control of other cell biological processes by biomolecular condensates that form by phase separation to suggest that the destruction complex acts as a biomolecular condensate in Wnt pathway regulation.
Collapse
Affiliation(s)
- Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Molinar-Inglis O, Oliver SL, Rudich P, Kunttas E, McCartney BM. APC2 associates with the actin cortex through a multipart mechanism to regulate cortical actin organization and dynamics in the Drosophila ovary. Cytoskeleton (Hoboken) 2018; 75:323-335. [PMID: 30019417 DOI: 10.1002/cm.21471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023]
Abstract
The actin cortex that lines the plasma membrane of most eukaryotic cells resists external mechanical forces and plays critical roles in a variety of cellular processes including morphogenesis, cytokinesis, and cell migration. Despite its ubiquity and significance, we understand relatively little about the composition, dynamics, and structure of the actin cortex. Adenomatous polyposis coli (APC) proteins regulate the actin and microtubule cytoskeletons through a variety of mechanisms, and in some contexts, APC proteins are cortically enriched. Here we show that APC2 regulates cortical actin dynamics in the follicular epithelium and the nurse cells of the Drosophila ovary and in addition affects the distribution of cortical actin at the apical side of the follicular epithelium. To understand how APC2 influences these properties of the actin cortex, we investigated the mechanisms controlling the cortical localization of APC2 in S2 cultured cells. We previously showed that the N-terminal half of APC2 containing the Armadillo repeats and the C-terminal 30 amino acids (C30) are together necessary and sufficient for APC2's cortical localization. Our work presented here supports a model that cortical localization of APC2 is governed in part by self-association through the N-terminal APC Self-Association Domain (ASAD) and a highly conserved coiled-coil within the C30 domain.
Collapse
Affiliation(s)
- Olivia Molinar-Inglis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Stacie L Oliver
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Paige Rudich
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Ezgi Kunttas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Juanes MA, Bouguenina H, Eskin JA, Jaiswal R, Badache A, Goode BL. Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule-induced focal adhesion turnover. J Cell Biol 2017; 216:2859-2875. [PMID: 28663347 PMCID: PMC5584174 DOI: 10.1083/jcb.201702007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/14/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Cell motility depends on tight coordination between the microtubule (MT) and actin cytoskeletons, but the mechanisms underlying this MT-actin cross talk have remained poorly understood. Here, we show that the tumor suppressor protein adenomatous polyposis coli (APC), which is a known MT-associated protein, directly nucleates actin assembly to promote directed cell migration. By changing only two residues in APC, we generated a separation-of-function mutant, APC (m4), that abolishes actin nucleation activity without affecting MT interactions. Expression of full-length APC carrying the m4 mutation (APC (m4)) rescued cellular defects in MT organization, MT dynamics, and mitochondrial distribution caused by depletion of endogenous APC but failed to restore cell migration. Wild-type APC and APC (m4) localized to focal adhesions (FAs), and APC (m4) was defective in promoting actin assembly at FAs to facilitate MT-induced FA turnover. These results provide the first direct evidence for APC-mediated actin assembly in vivo and establish a role for APC in coordinating MTs and actin at FAs to direct cell migration.
Collapse
Affiliation(s)
| | - Habib Bouguenina
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | | | - Richa Jaiswal
- Department of Biology, Brandeis University, Waltham, MA
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA
| |
Collapse
|
8
|
Szikora S, Földi I, Tóth K, Migh E, Vig A, Bugyi B, Maléth J, Hegyi P, Kaltenecker P, Sanchez-Soriano N, Mihály J. The formin DAAM is required for coordination of the actin and microtubule cytoskeleton in axonal growth cones. J Cell Sci 2017; 130:2506-2519. [PMID: 28606990 DOI: 10.1242/jcs.203455] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 01/10/2023] Open
Abstract
Directed axonal growth depends on correct coordination of the actin and microtubule cytoskeleton in the growth cone. However, despite the relatively large number of proteins implicated in actin-microtubule crosstalk, the mechanisms whereby actin polymerization is coupled to microtubule stabilization and advancement in the peripheral growth cone remained largely unclear. Here, we identified the formin Dishevelled-associated activator of morphogenesis (DAAM) as a novel factor playing a role in concerted regulation of actin and microtubule remodeling in Drosophilamelanogaster primary neurons. In vitro, DAAM binds to F-actin as well as to microtubules and has the ability to crosslink the two filament systems. Accordingly, DAAM associates with the neuronal cytoskeleton, and a significant fraction of DAAM accumulates at places where the actin filaments overlap with that of microtubules. Loss of DAAM affects growth cone and microtubule morphology, and several aspects of microtubule dynamics; and biochemical and cellular assays revealed a microtubule stabilization activity and binding to the microtubule tip protein EB1. Together, these data suggest that, besides operating as an actin assembly factor, DAAM is involved in linking actin remodeling in filopodia to microtubule stabilization during axonal growth.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - István Földi
