1
|
Kłopotowski K, Czyżewska MM, Mozrzymas JW. Glycine substitution of α1F64 residue at the loop D of GABA A receptor impairs gating - Implications for importance of binding site-channel gate linker rigidity. Biochem Pharmacol 2021; 192:114668. [PMID: 34216603 DOI: 10.1016/j.bcp.2021.114668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022]
Abstract
GABAA receptors (GABAARs) play a crucial role in mediating inhibition in adult mammalian brains. In the recent years, an impressive progress in revealing the static structure of GABAARs was achieved but the molecular mechanisms underlying their conformational transitions remain elusive. Phenylalanine 64 (α1F64) is located at the loop D of the orthosteric binding site of GABAAR and was found to directly interact with GABA molecule. Mutations of α1F64 were demonstrated to affect not only binding but also some gating properties. Loop D is a rigid β strand which seems to be particularly suitable to convey activatory signaling from the ligand binding site (LBS) to the gate at the channel pore. To test this scenario, we have investigated the substitution of α1F64 with glycine, the smallest amino acid, widely recognized as a rigidity "reducer" of protein structures. To this end, we assessed the impact of the α1F64G mutation in the α1β2γ2L type of GABAARs on gating properties by analyzing both macroscopic responses to rapid agonist applications and single-channel currents. We found that this substitution dramatically altered all gating features of the receptor (opening/closing, preactivation and desensitization) which contrasts with markedly weaker effects of previously considered substitutions (α1F64L and α1F64A). In particular, α1F64G mutation practically abolished the desensitization process. At the same time, the α1F64G mutant maintained gating integrity manifested as single-channel activity in the form of clusters. We conclude that rigidity of the loop D plays a crucial role in conveying the activation signal from the LBS to the channel gate.
Collapse
Affiliation(s)
- Karol Kłopotowski
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chalubinskiego 3A, Wroclaw, Dolnośląskie PL 50-368, +48 71 784 15 51, Poland.
| | - Marta M Czyżewska
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chalubinskiego 3A, Wroclaw, Dolnośląskie PL 50-368, +48 71 784 15 51, Poland
| | - Jerzy W Mozrzymas
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chalubinskiego 3A, Wroclaw, Dolnośląskie PL 50-368, +48 71 784 15 51, Poland.
| |
Collapse
|
2
|
Marques F, Saro G, Lia AS, Poole RJ, Falquet L, Glauser DA. Identification of avoidance genes through neural pathway-specific forward optogenetics. PLoS Genet 2019; 15:e1008509. [PMID: 31891575 PMCID: PMC6938339 DOI: 10.1371/journal.pgen.1008509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022] Open
Abstract
Understanding how the nervous system bridges sensation and behavior requires the elucidation of complex neural and molecular networks. Forward genetic approaches, such as screens conducted in C. elegans, have successfully identified genes required to process natural sensory stimuli. However, functional redundancy within the underlying neural circuits, which are often organized with multiple parallel neural pathways, limits our ability to identify 'neural pathway-specific genes', i.e. genes that are essential for the function of some, but not all of these redundant neural pathways. To overcome this limitation, we developed a 'forward optogenetics' screening strategy in which natural stimuli are initially replaced by the selective optogenetic activation of a specific neural pathway. We used this strategy to address the function of the polymodal FLP nociceptors mediating avoidance of noxious thermal and mechanical stimuli. According to our expectations, we identified both mutations in 'general' avoidance genes that broadly impact avoidance responses to a variety of natural noxious stimuli (unc-4, unc-83, and eat-4) and mutations that produce a narrower impact, more restricted to the FLP pathway (syd-2, unc-14 and unc-68). Through a detailed follow-up analysis, we further showed that the Ryanodine receptor UNC-68 acts cell-autonomously in FLP to adjust heat-evoked calcium signals and aversive behaviors. As a whole, our work (i) reveals the importance of properly regulated ER calcium release for FLP function, (ii) provides new entry points for new nociception research and (iii) demonstrates the utility of our forward optogenetic strategy, which can easily be transposed to analyze other neural pathways.
