1
|
Maksudov F, Protopopova AD, Litvinov RI, Marx KA, Weisel JW, Barsegov V. Structural Mechanisms of Forced Unfolding of Double-Stranded Fibrin Oligomers. J Phys Chem B 2025; 129:3963-3977. [PMID: 40227118 PMCID: PMC12035854 DOI: 10.1021/acs.jpcb.5c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Fibrin forms a polymeric scaffold of blood clots, which are subjected to deformation in their dynamic environment. The extensible fibrin network allows fibers to stretch without breaking, but the mechanisms of their forced elongation are not understood. We combined atomic force microscopy, computer simulations, and Machine Learning to explore the nanomechanics of double-stranded cross-linked fibrin oligomers (FO). From the experimental force-extension profiles, the median 63 pN unfolding force and median 8.1 nm peak-to-peak distance with corresponding 56 pN and 11.4 nm interquartile ranges indicate substantial scatter due to ∼3-5 nm extension fluctuation of the triple α-helical coiled-coils. From simulations, unraveling of FO is determined by coupled dissociation of the D:D interface, γ-nodules unfolding, and reversible unfolding-refolding of the coiled-coils. These can occur as single structural transitions (60% of the time) or mixed transitions (40% of the time), with an alternating order of strands in which unfolding transitions occur, i.e., if the previous transition takes place in one strand, the next transition occurs in the other strand. The double-stranded FO are less extensible but stiffer and more stable compared with the single-stranded oligomers. These findings provide important insights into the biomechanics and dynamic structural properties of fibrin necessary to understand the (sub)molecular origin of fibrin extensibility.
Collapse
Affiliation(s)
- Farkhad Maksudov
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Anna D. Protopopova
- Department
of Cell and Developmental Biology, University
of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Rustem I. Litvinov
- Department
of Cell and Developmental Biology, University
of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Kenneth A. Marx
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - John W. Weisel
- Department
of Cell and Developmental Biology, University
of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Valeri Barsegov
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| |
Collapse
|
2
|
Güven B, Can M. Fibrinogen: Structure, abnormalities and laboratory assays. Adv Clin Chem 2024; 120:117-143. [PMID: 38762239 DOI: 10.1016/bs.acc.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Fibrinogen is the primary precursor protein for the fibrin clot, which is the final target of blood clotting. It is also an acute phase reactant that can vary under physiologic and inflammatory conditions. Disorders in fibrinogen concentration and/or function have been variably linked to the risk of bleeding and/or thrombosis. Fibrinogen assays are commonly used in the management of bleeding as well as the treatment of thrombosis. This chapter examines the structure of fibrinogen, its role in hemostasis as well as in bleeding abnormalities and measurement thereof with respect to clinical management.
Collapse
Affiliation(s)
- Berrak Güven
- Department of Clinical Biochemistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey.
| | - Murat Can
- Department of Clinical Biochemistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
3
|
Regenberg MC, Wilhelmi M, Hilfiker A, Haverich A, Aper T. Development, comparative structural analysis, and first in vivo evaluation of acellular implanted highly compacted fibrin tubes for arterial bypass grafting. J Mech Behav Biomed Mater 2023; 148:106199. [PMID: 37922760 DOI: 10.1016/j.jmbbm.2023.106199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
The generation of small-caliber vascular grafts remains a significant challenge within the field of tissue engineering. In pursuit of this objective, fibrin has emerged as a promising scaffold material. However, its lack of biomechanical strength has limited its utility in the construction of tissue engineered vascular grafts. We have previously reported about the implementation of centrifugal casting molding to generate compacted fibrin tubes with a highly increased biomechanical strength. In this study, we conducted a structural analysis of compacted fibrin tubes using the open-source software Fiji/BoneJ. The primary aim was to validate the hypothesis that the compaction of fibrin leads to a more complex structure characterized by increased crosslinking of fibrin fibers. Structural analysis revealed a strong correlation between fibrin's structure and its biomechanical strength. Moreover, we enhanced fibrin compaction in a subsequent dehydration process, leading to a significant increase of biomechanical strength. Thus, the presented method in combination with an adequate imaging, e.g., micro-CT, has substantial potential as a powerful tool for quality assurance in the development of fibrin-based vascular grafts. To validate this concept, acellular highly compacted fibrin tubes were implanted as substitutes of a segment of the carotid artery in a sheep model (n = 4). After 6 months explanted segments exhibited distinct remodeling, transitioning into newly formed arteries.
Collapse
Affiliation(s)
- Marie-Claire Regenberg
- Department for Cardiothoracic-, Transplantation and Vascular Surgery, Division for Vascular and Endovascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany; Department for Vascular and Endovascular Surgery, St. Bernward Hospital, Hildesheim, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Medical School Hannover, Hannover, Germany
| | - Axel Haverich
- Department for Cardiothoracic-, Transplantation and Vascular Surgery, Division for Vascular and Endovascular Surgery, Hannover Medical School, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Thomas Aper
- Department for Cardiothoracic-, Transplantation and Vascular Surgery, Division for Vascular and Endovascular Surgery, Hannover Medical School, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.