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Krisztina Tóth
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Ede Migh
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Andrea Vig
- University of Pécs, Medical School, Department of Biophysics, Szigeti str. 12, Pécs H-7624, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Szigeti str. 12, Pécs H-7624, Hungary.,Szentágothai Research Center, Ifjúság str. 34, Pécs H-7624, Hungary
| | - József Maléth
- MTA-SZTE Translational Gastroenterology Research Group, First Department of Internal Medicine, Szeged H-6720, Hungary
| | - Péter Hegyi
- MTA-SZTE Translational Gastroenterology Research Group, First Department of Internal Medicine, Szeged H-6720, Hungary.,Institute for Translational Medicine, Department of Pathophysiology, University of Pécs, Pécs H-7624, Hungary
| | - Péter Kaltenecker
- Institute for Translational Medicine, Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Natalia Sanchez-Soriano
- Institute for Translational Medicine, Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
9
|
Functional Actin Networks under Construction: The Cooperative Action of Actin Nucleation and Elongation Factors. Trends Biochem Sci 2017; 42:414-430. [DOI: 10.1016/j.tibs.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 12/31/2022]
|
10
|
Blundon MA, Schlesinger DR, Parthasarathy A, Smith SL, Kolev HM, Vinson DA, Kunttas-Tatli E, McCartney BM, Minden JS. Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin. Development 2016; 143:2629-40. [PMID: 27287809 DOI: 10.1242/dev.130567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/31/2016] [Indexed: 01/02/2023]
Abstract
Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. Although progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called two-dimensional difference gel electrophoresis (2D-DIGE). We show that loss of Drosophila Apc2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on β-catenin transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by Apc2 loss. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of β-catenin abundance in Drosophila embryos. This study provides new perspectives on the cellular effects of APC that might lead to a deeper understanding of its role in development.
Collapse
Affiliation(s)
- Malachi A Blundon
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Danielle R Schlesinger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Amritha Parthasarathy
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samantha L Smith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hannah M Kolev
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - David A Vinson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ezgi Kunttas-Tatli
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jonathan S Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Sherlekar A, Rikhy R. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo. Mol Biol Cell 2016; 27:2064-79. [PMID: 27146115 PMCID: PMC4927280 DOI: 10.1091/mbc.e15-09-0656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/26/2016] [Indexed: 12/03/2022] Open
Abstract
F-BAR domain–containing proteins link the actin cytoskeleton to the membrane during membrane remodeling. Syndapin associates with the pseudocleavage furrow membrane and is essential for furrow morphology, actin organization, and extension downstream of initiation factor RhoGEF2. Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila. Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division.
Collapse
Affiliation(s)
- Aparna Sherlekar
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| |
Collapse
|
12
|
Cammarata GM, Bearce EA, Lowery LA. Cytoskeletal social networking in the growth cone: How +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance. Cytoskeleton (Hoboken) 2016; 73:461-76. [PMID: 26783725 DOI: 10.1002/cm.21272] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 11/08/2022]
Abstract
The growth cone is a unique structure capable of guiding axons to their proper destinations. Within the growth cone, extracellular guidance cues are interpreted and then transduced into physical changes in the actin filament (F-actin) and microtubule cytoskeletons, providing direction and movement. While both cytoskeletal networks individually possess important growth cone-specific functions, recent data over the past several years point towards a more cooperative role between the two systems. Facilitating this interaction between F-actin and microtubules, microtubule plus-end tracking proteins (+TIPs) have been shown to link the two cytoskeletons together. Evidence suggests that many +TIPs can couple microtubules to F-actin dynamics, supporting both microtubule advance and retraction in the growth cone periphery. In addition, growing in vitro and in vivo data support a secondary role for +TIPs in which they may participate as F-actin nucleators, thus directly influencing F-actin dynamics and organization. This review focuses on how +TIPs may link F-actin and microtubules together in the growth cone, and how these interactions may influence axon guidance. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Laura Anne Lowery
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.
