1
|
Battaje RR, Bhondwe P, Dhaked HPS, Panda D. Evidence of conformational switch in Streptococcus pneumoniae FtsZ during polymerization. Protein Sci 2020; 30:523-530. [PMID: 33341988 DOI: 10.1002/pro.4015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
FtsZ, the master coordinator of bacterial cell division, assembles into filaments in the presence of nucleotide. FtsZ from Streptococcus pneumoniae bears two tryptophan residues (W294 and W378) in its amino acid sequence. The tryptophan fluorescence of FtsZ increases during the assembly of FtsZ. We hypothesized that this increase in the fluorescence intensity was due to the change in the environment of one or both tryptophan residues. To examine this, we constructed two mutants (W294F and W378F) of FtsZ by individually replacing tryptophan with phenylalanine. The mutants displayed similar secondary structures, GTPase activity, and polymerization ability as the wild type FtsZ. During the polymerization, only one tryptophan (W294) showed an increase in its fluorescence intensity. Using time-correlated single-photon counting, the fluorescence lifetime of W294 was found to be significantly higher than W378, indicating that W294 was more buried in the structure than W378. The lifetime of W294 further increased during polymer formation, while that of W378 remained unchanged. Fluorescence quenching experiment suggested that the solvent exposure of W294 reduced during the polymerization of FtsZ. W294 is located near the T-7 loop of the protein, a region important for the monomer-monomer interaction during the formation of a protofilament. The results indicated that the region around W294 of S. pneumoniae FtsZ undergoes a conformational switch during polymerization as seen for FtsZ from other bacteria.
Collapse
Affiliation(s)
- Rachana Rao Battaje
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prajakta Bhondwe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Assembly properties of bacterial tubulin homolog FtsZ regulated by the positive regulator protein ZipA and ZapA from Pseudomonas aeruginosa. Sci Rep 2020; 10:21369. [PMID: 33288818 PMCID: PMC7721900 DOI: 10.1038/s41598-020-78431-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Bacterial tubulin homolog FtsZ self-assembles into dynamic protofilaments, which forms the scaffold for the contractile ring (Z-ring) to achieve bacterial cell division. Here, we study the biochemical properties of FtsZ from Pseudomonas aeruginosa (PaFtsZ) and the effects of its two positive regulator proteins, ZipA and ZapA. Similar to Escherichia coli FtsZ, PaFtsZ had a strong GTPase activity, ~ 7.8 GTP min-1 FtsZ-1 at pH 7.5, and assembled into mainly short single filaments in vitro. However, PaFtsZ protofilaments were mixtures of straight and “intermediate-curved” (100–300 nm diameter) in pH 7.5 solution and formed some bundles in pH 6.5 solution. The effects of ZipA on PaFtsZ assembly varied with pH. In pH 6.5 buffer ZipA induced PaFtsZ to form large bundles. In pH 7.5 buffer PaFtsZ-ZipA protofilaments were not bundled, but ZipA enhanced PaFtsZ assembly and promoted more curved filaments. Comparable to ZapA from other bacterial species, ZapA from P. aeruginosa induced PaFtsZ protofilaments to associate into long straight loose bundles and/or sheets at both pH 6.5 and pH 7.5, which had little effect on the GTPase activity of PaFtsZ. These results provide us further information that ZipA functions as an enhancer of FtsZ curved filaments, while ZapA works as a stabilizer of FtsZ straight filaments.