| |
Collapse
|
4
|
Fibrin protofibril packing and clot stability are enhanced by extended knob-hole interactions and catch-slip bonds. Blood Adv 2022; 6:4015-4027. [PMID: 35561308 PMCID: PMC9278297 DOI: 10.1182/bloodadvances.2022006977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Fibrin polymerization involves thrombin-mediated exposure of knobs on one monomer that bind to holes available on another, leading to the formation of fibers. In silico evidence has suggested that the classical A:a knob-hole interaction is enhanced by surrounding residues not directly involved in the binding pocket of hole a, via noncovalent interactions with knob A. We assessed the importance of extended knob-hole interactions by performing biochemical, biophysical, and in silico modeling studies on recombinant human fibrinogen variants with mutations at residues responsible for the extended interactions. Three single fibrinogen variants, γD297N, γE323Q, and γK356Q, and a triple variant γDEK (γD297N/γE323Q/γK356Q) were produced in a CHO (Chinese Hamster Ovary) cell expression system. Longitudinal protofibril growth probed by atomic force microscopy was disrupted for γD297N and enhanced for the γK356Q mutation. Initial polymerization rates were reduced for all variants in turbidimetric studies. Laser scanning confocal microscopy showed that γDEK and γE323Q produced denser clots, whereas γD297N and γK356Q were similar to wild type. Scanning electron microscopy and light scattering studies showed that fiber thickness and protofibril packing of the fibers were reduced for all variants. Clot viscoelastic analysis showed that only γDEK was more readily deformable. In silico modeling suggested that most variants displayed only slip-bond dissociation kinetics compared with biphasic catch-slip kinetics characteristics of wild type. These data provide new evidence for the role of extended interactions in supporting the classical knob-hole bonds involving catch-slip behavior in fibrin formation, clot structure, and clot mechanics.
Collapse
|
5
|
Acquasaliente L, Pontarollo G, Radu CM, Peterle D, Artusi I, Pagotto A, Uliana F, Negro A, Simioni P, De Filippis V. Exogenous human α-Synuclein acts in vitro as a mild platelet antiaggregant inhibiting α-thrombin-induced platelet activation. Sci Rep 2022; 12:9880. [PMID: 35701444 PMCID: PMC9198058 DOI: 10.1038/s41598-022-12886-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
α-Synuclein (αSyn) is a small disordered protein, highly conserved in vertebrates and involved in the pathogenesis of Parkinson’s disease (PD). Indeed, αSyn amyloid aggregates are present in the brain of patients with PD. Although the pathogenic role of αSyn is widely accepted, the physiological function of this protein remains elusive. Beyond the central nervous system, αSyn is expressed in hematopoietic tissue and blood, where platelets are a major cellular host of αSyn. Platelets play a key role in hemostasis and are potently activated by thrombin (αT) through the cleavage of protease-activated receptors. Furthermore, both αT and αSyn could be found in the same spatial environment, i.e. the platelet membrane, as αT binds to and activates platelets that can release αSyn from α-granules and microvesicles. Here, we investigated the possibility that exogenous αSyn could interfere with platelet activation induced by different agonists in vitro. Data obtained from distinct experimental techniques (i.e. multiple electrode aggregometry, rotational thromboelastometry, immunofluorescence microscopy, surface plasmon resonance, and steady-state fluorescence spectroscopy) on whole blood and platelet-rich plasma indicate that exogenous αSyn has mild platelet antiaggregating properties in vitro, acting as a negative regulator of αT-mediated platelet activation by preferentially inhibiting P-selectin expression on platelet surface. We have also shown that both exogenous and endogenous (i.e. cytoplasmic) αSyn preferentially bind to the outer surface of activated platelets. Starting from these findings, a coherent model of the antiplatelet function of αSyn is proposed.
Collapse
Affiliation(s)
- Laura Acquasaliente
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy
| | - Giulia Pontarollo
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy.,Center for Thrombosis and Hemostasis (CTH) University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Claudia Maria Radu
- Department of Women's & Children's Health, University of Padua, Padua, Italy.,Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, University of Padua, via Giustiniani, 2, 35128, Padua, Italy
| | - Daniele Peterle
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy.,Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave. 02115, Boston, MA, USA
| | - Ilaria Artusi
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy
| | - Anna Pagotto
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy
| | - Federico Uliana
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy.,Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padua, viale G. Colombo 3, 35100, Padua, Italy.
| | - Paolo Simioni
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, University of Padua, via Giustiniani, 2, 35128, Padua, Italy.
| | - Vincenzo De Filippis
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy. .,Biotechnology Center, CRIBI, University of Padua, Padua, Italy.
| |
Collapse
|
6
|
Jiang S, Liu S, Lau S, Li J. Hemostatic biomaterials to halt non-compressible hemorrhage. J Mater Chem B 2022; 10:7239-7259. [DOI: 10.1039/d2tb00546h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-compressible hemorrhage is an unmet clinical challenge, which occurs in inaccessible sites in the body where compression cannot be applied to stop bleeding. Current treatments reliant on blood transfusion are...