| |
Collapse
|
13
|
Bilancia CG, Winkelman JD, Tsygankov D, Nowotarski SH, Sees JA, Comber K, Evans I, Lakhani V, Wood W, Elston TC, Kovar DR, Peifer M. Enabled negatively regulates diaphanous-driven actin dynamics in vitro and in vivo. Dev Cell 2014; 28:394-408. [PMID: 24576424 PMCID: PMC3992947 DOI: 10.1016/j.devcel.2014.01.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/20/2013] [Accepted: 01/15/2014] [Indexed: 11/03/2022]
Abstract
Actin regulators facilitate cell migration by controlling cell protrusion architecture and dynamics. As the behavior of individual actin regulators becomes clear, we must address why cells require multiple regulators with similar functions and how they cooperate to create diverse protrusions. We characterized Diaphanous (Dia) and Enabled (Ena) as a model, using complementary approaches: cell culture, biophysical analysis, and Drosophila morphogenesis. We found that Dia and Ena have distinct biochemical properties that contribute to the different protrusion morphologies each induces. Dia is a more processive, faster elongator, paralleling the long, stable filopodia it induces in vivo, while Ena promotes filopodia with more dynamic changes in number, length, and lifetime. Acting together, Ena and Dia induce protrusions distinct from those induced by either alone, with Ena reducing Dia-driven protrusion length and number. Consistent with this, EnaEVH1 binds Dia directly and inhibits DiaFH1FH2-mediated nucleation in vitro. Finally, Ena rescues hemocyte migration defects caused by activated Dia. Dia and Ena differ biochemically, promoting distinct filopodia dynamics Dia and Ena colocalization negatively regulates filopodia Ena’s EVH1 binds Dia’s FH1 and reduces Dia-driven filopodia and actin nucleation Ena rescues DiaΔDAD inhibition of hemocyte migration speed to wounds in vivo
Collapse
Affiliation(s)
- Colleen G Bilancia
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan D Winkelman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Denis Tsygankov
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie H Nowotarski
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer A Sees
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Kate Comber
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Iwan Evans
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Vinal Lakhani
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Will Wood
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Peifer
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Lash LL, Wallar BJ, Turner JD, Vroegop SM, Kilkuskie RE, Kitchen-Goosen SM, Xu HE, Alberts AS. Small-molecule intramimics of formin autoinhibition: a new strategy to target the cytoskeletal remodeling machinery in cancer cells. Cancer Res 2014; 73:6793-803. [PMID: 24242070 DOI: 10.1158/0008-5472.can-13-1593] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the cancer cell cytoskeleton is a clinically validated target, few new strategies have emerged for selectively targeting cell division by modulating the cytoskeletal structure, particularly ways that could avoid the cardiotoxic and neurotoxic effects of current agents such as taxanes. We address this gap by describing a novel class of small-molecule agonists of the mammalian Diaphanous (mDia)-related formins, which act downstream of Rho GTPases to assemble actin filaments, and their organization with microfilaments to establish and maintain cell polarity during migration and asymmetric division. GTP-bound Rho activates mDia family members by disrupting the interaction between the DID and DAD autoregulatory domains, which releases the FH2 domain to modulate actin and microtubule dynamics. In screening for DID-DAD disruptors that activate mDia, we identified two molecules called intramimics (IMM-01 and -02) that were sufficient to trigger actin assembly and microtubule stabilization, serum response factor-mediated gene expression, cell-cycle arrest, and apoptosis. In vivo analysis of IMM-01 and -02 established their ability to slow tumor growth in a mouse xenograft model of colon cancer. Taken together, our work establishes the use of intramimics and mDia-related formins as a new general strategy for therapeutic targeting of the cytoskeletal remodeling machinery of cancer cells.
Collapse
Affiliation(s)
- L Leanne Lash
- Authors' Affiliations: Laboratories of Cell Structure and Signal Integration and Structural Sciences, Van Andel Research Institute; Grand Valley State University, Grand Rapids; and Michigan High Throughput Screening Center, Kalamazoo, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bogdan S, Schultz J, Grosshans J. Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics. Commun Integr Biol 2014; 6:e27634. [PMID: 24719676 PMCID: PMC3977921 DOI: 10.4161/cib.27634] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation.
Collapse
Affiliation(s)
- Sven Bogdan
- Institut für Neurobiologie; Universität Münster; Münster, Germany
| | - Jörg Schultz
- Bioinformatik, Biozentrum; Universität Würzburg; Würzburg, Germany
| | - Jörg Grosshans
- Institut für Biochemie; Universitätsmedizin; Universität Göttingen; Göttingen, Germany
| |
Collapse
|