1
|
Izaguirre G, Phan LMU, Asif S, Alam S, Meyers C, Rong L. Diversity in Proprotein Convertase Reactivity among Human Papillomavirus Types. Viruses 2023; 16:39. [PMID: 38257739 PMCID: PMC10820984 DOI: 10.3390/v16010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The cleavage of viral surface proteins by furin is associated with some viruses' high virulence and infectivity. The human papillomavirus (HPV) requires the proteolytic processing of its capsid proteins for activation before entry. Variability in reactivity with furin and other proprotein convertases (PCs) among HPV types was investigated. HPV16, the most prevalent and carcinogenic HPV type, reacted with PCs with the broadest selectivity compared to other types in reactions of pseudoviral particles with the recombinant PCs, furin, PC4, PC5, PACE4, and PC7. Proteolytic preactivation was assessed using a well-established entry assay into PC-inhibited cells based on the green fluorescent protein as a reporter. The inhibition of the target cell PC activity with serpin-based PC-selective inhibitors also showed a diversity of PC selectivity among HPV types. HPV16 reacted with furin at the highest rate compared to the other types in time-dependent preactivation reactions and produced the highest entry values standardized to pseudoviral particle concentration. The predominant expression of furin in keratinocytes and the high reactivity of HPV16 with this enzyme highlight the importance of selectively targeting furin as a potential antiviral therapeutic approach.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lam Minh Uyen Phan
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Shaan Asif
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Samina Alam
- Departments of Microbiology and Immunology, College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Craig Meyers
- Departments of Microbiology and Immunology, College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Lijun Rong
- Departments of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Reactive Centre Loop Mutagenesis of SerpinB3 to Target TMPRSS2 and Furin: Inhibition of SARS-CoV-2 Cell Entry and Replication. Int J Mol Sci 2022; 23:ijms232012522. [PMID: 36293378 PMCID: PMC9604144 DOI: 10.3390/ijms232012522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 virus can utilize host cell proteases to facilitate cell entry, whereby the Spike (S) protein is cleaved at two specific sites to enable membrane fusion. Furin, transmembrane protease serine 2 (TMPRSS2), and cathepsin L (CatL) are the major proteases implicated, and are thus targets for anti-viral therapy. The human serpin (serine protease inhibitor) alpha-1 antitrypsin (A1AT) shows inhibitory activity for TMPRSS2, and has previously been found to suppress cell infection with SARS-CoV-2. Here, we have generated modified serpin inhibitors with increased specificity for these cellular proteases. Using SerpinB3 (SCCA-1), a cross-class inhibitor of CatL, as a scaffold, we have designed and produced reactive centre loop (RCL) variants to more specifically target both furin and TMPRSS2. Two further variants were generated by substituting the RCL P7–P1 with the spike protein S1/S2 cleavage site from either SARS-CoV-2 alpha or delta (P681R) sequences. Altered inhibitory specificity of purified recombinant proteins was verified in protease assays, with attenuated CatL inhibition and gain of furin or TMPRSS2 inhibition, as predicted, and modified serpins were shown to block S protein cleavage in vitro. Furthermore, the serpin variants were able to inhibit S-pseudoparticle entry into A549-ACE2-TMPRSS2 cells and suppress SARS-CoV-2 replication in Vero E6 cells expressing TMPRSS2. The construct designed to inhibit TMPRSS2 (B3-TMP) was most potent. It was more effective than A1AT for TMPRSS2 enzyme inhibition (with an eighteen-fold improvement in the second order inhibition rate constant) and for blocking SARS-CoV-2 viral replication. These findings advance the potential for serpin RCL mutagenesis to generate new inhibitors, and may lead to novel anti-viral biological molecules.