Collapse
|
7
|
Mathematical models of fibrin polymerization: past, present, and future. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Patel KB, Kononova O, Cai S, Barsegov V, Parmar VS, Kumar R, Singh BR. Botulinum neurotoxin inhibitor binding dynamics and kinetics relevant for drug design. Biochim Biophys Acta Gen Subj 2021; 1865:129933. [PMID: 34023445 DOI: 10.1016/j.bbagen.2021.129933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND A natural product analog, 3-(4-nitrophenyl)-7H-furo[3,2-g]chromen-7-one, which is a nitrophenyl psoralen (NPP) was found to be an effective inhibitor of botulinum neurotoxin type A (BoNT/A). METHODS In this work, we performed enzyme inhibition kinetics and employed biochemical techniques such as isothermal calorimetry (ITC) and fluorescence spectroscopy as well as molecular modeling to examine the kinetics and binding mechanism of NPP inhibitor with BoNT/A LC. RESULTS Studies of inhibition mechanism and binding dynamics of NPP to BoNT/A light chain (BoNT/A LC) showed that NPP is a mixed type inhibitor for the zinc endopeptidase activity, implying that at least part of the inhibitor-enzyme binding site may be different from the substrate-enzyme binding site. By using biochemical techniques, we demonstrated NPP forms a stable complex with BoNT/A LC. These observations were confirmed by Molecular Dynamics (MD) simulation, which demonstrates that NPP binds to the site near the active site. CONCLUSION The NPP binding interferes with BoNT/A LC binding to the SNAP-25, hence, inhibits its cleavage. Based on these results, we propose a modified strategy for designing a molecule to enhance the efficiency of the inhibition against the neurotoxic effect of BoNT. GENERAL SIGNIFICANCE Insights into the interactions of NPP with BoNT/A LC using biochemical and computational approaches will aid in the future development of effective countermeasures and better pharmacological strategies against botulism.
Collapse
Affiliation(s)
- Kruti B Patel
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA, USA; Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Olga Kononova
- Department of Chemistry and Biochemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Valeri Barsegov
- Department of Chemistry and Biochemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Virinder S Parmar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA, USA; Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA, USA
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA, USA; Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA, USA; Prime Bio Inc., Dartmouth, MA, USA.
| |
Collapse
|
9
|
Crossen J, Diamond SL. Thermal shift assay to probe melting of thrombin, fibrinogen, fibrin monomer, and fibrin: Gly-Pro-Arg-Pro induces a fibrin monomer-like state in fibrinogen. Biochim Biophys Acta Gen Subj 2021; 1865:129805. [PMID: 33276061 PMCID: PMC7752828 DOI: 10.1016/j.bbagen.2020.129805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/30/2020] [Accepted: 11/24/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Thrombin activates fibrinogen and binds the fibrin E-domain (Kd ~ 2.8 μM) and the splice variant γ'-domain (Kd ~ 0.1 μM). We investigated if the loading of D-Phe-Pro-Arg-chloromethylketone inhibited thrombin (PPACK-thrombin) onto fibrin could enhance fibrin stability. METHODS A 384-well plate thermal shift assay (TSA) with SYPRO-orange provided melting temperatures (Tm) of thrombin, PPACK-thrombin, fibrinogen, fibrin monomer, and fibrin. RESULTS Large increases in Tm indicated that calcium led to protein stabilization (0 vs. 2 mM Ca2+) for fibrinogen (54.0 vs. 62.3 °C) and fibrin (62.3 vs. 72.2 °C). Additionally, active site inhibition with PPACK dramatically increased the Tm of thrombin (58.3 vs. 78.3 °C). Treatment of fibrinogen with fibrin polymerization inhibitor GPRP increased fibrinogen stability by ΔTm = 9.3 °C, similar to the ΔTm when fibrinogen was converted to fibrin monomer (ΔTm = 8.8 °C) or to fibrin (ΔTm = 10.4 °C). Addition of PPACK-thrombin at high 5:1 M ratio to fibrin(ogen) had little effect on fibrin(ogen) Tm values, indicating that thrombin binding does not detectably stabilize fibrin via a putative bivalent E-domain to γ'-domain interaction. CONCLUSIONS TSA was a sensitive assay of protein stability and detected: (1) the effects of calcium-stabilization, (2) thrombin active site labeling, (3) fibrinogen conversion to fibrin, and (4) GPRP induced changes in fibrinogen stability being essentially equivalent to that of fibrin monomer or polymerized fibrin. SIGNIFICANCE The low volume, high throughput assay has potential for use in understanding interactions with rare or mutant fibrin(ogen) variants.
Collapse
Affiliation(s)
- J Crossen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States..
| | - S L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States..
| |
Collapse
|
10
|
de Oliveira LA, Borges TK, Soares RO, Buzzi M, Kückelhaus SAS. Methodological variations affect the release of VEGF in vitro and fibrinolysis' time from platelet concentrates. PLoS One 2020; 15:e0240134. [PMID: 33027285 PMCID: PMC7540869 DOI: 10.1371/journal.pone.0240134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/19/2020] [Indexed: 11/26/2022] Open
Abstract
Blood Concentrates (BCs) are autologous non-transfusional therapeutical preparations with biological properties applied in tissue regeneration. These BCs differ in the preparation method, in fibrin network architecture, growth factors release as well as in platelet/cell content. Methodological changes result in distinct matrices that can compromise their clinical effectiveness. The present study evaluated the influence of different g-forces and types of tubes in the release of vascular endothelial growth factor (VEGF) from platelet-rich fibrin (PRF) as a function of time. The PRF-like samples were obtained with three g-forces (200, 400, and 800 x g) for 10 minutes in pure glass tubes or in polystyrene-clot activator tubes. Scanning and Transmission electron microscopy was used to morphometric analyzes of PRF’s specimens and flow cytometry was used to quantify VEGF slow release until 7 days. Our results showed that platelets were intact and adhered to the fibrin network, emitting pseudopods and in degranulation. The fibrin network was rough and twisted with exosomic granulations impregnated on its surface. An increase in the concentration of VEGF in the PRF supernatant was observed until 7 days for all g forces (200, 400 or 800 xg), with the highest concentrations observed with 200 x g, in both tubes, glass or plastic. Morphological analyzes showed a reduction in the diameter of the PRF fibers after 7 days. Our results showed that g-force interferes with the shape of the fibrin network in the PRF, as well as affect the release of VEGF stored into platelets. This finding may be useful in applying PRF to skin lesions, in which the rapid release of growth factors can favor the tissue repair process. Our observations point to a greater clarification on the methodological variations related to obtaining PRF matrices, as they can generate products with different characteristics and degrees of effectiveness in specific applications.