Collapse
|
3
|
Huecas S, Canosa-Valls AJ, Araújo-Bazán L, Ruiz FM, Laurents DV, Fernández-Tornero C, Andreu JM. Nucleotide-induced folding of cell division protein FtsZ from Staphylococcus aureus. FEBS J 2020; 287:4048-4067. [PMID: 31997533 DOI: 10.1111/febs.15235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022]
Abstract
The essential bacterial division protein FtsZ uses GTP binding and hydrolysis to assemble into dynamic filaments that treadmill around the Z-ring, guiding septal wall synthesis and cell division. FtsZ is a structural homolog of tubulin and a target for discovering new antibiotics. Here, using FtsZ from the pathogen S. aureus (SaFtsZ), we reveal that, prior to assembly, FtsZ monomers require nucleotide binding for folding; this is possibly relevant to other mesophilic FtsZs. Apo-SaFtsZ is essentially unfolded, as assessed by nuclear magnetic resonance and circular dichroism. Binding of GTP (≥ 1 mm) dramatically shifts the equilibrium toward the active folded protein. Supportingly, SaFtsZ refolded with GDP crystallizes in a native structure. Apo-SaFtsZ also folds with 3.4 m glycerol, enabling high-affinity GTP binding (KD 20 nm determined by isothermal titration calorimetry) similar to thermophilic stable FtsZ. Other stabilizing agents that enhance nucleotide binding include ethylene glycol, trimethylamine N-oxide, and several bacterial osmolytes. High salt stabilizes SaFtsZ without bound nucleotide in an inactive twisted conformation. We identified a cavity behind the SaFtsZ-GDP nucleotide-binding pocket that harbors different small compounds, which is available for extended nucleotide-replacing inhibitors. Furthermore, we devised a competition assay to detect any inhibitors that overlap the nucleotide site of SaFtsZ, or Escherichia coli FtsZ, employing osmolyte-stabilized apo-FtsZs and the specific fluorescence anisotropy change in mant-GTP upon dissociation from the protein. This robust assay provides a basis to screening for high-affinity GTP-replacing ligands, which combined with structural studies and phenotypic profiling should facilitate development of a next generation of FtsZ-targeting antibacterial inhibitors.
Collapse
Affiliation(s)
- Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | | | - Lidia Araújo-Bazán
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | - Federico M Ruiz
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | | | | | - José M Andreu
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| |
Collapse
|
4
|
Multi-functional regulator MapZ controls both positioning and timing of FtsZ polymerization. Biochem J 2019; 476:1433-1444. [PMID: 31036719 DOI: 10.1042/bcj20190138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Abstract
The tubulin-like GTPase protein FtsZ, which forms a discontinuous cytokinetic ring at mid-cell, is a central player to recruit the division machinery to orchestrate cell division. To guarantee the production of two identical daughter cells, the assembly of FtsZ, namely Z-ring, and its precise positioning should be finely regulated. In Streptococcus pneumoniae, the positioning of Z-ring at the division site is mediated by a bitopic membrane protein MapZ (mid-cell-anchored protein Z) through direct interactions between the intracellular domain (termed MapZ-N (the intracellular domain of MapZ)) and FtsZ. Using nuclear magnetic resonance titration experiments, we clearly assigned the key residues involved in the interactions. In the presence of MapZ-N, FtsZ gains a shortened activation delay, a lower critical concentration for polymerization and a higher cooperativity towards GTP hydrolysis. On the other hand, MapZ-N antagonizes the lateral interactions of single-stranded filaments of FtsZ, thus slows down the formation of highly bundled FtsZ polymers and eventually maintains FtsZ at a dynamic state. Altogether, we conclude that MapZ is not only an accelerator to trigger the polymerization of FtsZ, but also a brake to tune the velocity to form the end-product, FtsZ bundles. These findings suggest that MapZ is a multi-functional regulator towards FtsZ that controls both the precise positioning and proper timing of FtsZ polymerization.