Collapse
|
3
|
Scott BM, Sheffield WP. Engineering the serpin α 1 -antitrypsin: A diversity of goals and techniques. Protein Sci 2019; 29:856-871. [PMID: 31774589 DOI: 10.1002/pro.3794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
α1 -Antitrypsin (α1 -AT) serves as an archetypal example for the serine proteinase inhibitor (serpin) protein family and has been used as a scaffold for protein engineering for >35 years. Techniques used to engineer α1 -AT include targeted mutagenesis, protein fusions, phage display, glycoengineering, and consensus protein design. The goals of engineering have also been diverse, ranging from understanding serpin structure-function relationships, to the design of more potent or more specific proteinase inhibitors with potential therapeutic relevance. Here we summarize the history of these protein engineering efforts, describing the techniques applied to engineer α1 -AT, specific mutants of interest, and providing an appended catalog of the >200 α1 -AT mutants published to date.
Collapse
Affiliation(s)
- Benjamin M Scott
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.,Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - William P Sheffield
- Canadian Blood Services, Centre for Innovation, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Izaguirre G. The Proteolytic Regulation of Virus Cell Entry by Furin and Other Proprotein Convertases. Viruses 2019; 11:v11090837. [PMID: 31505793 PMCID: PMC6784293 DOI: 10.3390/v11090837] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
A wide variety of viruses exploit furin and other proprotein convertases (PCs) of the constitutive protein secretion pathway in order to regulate their cell entry mechanism and infectivity. Surface proteins of enveloped, as well as non-enveloped, viruses become processed by these proteases intracellularly during morphogenesis or extracellularly after egress and during entry in order to produce mature virions activated for infection. Although viruses also take advantage of other proteases, it is when some viruses become reactive with PCs that they may develop high pathogenicity. Besides reacting with furin, some viruses may also react with the PCs of the other specificity group constituted by PC4/PC5/PACE4/PC7. The targeting of PCs for inhibition may result in a useful strategy to treat infections with some highly pathogenic viruses. A wide variety of PC inhibitors have been developed and tested for their antiviral activity in cell-based assays.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Chmelař J, Kotál J, Kovaříková A, Kotsyfakis M. The Use of Tick Salivary Proteins as Novel Therapeutics. Front Physiol 2019; 10:812. [PMID: 31297067 PMCID: PMC6607933 DOI: 10.3389/fphys.2019.00812] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
The last three decades of research into tick salivary components have revealed several proteins with important pharmacological and immunological activities. Two primary interests have driven research into tick salivary secretions: the search for suitable pathogen transmission blocking or “anti-tick” vaccine candidates and the search for novel therapeutics derived from tick salivary components. Intensive basic research in the field of tick salivary gland transcriptomics and proteomics has identified several major protein families that play important roles in tick feeding and overcoming vertebrate anti-tick responses. Moreover, these families contain members with unrealized therapeutic potential. Here we review the major tick salivary protein families exploitable in medical applications such as immunomodulation, inhibition of hemostasis and inflammation. Moreover, we discuss the potential, opportunities, and challenges in searching for novel tick-derived drugs.
Collapse
Affiliation(s)
- Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.,Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, České Budějovice, Czechia
| | - Anna Kovaříková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.,Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, České Budějovice, Czechia
| |
Collapse
|
6
|
Izaguirre G, Arciniega M, Quezada AG. Specific and Selective Inhibitors of Proprotein Convertases Engineered by Transferring Serpin B8 Reactive-Site and Exosite Determinants of Reactivity to the Serpin α1PDX. Biochemistry 2019; 58:1679-1688. [PMID: 30848586 DOI: 10.1021/acs.biochem.8b01295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The molecular determinants of substrate specificity and selectivity in the proprotein convertase (PC) family of proteases are poorly understood. Here we demonstrate that the natural serpin family inhibitor, serpin B8, is a specific and selective inhibitor of furin relative to the other PCs of the constitutive protein secretion pathway, PC4, PC5, PACE4, and PC7 (PC4-PC7, respectively), and identify reactive-site (P6-P5' residues) and exosite elements of the serpin that contribute to this specificity and