Collapse
Affiliation(s)
- Leonel Alves de Oliveira
- Nucleus of Research in Applied Morphology and Immunology, Faculty of Medicine, University of Brasilia, Federal District, Brasilia, Brazil
| | - Tatiana Karla Borges
- Nucleus of Research in Applied Morphology and Immunology, Faculty of Medicine, University of Brasilia, Federal District, Brasilia, Brazil
| | - Renata Oliveira Soares
- Nucleus of Research in Applied Morphology and Immunology, Faculty of Medicine, University of Brasilia, Federal District, Brasilia, Brazil
| | - Marcelo Buzzi
- Innovacorium Inc., Gainesville, Florida, United States of America
| | - Selma Aparecida Souza Kückelhaus
- Nucleus of Research in Applied Morphology and Immunology, Faculty of Medicine, University of Brasilia, Federal District, Brasilia, Brazil
- * E-mail:
| |
Collapse
|
11
|
Kumar R, Maksudov F, Kononova O, Marx KA, Barsegov V, Singh BR. Botulinum Endopeptidase: SAXS Experiments and MD Simulations Reveal Extended Solution Structures That Account for Its Biochemical Properties. J Phys Chem B 2020; 124:5801-5812. [PMID: 32543194 DOI: 10.1021/acs.jpcb.0c02817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of antidotes against botulism requires understanding of the enzymatically active conformations of Botulinum neurotoxin serotype A (BoNT/A) light chain (LCA). We performed small angle X-ray scattering (SAXS) to characterize the solution structures of truncated light chain (tLCA). The 34-37 Å radius of gyration of tLCA was 1.5-times greater than the averaged 22-23-Å radius from the crystal structures. The bimodal distribution of interatomic distances P(r) indicated the two-domain tLCA structure with 129-133 Å size, and Kratky plots indicated the tLCA partial unfolding in the 25-37 °C temperature range. To interpret these data, we employed molecular dynamics simulations and machine learning. Excellent agreement between experimental and theoretical P(r) profiles helped to resolve conformational subpopulations of tLCA in solution. Partial unfolding of the C-terminal portion of tLCA (residues 339-425) results in formation of extended conformations with the larger globular domain (residues 2-298) and the smaller unstructured domain (339-425). The catalytic domain, buried 20 Å-deep inside the crystal structure, becomes accessible in extended solution conformations (8-9 Å deep). The C- and N-termini containing different functional sequence motifs are maximally separated in the extended conformations. Our results offer physical insights into the molecular basis of BoNT/A function and stress the importance of reversible unfolding-refolding transitions and hydrophobic interactions.
Collapse
Affiliation(s)
- Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, Massachusetts 02747, United States
| | - Farkhad Maksudov
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Olga Kononova
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Kenneth A Marx
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, Massachusetts 02747, United States
| |
Collapse
|
12
|
Tavasoli B, Safa M, Dorgalaleh A, Ghasemi JB, Rezaei Makhouri F, Rezvani MR, Ahmadi A, Tabibian S, Jazebi M, Baghaipour MR, Zaker F. Molecular and clinical profile of congenital fibrinogen disorders in Iran, identification of two novel mutations. Int J Lab Hematol 2020; 42:619-627. [DOI: 10.1111/ijlh.13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Behnaz Tavasoli
- Department of Hematology and Blood Banking Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Majid Safa
- Department of Hematology and Blood Banking Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
- Cellular & Molecular Research Center Iran University of Medical Sciences Tehran Iran
| | - Akbar Dorgalaleh
- Department of Hematology and Blood Banking Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Jahan B. Ghasemi
- Department of Chemistry Faculty of Sciences University of Tehran Tehran Iran
| | | | - Mohammad R. Rezvani
- Department of Hematology and Blood Banking Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Abbas Ahmadi
- Cellular & Molecular Research Center Kurdistan University of Medical Sciences Sanandaj Iran
| | - Shadi Tabibian
- Department of Hematology and Blood Banking Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
- Iranian Comprehensive Hemophilia Care Center Tehran Iran
| | | | | | - Farhad Zaker
- Department of Hematology and Blood Banking Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
- Cellular & Molecular Research Center Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
13
|
Roberts IV, Bukhary D, Valdivieso CYL, Tirelli N. Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromol Biosci 2019; 20:e1900283. [PMID: 31769933 DOI: 10.1002/mabi.201900283] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Indexed: 12/19/2022]
Abstract
This review focuses on fibrin, starting from biological mechanisms (its production from fibrinogen and its enzymatic degradation), through its use as a medical device and as a biomaterial, and finally discussing the techniques used to add biological functions and/or improve its mechanical performance through its molecular engineering. Fibrin is a material of biological (human, and even patient's own) origin, injectable, adhesive, and remodellable by cells; further, it is nature's most common choice for an in situ forming, provisional matrix. Its widespread use in the clinic and in research is therefore completely unsurprising. There are, however, areas where its biomedical performance can be improved, namely achieving a better control over mechanical properties (and possibly higher modulus), slowing down degradation or incorporating cell-instructive functions (e.g., controlled delivery of growth factors). The authors here specifically review the efforts made in the last 20 years to achieve these aims via biomimetic reactions or self-assembly, as much via formation of hybrid materials.