Collapse
|
5
|
Kopacz MM, Lorenzoni ASG, Polaquini CR, Regasini LO, Scheffers D. Purification and characterization of FtsZ from the citrus canker pathogen Xanthomonas citri subsp. citri. Microbiologyopen 2019; 8:e00706. [PMID: 30085414 PMCID: PMC6528577 DOI: 10.1002/mbo3.706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/04/2022] Open
Abstract
Xanthomonas citri subsp. citri (Xac) is the causative agent of citrus canker, a plant disease that significantly impacts citriculture. In earlier work, we showed that alkylated derivatives of gallic acid have antibacterial action against Xac and target both the cell division protein FtsZ and membrane integrity in Bacillus subtilis. Here, we have purified native XacFtsZ and characterized its GTP hydrolysis and polymerization properties. In a surprising manner, inhibition of XacFtsZ activity by alkyl gallates is not as strong as observed earlier with B. subtilis FtsZ. As the alkyl gallates efficiently permeabilize Xac membranes, we propose that this is the primary mode of antibacterial action of these compounds.
Collapse
Affiliation(s)
- Malgorzata M. Kopacz
- Department of Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Present address:
Department of Chemical EngineeringBiotechnology and Environmental TechnologyUniversity of Southern DenmarkOdense MDenmark
| | - André S. G. Lorenzoni
- Department of Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Carlos R. Polaquini
- Laboratory of Antibiotics and ChemotherapeuticsDepartment of Chemistry and Environmental SciencesInstitute of Biosciences, Humanities and Exact SciencesSão Paulo State University (UNESP)São José do Rio PretoSPBrazil
| | - Luis O. Regasini
- Laboratory of Antibiotics and ChemotherapeuticsDepartment of Chemistry and Environmental SciencesInstitute of Biosciences, Humanities and Exact SciencesSão Paulo State University (UNESP)São José do Rio PretoSPBrazil
| | - Dirk‐Jan Scheffers
- Department of Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
6
|
Sundararajan K, Vecchiarelli A, Mizuuchi K, Goley ED. Species- and C-terminal linker-dependent variations in the dynamic behavior of FtsZ on membranes in vitro. Mol Microbiol 2018; 110:47-63. [PMID: 30010220 DOI: 10.1111/mmi.14081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Bacterial cell division requires the assembly of FtsZ protofilaments into a dynamic structure called the 'Z-ring'. The Z-ring recruits the division machinery and directs local cell wall remodeling for constriction. The organization and dynamics of protofilaments within the Z-ring coordinate local cell wall synthesis during cell constriction, but their regulation is largely unknown. The disordered C-terminal linker (CTL) region of Caulobacter crescentus FtsZ (CcFtsZ) regulates polymer structure and turnover in solution in vitro, and regulates Z-ring structure and activity of cell wall enzymes in vivo. To investigate the contributions of the CTL to the polymerization properties of FtsZ on its physiological platform, the cell membrane, we reconstituted CcFtsZ polymerization on supported lipid bilayers (SLB) and visualized polymer dynamics and structure using total internal reflection fluorescence microscopy. Unlike Escherichia coli FtsZ protofilaments that organized into large, bundled patterns, CcFtsZ protofilaments assembled into small, dynamic clusters on SLBs. Moreover, CcFtsZ lacking its CTL formed large networks of straight filament bundles that underwent slower turnover than the dynamic clusters of wildtype FtsZ. Our in vitro characterization provides novel insights into species- and CTL-dependent differences between FtsZ assembly properties that are relevant to Z-ring assembly and function on membranes in vivo.