Collapse
Affiliation(s)
- Filipe Marques
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gabriella Saro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Andrei-Stefan Lia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Richard J. Poole
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | | |
Collapse
|
3
|
|
4
|
Xu L, Mowrey DD, Chirasani VR, Wang Y, Pasek DA, Dokholyan NV, Meissner G. G4941K substitution in the pore-lining S6 helix of the skeletal muscle ryanodine receptor increases RyR1 sensitivity to cytosolic and luminal Ca 2. J Biol Chem 2017; 293:2015-2028. [PMID: 29255089 DOI: 10.1074/jbc.m117.803247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/18/2017] [Indexed: 11/06/2022] Open
Abstract
The ryanodine receptor ion channel RyR1 is present in skeletal muscle and has a large cytoplasmic N-terminal domain and smaller C-terminal pore-forming domain comprising six transmembrane helices, a pore helix, and a selectivity filter. The RyR1 S6 pore-lining helix has two conserved glycines, Gly-4934 and Gly-4941, that facilitate RyR1 channel gating by providing S6 flexibility and minimizing amino acid clashes. Here, we report that substitution of Gly-4941 with Asp or Lys results in functional channels as indicated by caffeine-induced Ca2+ release response in HEK293 cells, whereas a low response of the corresponding Gly-4934 variants suggested loss of function. Following purification, the RyR1 mutants G4934D, G4934K, and G4941D did not noticeably conduct Ca2+ in single-channel measurements. Gly-4941 replacement with Lys resulted in channels having reduced K+ conductance and reduced selectivity for Ca2+ compared with wildtype. RyR1-G4941K did not fully close at nanomolar cytosolic Ca2+ concentrations and nearly fully opened at 2 μm cytosolic or sarcoplasmic reticulum luminal Ca2+, and Ca2+- and voltage-dependent regulation of RyR1-G4941K mutant channels was demonstrated. Computational methods and single-channel recordings indicated that the open G4941K variant results in the formation of a salt bridge to Asp-4938. In contrast, wildtype RyR1 was closed and not activated by luminal Ca2+ at low cytosolic Ca2+ levels. A model suggested that luminal Ca2+ activates RyR1 by accessing a recently identified cytosolic Ca2+-binding site in the open channel as the Ca2+ ions pass through the pore.
Collapse
Affiliation(s)
- Le Xu
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David D Mowrey
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Venkat R Chirasani
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ying Wang
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel A Pasek
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nikolay V Dokholyan
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gerhard Meissner
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
5
|
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol 2017; 149:1065-1089. [PMID: 29122978 PMCID: PMC5715910 DOI: 10.1085/jgp.201711878] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/12/2017] [Indexed: 01/25/2023] Open
Abstract
Large-conductance Ca2+ release channels known as ryanodine receptors (RyRs) mediate the release of Ca2+ from an intracellular membrane compartment, the endo/sarcoplasmic reticulum. There are three mammalian RyR isoforms: RyR1 is present in skeletal muscle; RyR2 is in heart muscle; and RyR3 is expressed at low levels in many tissues including brain, smooth muscle, and slow-twitch skeletal muscle. RyRs form large protein complexes comprising four 560-kD RyR subunits, four ∼12-kD FK506-binding proteins, and various accessory proteins including calmodulin, protein kinases, and protein phosphatases. RyRs share ∼70% sequence identity, with the greatest sequence similarity in the C-terminal region that forms the transmembrane, ion-conducting domain comprising ∼500 amino acids. The remaining ∼4,500 amino acids form the large regulatory cytoplasmic "foot" structure. Experimental evidence for Ca2+, ATP, phosphorylation, and redox-sensitive sites in the cytoplasmic structure have been described. Exogenous effectors include the two Ca2+ releasing agents caffeine and ryanodine. Recent work describing the near atomic structures of mammalian skeletal and cardiac muscle RyRs provides a structural basis for the regulation of the RyRs by their multiple effectors.
Collapse
Affiliation(s)
- Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
6
|
Benchmarking density functionals and Gaussian basis sets for calculation of core-electron binding energies in amino acids. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2115-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Wei R, Wang X, Zhang Y, Mukherjee S, Zhang L, Chen Q, Huang X, Jing S, Liu C, Li S, Wang G, Xu Y, Zhu S, Williams AJ, Sun F, Yin CC. Structural insights into Ca(2+)-activated long-range allosteric channel gating of RyR1. Cell Res 2016; 26:977-94. [PMID: 27573175 PMCID: PMC5034117 DOI: 10.1038/cr.2016.99] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 07/31/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022] Open
Abstract
Ryanodine receptors (RyRs) are a class of giant ion channels with molecular mass over 2.2 mega-Daltons. These channels mediate calcium signaling in a variety of cells. Since more than 80% of the RyR protein is folded into the cytoplasmic assembly and the remaining residues form the transmembrane domain, it has been hypothesized that the activation and regulation of RyR channels occur through an as yet uncharacterized long-range allosteric mechanism. Here we report the characterization of a Ca2+-activated open-state RyR1 structure by cryo-electron microscopy. The structure has an overall resolution of 4.9 Å and a resolution of 4.2 Å for the core region. In comparison with the previously determined apo/closed-state structure, we observed long-range allosteric gating of the channel upon Ca2+ activation. In-depth structural analyses elucidated a novel channel-gating mechanism and a novel ion selectivity mechanism of RyR1. Our work not only provides structural insights into the molecular mechanisms of channel gating and regulation of RyRs, but also sheds light on structural basis for channel-gating and ion selectivity mechanisms for the six-transmembrane-helix cation channel family.