Collapse
Affiliation(s)
- Iwan Vaughan Roberts
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Deena Bukhary
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | | | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| |
Collapse
|
14
|
Yurina LV, Vasilyeva AD, Bugrova AE, Indeykina MI, Kononikhin AS, Nikolaev EN, Rosenfeld MA. Hypochlorite-Induced Oxidative Modification of Fibrinogen. DOKL BIOCHEM BIOPHYS 2019; 484:37-41. [DOI: 10.1134/s1607672919010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/22/2022]
|
15
|
Yurina L, Vasilyeva A, Indeykina M, Bugrova A, Biryukova M, Kononikhin A, Nikolaev E, Rosenfeld M. Ozone-induced damage of fibrinogen molecules: identification of oxidation sites by high-resolution mass spectrometry. Free Radic Res 2019; 53:430-455. [DOI: 10.1080/10715762.2019.1600686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lyubov Yurina
- N.M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexandra Vasilyeva
- N.M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| | - Maria Indeykina
- N.M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna Bugrova
- N.M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| | - Marina Biryukova
- N.M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey Kononikhin
- Moskovskij Fiziko-Tehniceskij Institut, Dolgoprudnyi, Russian Federation
| | - Evgene Nikolaev
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Moscow, Russian Federation
| | - Mark Rosenfeld
- N.M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
16
|
Regulatory element in fibrin triggers tension-activated transition from catch to slip bonds. Proc Natl Acad Sci U S A 2018; 115:8575-8580. [PMID: 30087181 DOI: 10.1073/pnas.1802576115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrin formation and mechanical stability are essential in thrombosis and hemostasis. To reveal how mechanical load impacts fibrin, we carried out optical trap-based single-molecule forced unbinding experiments. The strength of noncovalent A:a knob-hole bond stabilizing fibrin polymers first increases with tensile force (catch bonds) and then decreases with force when the force exceeds a critical value (slip bonds). To provide the structural basis of catch-slip-bond behavior, we analyzed crystal structures and performed molecular modeling of A:a knob-hole complex. The movable flap (residues γ295 to γ305) containing the weak calcium-binding site γ2 serves as a tension sensor. Flap dissociation from the B domain in the γ-nodule and translocation to knob 'A' triggers hole 'a' closure, resulting in the increase of binding affinity and prolonged bond lifetimes. The discovery of biphasic kinetics of knob-hole bond rupture is quantitatively explained by using a theory, formulated in terms of structural transitions in the binding pocket between the low-affinity (slip) and high-affinity (catch) states. We provide a general framework to understand the mechanical response of protein pairs capable of tension-induced remodeling of their association interface. Strengthening of the A:a knob-hole bonds at 30- to 40-pN forces might favor formation of nascent fibrin clots subject to hydrodynamic shear in vivo.
Collapse
|
17
|
Kurniawan NA, Vos BE, Biebricher A, Wuite GJL, Peterman EJG, Koenderink GH. Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales. Biophys J 2017; 111:1026-34. [PMID: 27602730 DOI: 10.1016/j.bpj.2016.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/01/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.
Collapse
Affiliation(s)
- Nicholas A Kurniawan
- Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bart E Vos
- Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands
| | - Andreas Biebricher
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijsje H Koenderink
- Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Kurniawan N, van Kempen THS, Sonneveld S, Rosalina TT, Vos BE, Jansen KA, Peters GWM, van de Vosse FN, Koenderink GH. Buffers Strongly Modulate Fibrin Self-Assembly into Fibrous Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6342-6352. [PMID: 28558246 PMCID: PMC5489959 DOI: 10.1021/acs.langmuir.7b00527] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/27/2017] [Indexed: 05/20/2023]
Abstract
Fibrin is a plasma protein with a central role in blood clotting and wound repair. Upon vascular injury, fibrin forms resilient fibrillar networks (clots) via a multistep self-assembly process, from monomers, to double-stranded protofibrils, to a branched network of thick fibers. In vitro, fibrin self-assembly is sensitive to physicochemical conditions like the solution pH and ionic strength, which tune the strength of the noncovalent driving forces. Here we report a surprising finding that the buffer-which is necessary to control the pH and is typically considered to be inert-also significantly influences fibrin self-assembly. We show by confocal microscopy and quantitative light scattering that various common buffering agents have no effect on the initial assembly of fibrin monomers into protofibrils but strongly hamper the subsequent lateral association of protofibrils into thicker fibers. We further find that the structural changes are independent of the molecular structure of the buffering agents as well as of the activation mechanism and even occur in fibrin networks formed from platelet-poor plasma. This buffer-mediated decrease in protofibril bundling results in a marked reduction in the permeability of fibrin networks but only weakly influences the elastic modulus of fibrin networks, providing a useful tuning parameter to independently control the elastic properties and the permeability of fibrin networks. Our work raises the possibility that fibrin assembly in vivo may be regulated by variations in the acute-phase levels of bicarbonate and phosphate, which act as physiological buffering agents of blood pH. Moreover, our findings add a new example of buffer-induced effects on biomolecular self-assembly to recent findings for a range of proteins and lipids.