Collapse
Affiliation(s)
- Kousik Sundararajan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anthony Vecchiarelli
- Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature Science and the Arts, Ann Arbor, MI, 48109, USA
| | - Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
7
|
Lariviere PJ, Szwedziak P, Mahone CR, Löwe J, Goley ED. FzlA, an essential regulator of FtsZ filament curvature, controls constriction rate during Caulobacter division. Mol Microbiol 2018; 107:180-197. [PMID: 29119622 PMCID: PMC5760450 DOI: 10.1111/mmi.13876] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022]
Abstract
During bacterial division, polymers of the tubulin-like GTPase FtsZ assemble at midcell to form the cytokinetic Z-ring, which coordinates peptidoglycan (PG) remodeling and envelope constriction. Curvature of FtsZ filaments promotes membrane deformation in vitro, but its role in division in vivo remains undefined. Inside cells, FtsZ directs PG insertion at the division plane, though it is unclear how FtsZ structure and dynamics are mechanistically coupled to PG metabolism. Here we study FzlA, a division protein that stabilizes highly curved FtsZ filaments, as a tool for assessing the contribution of FtsZ filament curvature to constriction. We show that in Caulobacter crescentus, FzlA must bind to FtsZ for division to occur and that FzlA-mediated FtsZ curvature is correlated with efficient division. We observed that FzlA influences constriction rate, and that this activity is associated with its ability to bind and curve FtsZ polymers. Further, we found that a slowly constricting fzlA mutant strain develops 'pointy' poles, suggesting that FzlA influences the relative contributions of radial versus longitudinal PG insertion at the septum. These findings implicate FzlA as a critical coordinator of envelope constriction through its interaction with FtsZ and suggest a functional link between FtsZ curvature and efficient constriction in C. crescentus.
Collapse
Affiliation(s)
- Patrick J. Lariviere
- Department of Biological ChemistryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Piotr Szwedziak
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeCB20QHUK
- Present address:
Institute of Molecular Biology and BiophysicsETH Zürich8093 ZürichSwitzerland
| | - Christopher R. Mahone
- Department of Biological ChemistryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Jan Löwe
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeCB20QHUK
| | - Erin D. Goley
- Department of Biological ChemistryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
8
|
Sundararajan K, Goley ED. The intrinsically disordered C-terminal linker of FtsZ regulates protofilament dynamics and superstructure in vitro. J Biol Chem 2017; 292:20509-20527. [PMID: 29089389 DOI: 10.1074/jbc.m117.809939] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/17/2017] [Indexed: 11/06/2022] Open
Abstract
The bacterial tubulin FtsZ polymerizes to form a discontinuous ring that drives bacterial cell division by directing local cell wall synthesis. FtsZ comprises a polymerizing GTPase domain, an intrinsically disordered C-terminal linker (CTL), and a C-terminal conserved peptide (CTC). FtsZ protofilaments align circumferentially in the cell, with the CTC mediating attachment to membrane-associated division proteins. The assembly of FtsZ protofilaments into dynamic clusters is critical for cell division, but the interactions between protofilaments and regulatory mechanisms that mediate cluster assembly and dynamics are unknown. Here, we describe a role for the CTL of Caulobacter crescentus FtsZ as an intrinsic regulator of lateral interactions between protofilaments in vitro FtsZ lacking its CTL (ΔCTL) shows a dramatically increased propensity to form long multifilament bundles compared with wild type (WT). ΔCTL also displays a reduced GTP hydrolysis rate compared with WT, but this altered activity does not account for bundle formation, as reducing protofilament turnover in WT is not sufficient to induce bundling. Surprisingly, binding of the membrane-anchoring protein FzlC disrupts ΔCTL bundling in a CTC-dependent manner. Moreover, the CTL affects the ability of the FtsZ curving protein FzlA to promote formation of helical bundles. We conclude that the CTL of FtsZ influences polymer structure and dynamics both through intrinsic effects on lateral interactions and turnover and by influencing extrinsic regulation of FtsZ by binding partners. Our characterization of CTL function provides a biochemical handle for understanding the relationship between FtsZ-ring structure and function in bacterial cytokinesis.