selectivity through studies of chimeras of serpin B8 and α1PDX, an engineered serpin inhibitor of furin. Kinetic studies revealed that the specificity and selectivity of the serpin chimeras for inhibiting PCs were determined by P6-P5 and P3-P2 residue-dependent recognition of the P4Arg-X-X-P1Arg PC consensus sequence and exosite-dependent recognition of the reactive loop P2' residue of the chimeras by the PCs. Both productive and nonproductive binding of the chimeras to PC4-PC7 but not to furin contributed to a decreased specificity for inhibiting PC4-PC7 and an increased selectivity for inhibiting furin. Molecular dynamics simulations suggested that nonproductive binding of the chimeras to the PCs was correlated with a greater conformational variability of the catalytic sites of PC4-PC7 relative to that of furin. Our findings suggest a new approach for designing selective inhibitors of PCs using α1PDX as a scaffold, as evidenced by our ability to engineer highly specific and selective inhibitors of furin and PC4-PC7.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- Department of Periodontics, College of Dentistry , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Marcelino Arciniega
- Department of Biochemistry and Structural Biology, Institute of Cellular Physiology , National Autonomous University of Mexico , Mexico City 04510 , Mexico
| | - Andrea G Quezada
- Department of Biochemistry and Structural Biology, Institute of Cellular Physiology , National Autonomous University of Mexico , Mexico City 04510 , Mexico
| |
Collapse
|
7
|
Voegeli R, Monneuse JM, Schoop R, Summers B, Rawlings AV. The effect of photodamage on the female Caucasian facial stratum corneum corneome using mass spectrometry-based proteomics. Int J Cosmet Sci 2017; 39:637-652. [PMID: 28865110 DOI: 10.1111/ics.12426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The effect of photodamage on facial stratum corneum (SC) is still poorly understood. OBJECTIVE To describe the SC proteome from tape strippings of Caucasian SC from photoexposed cheek and photoprotected post-auricular (PA) site, a global analysis of photodamage on the skin will be developed leading to a better understanding of keratinocyte signalling pathways and identification of new molecular targets for the treatment of photoaged skin. METHODS Female Caucasian subjects had nine consecutive tape strippings taken from their cheeks and PA site. Proteins were extracted and the trypsin-digested peptides were analysed by nanochromatography coupled to a high-resolution mass spectrometer. Data-dependent acquisition allowed protein identification that was processed by Paragon algorithm of Protein Pilot software. RESULTS Changes in the levels of epidermal differentiation proteins were apparent indicating poor epidermal differentiation and SC maturation (keratins, cornified envelope (CE) proteins) on photoexposed cheeks. Differences in protease-anti-protease balance were observed for corneodesmolysis (favouring desquamation) and filaggrinolysis (favouring reduced filaggrin processing). 12R-LOX, a CE maturation enzyme, was reduced in photodamaged skin but not transglutaminases. Changes in signal keratinocyte transduction pathway markers were demonstrated especially by reduced levels of downstream signalling markers such as calreticulin (unfolded protein response; UPR) and increased level of stratifin (target of rapamycin; mTOR). Evidence for impaired proteostasis was apparent by reduced levels of a key proteasomal subunit (subunit beta type-6). Finally, key antioxidant proteins were upregulated except catalase. CONCLUSION Clear examples of poor keratinocyte differentiation and associated metabolic and signalling pathways together with reduced SC maturation were identified in photodamaged facial SC. Corneocyte immaturity was evident with changes in CE proteins. Particularly, the reduction in 12R-LOX is a novel finding in photodamaged skin and supports the lack of SC maturation. Moreover, filaggrinolysis was reduced, whereas corneodesmolysis was enhanced. From our results, we propose that there is a poor cross-talk between the keratinocyte endoplasmic reticulum UPR, proteasome network and autophagy machinery that possibly leads to impaired keratinocyte proteostasis. Superimposed on these aberrations is an apparently enhanced mTOR pathway that also contributes to reduced SC formation and maturation. Our results clearly indicate a corneocyte scaffold disorder in photodamaged cheek SC.
Collapse
Affiliation(s)
- R Voegeli
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - J-M Monneuse
- Phylogene S.A., 62, Route Nationale 113, 30620, Bernis, France
| | - R Schoop
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - B Summers
- Photobiology Laboratory, Sefako Makgatho Health Sciences University, Molotlegi St, Medunsa 0204, Pretoria, South Africa
| | - A V Rawlings
- AVR Consulting Ltd., 26 Shavington Way, Northwich, Cheshire CW9 8FH, UK
| |
Collapse
|