Collapse
Affiliation(s)
- Nicholas
A. Kurniawan
- Department
of Systems Biophysics, AMOLF, Amsterdam 1009 DB, The Netherlands
- Department of Biomedical
Engineering & Institute for Complex
Molecular Systems, and Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Thomas H. S. van Kempen
- Department of Biomedical
Engineering & Institute for Complex
Molecular Systems, and Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Stijn Sonneveld
- Department
of Systems Biophysics, AMOLF, Amsterdam 1009 DB, The Netherlands
| | - Tilaï T. Rosalina
- Department of Biomedical
Engineering & Institute for Complex
Molecular Systems, and Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Bart E. Vos
- Department
of Systems Biophysics, AMOLF, Amsterdam 1009 DB, The Netherlands
| | - Karin A. Jansen
- Department
of Systems Biophysics, AMOLF, Amsterdam 1009 DB, The Netherlands
| | - Gerrit W. M. Peters
- Department of Biomedical
Engineering & Institute for Complex
Molecular Systems, and Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Frans N. van de Vosse
- Department of Biomedical
Engineering & Institute for Complex
Molecular Systems, and Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Gijsje H. Koenderink
- Department
of Systems Biophysics, AMOLF, Amsterdam 1009 DB, The Netherlands
- E-mail:
| |
Collapse
|
19
|
Piechocka IK, Kurniawan NA, Grimbergen J, Koopman J, Koenderink GH. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening. J Thromb Haemost 2017; 15:938-949. [PMID: 28166607 DOI: 10.1111/jth.13650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 01/14/2023]
Abstract
Essentials Fibrinogen circulates in human plasma as a complex mixture of heterogeneous molecular variants. We measured strain-stiffening of recombinantly produced fibrinogen upon clotting. Factor XIII and molecular heterogeneity alter clot elasticity at the protofibril and fiber level. This highlights the hitherto unknown role of molecular composition in fibrin clot mechanics. SUMMARY Background Fibrin plays a crucial role in haemostasis and wound healing by forming strain-stiffening fibrous networks that reinforce blood clots. The molecular origin of fibrin's strain-stiffening behavior remains poorly understood, primarily because plasma fibrinogen is a complex mixture of heterogeneous molecular variants and is often contaminated by plasma factors that affect clot properties. Objectives and methods To facilitate mechanistic dissection of fibrin nonlinear elasticity, we produced a homogeneous recombinant fibrinogen corresponding to the main variant in human plasma, termed rFib610. We characterized the structure of rFib610 clots using turbidimetry, microscopy and X-ray scattering. We used rheology to measure the strain-stiffening behavior of the clots and determined the fiber properties by modeling the clots as semi-flexible polymer networks. Results We show that addition of FXIII to rFib610 clots causes a dose-dependent stiffness increase at small deformations and renders the strain-stiffening response reversible. We find that γ-chain cross-linking contributes to clot elasticity by changing the force-extension behavior of the protofibrils, whereas α-chain cross-linking stiffens the fibers, as a consequence of tighter coupling between the constituent protofibrils. Interestingly, rFib610 protofibrils have a 25% larger bending rigidity than plasma-purified fibrin protofibrils and a delayed strain-stiffening, indicating that molecular heterogeneity influences clot mechanics at the protofibril scale. Conclusions Fibrinogen molecular heterogeneity and FXIII affect the mechanical function of fibrin clots by altering the nonlinear viscoelastic properties at the protofibril and fiber scale. This work provides a starting point to investigate the role of molecular heterogeneity of plasma fibrinogen in fibrin clot mechanics and haemostasis.
Collapse
Affiliation(s)
- I K Piechocka
- Department of Systems Biophysics, AMOLF, Amsterdam, the Netherlands
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - N A Kurniawan
- Department of Systems Biophysics, AMOLF, Amsterdam, the Netherlands
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | - J Koopman
- ProFibrix BV, Leiden, the Netherlands
| | - G H Koenderink
- Department of Systems Biophysics, AMOLF, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Kononova O, Litvinov RI, Blokhin DS, Klochkov VV, Weisel JW, Bennett JS, Barsegov V. Mechanistic Basis for the Binding of RGD- and AGDV-Peptides to the Platelet Integrin αIIbβ3. Biochemistry 2017; 56:1932-1942. [PMID: 28277676 DOI: 10.1021/acs.biochem.6b01113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Binding of soluble fibrinogen to the activated conformation of the integrin αIIbβ3 is required for platelet aggregation and is mediated exclusively by the C-terminal AGDV-containing dodecapeptide (γC-12) sequence of the fibrinogen γ chain. However, peptides containing the Arg-Gly-Asp (RGD) sequences located in two places in the fibrinogen Aα chain inhibit soluble fibrinogen binding to αIIbβ3 and make substantial contributions to αIIbβ3 binding when fibrinogen is immobilized and when it is converted to fibrin. Here, we employed optical trap-based nanomechanical measurements and computational molecular modeling to determine the kinetics, energetics, and structural details of cyclic RGDFK (cRGDFK) and γC-12 binding to αIIbβ3. Docking analysis revealed that NMR-determined solution structures of cRGDFK and γC-12 bind to both the open and closed αIIbβ3 conformers at the interface between the αIIb β-propeller domain and the β3 βI domain. The nanomechanical measurements revealed that cRGDFK binds to αIIbβ3 at least as tightly as γC-12. A subsequent analysis of molecular force profiles and the number of peptide-αIIbβ3 binding contacts revealed that both peptides form stable bimolecular complexes with αIIbβ3 that dissociate in the 60-120 pN range. The Gibbs free energy profiles of the αIIbβ3-peptide complexes revealed that the overall stability of the αIIbβ3-cRGDFK complex was comparable with that of the αIIbβ3-γC-12 complex. Thus, these results provide a mechanistic explanation for previous observations that RGD- and AGDV-containing peptides are both potent inhibitors of the αIIbβ3-fibrinogen interactions and are consistent with the observation that RGD motifs, in addition to AGDV, support interaction of αIIbβ3 with immobilized fibrinogen and fibrin.