Collapse
Affiliation(s)
- Kousik Sundararajan
- From the Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Erin D Goley
- From the Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
9
|
Woldemeskel SA, McQuillen R, Hessel AM, Xiao J, Goley ED. A conserved coiled-coil protein pair focuses the cytokinetic Z-ring in Caulobacter crescentus. Mol Microbiol 2017; 105:721-740. [PMID: 28613431 DOI: 10.1111/mmi.13731] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 11/27/2022]
Abstract
The cytoskeletal GTPase FtsZ assembles at midcell, recruits the division machinery and directs envelope invagination for bacterial cytokinesis. ZapA, a conserved FtsZ-binding protein, promotes Z-ring stability and efficient division through a mechanism that is not fully understood. Here, we investigated the function of ZapA in Caulobacter crescentus. We found that ZapA is encoded in an operon with a small coiled-coil protein we named ZauP. ZapA and ZauP co-localized at the division site and were each required for efficient division. ZapA interacted directly with both FtsZ and ZauP. Neither ZapA nor ZauP influenced FtsZ dynamics or bundling, in vitro, however. Z-rings were diffuse in cells lacking zapA or zauP and, conversely, FtsZ was enriched at midcell in cells overproducing ZapA and ZauP. Additionally, FtsZ persisted at the poles longer when ZapA and ZauP were overproduced, and frequently colocalized with MipZ, a negative regulator of FtsZ polymerization. We propose that ZapA and ZauP promote efficient cytokinesis by stabilizing the midcell Z-ring through a bundling-independent mechanism. The zauPzapA operon is present in diverse Gram-negative bacteria, indicating a common mechanism for Z-ring assembly.
Collapse
Affiliation(s)
- Selamawit Abi Woldemeskel
- Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan McQuillen
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex M Hessel
- Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin D Goley
- Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Abstract
FtsZ assembles in vitro into protofilaments (pfs) that are one subunit thick and ~50 subunits long. In vivo these pfs assemble further into the Z ring, which, along with accessory division proteins, constricts to divide the cell. We have reconstituted Z rings in liposomes in vitro, using pure FtsZ that was modified with a membrane targeting sequence to directly bind the membrane. This FtsZ-mts assembled Z rings and constricted the liposomes without any accessory proteins. We proposed that the force for constriction was generated by a conformational change from straight to curved pfs. Evidence supporting this mechanism came from switching the membrane tether to the opposite side of the pf. These switched-tether pfs assembled "inside-out" Z rings, and squeezed the liposomes from the outside, as expected for the bending model. We propose three steps for the full process of cytokinesis: (a) pf bending generates a constriction force on the inner membrane, but the rigid peptidoglycan wall initially prevents any invagination; (b) downstream proteins associate to the Z ring and remodel the peptidoglycan, permitting it to follow the constricting FtsZ to a diameter of ~250 nm; the final steps of closure of the septum and membrane fusion are achieved by excess membrane synthesis and membrane fluctuations.
Collapse
Affiliation(s)
- Harold P Erickson
- Department of Cell Biology, Duke University, Durham, NC, 27710, USA.
| | - Masaki Osawa
- Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
11
|
Characterization of the in vitro assembly of FtsZ in Arthrobacter strain A3 using light scattering. Int J Biol Macromol 2016; 91:294-8. [PMID: 27164494 DOI: 10.1016/j.ijbiomac.2016.04.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/16/2022]
Abstract
The self-assembly of FtsZ, the bacterial homolog of tubulin, plays an essential role in cell division. Light scattering technique is applied to real-time monitor the in vitro assembly of FtsZ in Arthrobacter strain A3, a newly isolated psychrotrophic bacterium. The critical concentration needed for the assembly is estimated as 6.7μM. The polymerization of FtsZ in Arthrobacter strain A3 requires both GTP and divalent metal ions, while salt is an unfavorable condition for the assembly. The FtsZ polymerizes under a wide range of pHs, with the fastest rate around pH 6.0. The FtsZ from Arthrobacter strain A3 resembles Mycobacterium tuberculosis FtsZ in terms of the dependence on divalent metal ions and the slow polymerization rate, while it is different from M. tuberculosis FtsZ considering the sensitivity to salt and pH. The comparison of FtsZ from different organisms will greatly advance our understanding of the biological role of the key cell division protein.
Collapse
|