Collapse
Affiliation(s)
- Risheng Wei
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Xue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Saptarshi Mukherjee
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Lei Zhang
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China.,Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing 100191, China
| | - Qiang Chen
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Xinrui Huang
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Shan Jing
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Congcong Liu
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Shuang Li
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Guangyu Wang
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Yaofang Xu
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Sujie Zhu
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
| | - Alan J Williams
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Cheng Yin
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China.,Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing 100191, China.,Center for Protein Science, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Kuhlmann N, Wroblowski S, Knyphausen P, de Boor S, Brenig J, Zienert AY, Meyer-Teschendorf K, Praefcke GJK, Nolte H, Krüger M, Schacherl M, Baumann U, James LC, Chin JW, Lammers M. Structural and Mechanistic Insights into the Regulation of the Fundamental Rho Regulator RhoGDIα by Lysine Acetylation. J Biol Chem 2015; 291:5484-5499. [PMID: 26719334 DOI: 10.1074/jbc.m115.707091] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Indexed: 11/06/2022] Open
Abstract
Rho proteins are small GTP/GDP-binding proteins primarily involved in cytoskeleton regulation. Their GTP/GDP cycle is often tightly connected to a membrane/cytosol cycle regulated by the Rho guanine nucleotide dissociation inhibitor α (RhoGDIα). RhoGDIα has been regarded as a housekeeping regulator essential to control homeostasis of Rho proteins. Recent proteomic screens showed that RhoGDIα is extensively lysine-acetylated. Here, we present the first comprehensive structural and mechanistic study to show how RhoGDIα function is regulated by lysine acetylation. We discover that lysine acetylation impairs Rho protein binding and increases guanine nucleotide exchange factor-catalyzed nucleotide exchange on RhoA, these two functions being prerequisites to constitute a bona fide GDI displacement factor. RhoGDIα acetylation interferes with Rho signaling, resulting in alteration of cellular filamentous actin. Finally, we discover that RhoGDIα is endogenously acetylated in mammalian cells, and we identify CBP, p300, and pCAF as RhoGDIα-acetyltransferases and Sirt2 and HDAC6 as specific deacetylases, showing the biological significance of this post-translational modification.
Collapse
Affiliation(s)
- Nora Kuhlmann
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany
| | - Sarah Wroblowski
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany
| | - Philipp Knyphausen
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany
| | - Susanne de Boor
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany
| | - Julian Brenig
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany
| | - Anke Y Zienert
- the Institute for Genetics, Zülpicher Strasse 47a, University of Cologne, 50674 Cologne, Germany
| | - Katrin Meyer-Teschendorf
- the Institute for Genetics, Zülpicher Strasse 47a, University of Cologne, 50674 Cologne, Germany
| | - Gerrit J K Praefcke
- the Institute for Genetics, Zülpicher Strasse 47a, University of Cologne, 50674 Cologne, Germany,; the Paul-Ehrlich-Institute, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany, and
| | - Hendrik Nolte
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany
| | - Marcus Krüger
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany
| | - Magdalena Schacherl
- the Institute for Biochemistry, Zülpicher Strasse 47, University of Cologne, 50674 Cologne, Germany
| | - Ulrich Baumann
- the Institute for Biochemistry, Zülpicher Strasse 47, University of Cologne, 50674 Cologne, Germany
| | - Leo C James
- the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Jason W Chin
- the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Michael Lammers
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany,.
| |
Collapse
|
9
|
Mei Y, Xu L, Mowrey DD, Mendez Giraldez R, Wang Y, Pasek DA, Dokholyan NV, Meissner G. Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor. J Biol Chem 2015; 290:17535-45. [PMID: 25998124 DOI: 10.1074/jbc.m115.659672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 02/04/2023] Open
Abstract
Type 1 ryanodine receptors (RyR1s) release Ca(2+) from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca(2+) release response in HEK293 cells and bound the RyR-specific ligand [(3)H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K(+) conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca(2+) release in HEK293 cells, low [(3)H]ryanodine binding levels, and channels that were not regulated by Ca(2+) and did not conduct Ca(2+) in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes.
Collapse
Affiliation(s)
- Yingwu Mei
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Le Xu
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David D Mowrey
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Raul Mendez Giraldez
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ying Wang
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel A Pasek
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nikolay V Dokholyan
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gerhard Meissner
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
10
|
Tolbatov I, Chipman DM. Comparative study of Gaussian basis sets for calculation of core electron binding energies in first-row hydrides and glycine. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1560-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Tolbatov I, Chipman DM. Performance of density functionals for computation of core electron binding energies in first-row hydrides and glycine. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1473-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|