Collapse
Affiliation(s)
- Olga Kononova
- Department of Chemistry, University of Massachusetts , Lowell, Massachusetts 01854, United States.,Moscow Institute of Physics and Technology , Moscow Region 141700, Russian Federation
| | | | | | | | | | | | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts , Lowell, Massachusetts 01854, United States.,Moscow Institute of Physics and Technology , Moscow Region 141700, Russian Federation
| |
Collapse
|
21
|
Abstract
Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin.
Collapse
Affiliation(s)
- John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Zhmurov A, Protopopova AD, Litvinov RI, Zhukov P, Mukhitov AR, Weisel JW, Barsegov V. Structural Basis of Interfacial Flexibility in Fibrin Oligomers. Structure 2016; 24:1907-1917. [PMID: 27692965 DOI: 10.1016/j.str.2016.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/19/2016] [Accepted: 08/10/2016] [Indexed: 10/20/2022]
Abstract
Fibrin is a filamentous network made in blood to stem bleeding; it forms when fibrinogen is converted into fibrin monomers that self-associate into oligomers and then to polymers. To gather structural insights into fibrin formation and properties, we combined high-resolution atomic force microscopy of fibrin(ogen) oligomers and molecular modeling of crystal structures of fibrin(ogen) and its fragments. We provided a structural basis for the intermolecular flexibility of single-stranded fibrin(ogen) oligomers and identified a hinge region at the D:D inter-monomer junction. Following computational reconstruction of the missing portions, we recreated the full-atomic structure of double-stranded fibrin oligomers that was validated by quantitative comparison with the experimental images. We characterized previously unknown intermolecular binding contacts at the D:D and D:E:D interfaces, which drive oligomerization and reinforce the intra- and inter-strand connections in fibrin besides the known knob-hole bonds. The atomic models provide valuable insights into the submolecular mechanisms of fibrin polymerization.
Collapse
Affiliation(s)
- Artem Zhmurov
- Moscow Institute of Physics & Technology, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Anna D Protopopova
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rustem I Litvinov
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russian Federation
| | - Pavel Zhukov
- Moscow Institute of Physics & Technology, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Alexander R Mukhitov
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W Weisel
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Valeri Barsegov
- Moscow Institute of Physics & Technology, Dolgoprudny, Moscow Region 141700, Russian Federation; Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA.
| |
Collapse
|
23
|
Wang X, Friis T, Glatt V, Crawford R, Xiao Y. Structural properties of fracture haematoma: current status and future clinical implications. J Tissue Eng Regen Med 2016; 11:2864-2875. [PMID: 27401283 DOI: 10.1002/term.2190] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/24/2022]
Abstract
Blood clots (haematomas) that form immediately following a bone fracture have been shown to be vital for the subsequent healing process. During the clotting process, a number of factors can influence the fibrin clot structure, such as fibrin polymerization, growth factor binding, cellular infiltration (including platelet retraction), protein concentrations and cytokines. The modulation of the fibrin clot structure within the fracture site has important clinical implications and could result in the development of multifunctional scaffolds that mimic the natural structure of a haematoma. Artificial haematoma structures such as these can be created from the patient's own blood and can therefore act as an ideal bone defect filling material for potential clinical application to accelerate bone regeneration. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xin Wang
- Department of Spine, Affiliated Hospital of Zunyi Medical College, Zunyi, People's Republic of China.,Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Thor Friis
- Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Vaida Glatt
- Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Ross Crawford
- Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Yin Xiao
- Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
24
|
Alekseenko A, Kononova O, Kholodov Y, Marx KA, Barsegov V. SOP-GPU: influence of solvent-induced hydrodynamic interactions on dynamic structural transitions in protein assemblies. J Comput Chem 2016; 37:1537-51. [PMID: 27015749 PMCID: PMC5021127 DOI: 10.1002/jcc.24368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/19/2016] [Accepted: 03/05/2016] [Indexed: 02/04/2023]
Abstract
Hydrodynamic interactions (HI) are incorporated into Langevin dynamics of the Cα -based protein model using the Truncated Expansion approximation (TEA) to the Rotne-Prager-Yamakawa diffusion tensor. Computational performance of the obtained GPU realization demonstrates the model's capability for describing protein systems of varying complexity (10(2) -10(5) residues), including biological particles (filaments, virus shells). Comparison of numerical accuracy of the TEA versus exact description of HI reveals similar results for the kinetics and thermodynamics of protein unfolding. The HI speed up and couple biomolecular transitions through cross-communication among protein domains, which result in more collective displacements of structure elements governed by more deterministic (less variable) dynamics. The force-extension/deformation spectra from nanomanipulations in silico exhibit sharper force signals that match well the experimental profiles. Hence, biomolecular simulations without HI overestimate the role of tension/stress fluctuations. Our findings establish the importance of incorporating implicit water-mediated many-body effects into theoretical modeling of dynamic processes involving biomolecules. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrey Alekseenko
- Department of Chemistry, One University ave, University of Massachusetts, Lowell, Massachusetts, 01854
- 9 Institutskiy per, Department of Control and Applied Mathematics Moscow Institute of Physics and Technology, Moscow region, 141700, Russia
| | - Olga Kononova
- Department of Chemistry, One University ave, University of Massachusetts, Lowell, Massachusetts, 01854
- 9 Institutskiy per, Department of Control and Applied Mathematics Moscow Institute of Physics and Technology, Moscow region, 141700, Russia
| | - Yaroslav Kholodov
- 1 Universitetskaya st, Department of Information Systems Innopolis University, Innopolis, Tatarstan, 420500, Russia
- 19/18, 2-nd Brestskaya st, Department of Applied Mathematics Institute of Computer Aided Design of the Russian Academy of Sciences, Moscow, 123056, Russia
| | - Kenneth A Marx
- Department of Chemistry, One University ave, University of Massachusetts, Lowell, Massachusetts, 01854
| | - Valeri Barsegov
- Department of Chemistry, One University ave, University of Massachusetts, Lowell, Massachusetts, 01854
- 9 Institutskiy per, Department of Control and Applied Mathematics Moscow Institute of Physics and Technology, Moscow region, 141700, Russia
| |
Collapse
|
25
|
Köhler S, Schmid F, Settanni G. The Internal Dynamics of Fibrinogen and Its Implications for Coagulation and Adsorption. PLoS Comput Biol 2015; 11:e1004346. [PMID: 26366880 PMCID: PMC4569070 DOI: 10.1371/journal.pcbi.1004346] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022] Open
Abstract
Fibrinogen is a serum multi-chain protein which, when activated, aggregates to form fibrin, one of the main components of a blood clot. Fibrinolysis controls blood clot dissolution through the action of the enzyme plasmin, which cleaves fibrin at specific locations. Although the main biochemical factors involved in fibrin formation and lysis have been identified, a clear mechanistic picture of how these processes take place is not available yet. This picture would be instrumental, for example, for the design of improved thrombolytic or anti-haemorrhagic strategies, as well as, materials with improved biocompatibility. Here, we present extensive molecular dynamics simulations of fibrinogen which reveal large bending motions centered at a hinge point in the coiled-coil regions of the molecule. This feature, likely conserved across vertebrates according to our analysis, suggests an explanation for the mechanism of exposure to lysis of the plasmin cleavage sites on fibrinogen coiled-coil region. It also explains the conformational variability of fibrinogen observed during its adsorption on inorganic surfaces and it is supposed to play a major role in the determination of the hydrodynamic properties of fibrinogen. In addition the simulations suggest how the dynamics of the D region of fibrinogen may contribute to the allosteric regulation of the blood coagulation cascade through a dynamic coupling between the a- and b-holes, important for fibrin polymerization, and the integrin binding site P1. Fibrinogen, a protein found in the blood of vertebrates, when activated, aggregates and forms fibrin fibers, the basis of a blood clot. Clots are broken down by the enzyme plasmin, which cuts fibrin fibers at specific places, thus helping the regulation of clot persistence. A mechanistic understanding of fibrin degradation by plasmin is still missing. An important determinant of this process might be the flexibility of fibrinogen. The flexible nature of fibrinogen is reported, for example, by the great variety of conformations observed when fibrinogen adsorbs on material surfaces. However, limits in the spatial resolution of these experiments preclude the identification of the atomistic mechanism behind this flexibility. Here, we perform computer simulations that help identifying with atomistic detail large bending motions occurring at a specific hinge on the molecule. We show how these bending motions can explain the variable conformations observed in experiments and how they help exposing sites where plasmin can cut fibrinogen. Furthermore, our simulations let us identify cooperative effects involving several distant parts of fibrinogen that may play a role in the assembly of fibrin fibers. Both the bending and the cooperative effects, thus, represent potential mechanisms for the regulation of blood clotting.
Collapse
Affiliation(s)
- Stephan Köhler
- Institut für Physik, Johannes Gutenberg–Universität Mainz, Mainz, Germany
- Graduate School Materials Science in Mainz, Mainz, Germany
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg–Universität Mainz, Mainz, Germany
| | - Giovanni Settanni
- Institut für Physik, Johannes Gutenberg–Universität Mainz, Mainz, Germany
- Max Planck Graduate Center mit der Johannes Gutenberg-Universität Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
26
|
Litvinov RI, Weisel JW. Shear strengthens fibrin: the knob-hole interactions display 'catch-slip' kinetics. J Thromb Haemost 2013; 11:1933-5. [PMID: 23937213 PMCID: PMC5157126 DOI: 10.1111/jth.12374] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/30/2013] [Indexed: 12/14/2022]
Affiliation(s)
- R I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|