1
|
Coutinho de Almeida R, Mahfouz A, Mei H, Houtman E, den Hollander W, Soul J, Suchiman E, Lakenberg N, Meessen J, Huetink K, Nelissen RGHH, Ramos YFM, Reinders M, Meulenbelt I. Identification and characterization of two consistent osteoarthritis subtypes by transcriptome and clinical data integration. Rheumatology (Oxford) 2021; 60:1166-1175. [PMID: 32885253 PMCID: PMC7937023 DOI: 10.1093/rheumatology/keaa391] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/04/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To identify OA subtypes based on cartilage transcriptomic data in cartilage tissue and characterize their underlying pathophysiological processes and/or clinically relevant characteristics. METHODS This study includes n = 66 primary OA patients (41 knees and 25 hips), who underwent a joint replacement surgery, from which macroscopically unaffected (preserved, n = 56) and lesioned (n = 45) OA articular cartilage were collected [Research Arthritis and Articular Cartilage (RAAK) study]. Unsupervised hierarchical clustering analysis on preserved cartilage transcriptome followed by clinical data integration was performed. Protein-protein interaction (PPI) followed by pathway enrichment analysis were done for genes significant differentially expressed between subgroups with interactions in the PPI network. RESULTS Analysis of preserved samples (n = 56) resulted in two OA subtypes with n = 41 (cluster A) and n = 15 (cluster B) patients. The transcriptomic profile of cluster B cartilage, relative to cluster A (DE-AB genes) showed among others a pronounced upregulation of multiple genes involved in chemokine pathways. Nevertheless, upon investigating the OA pathophysiology in cluster B patients as reflected by differentially expressed genes between preserved and lesioned OA cartilage (DE-OA-B genes), the chemokine genes were significantly downregulated with OA pathophysiology. Upon integrating radiographic OA data, we showed that the OA phenotype among cluster B patients, relative to cluster A, may be characterized by higher joint space narrowing (JSN) scores and low osteophyte (OP) scores. CONCLUSION Based on whole-transcriptome profiling, we identified two robust OA subtypes characterized by unique OA, pathophysiological processes in cartilage as well as a clinical phenotype. We advocate that further characterization, confirmation and clinical data integration is a prerequisite to allow for development of treatments towards personalized care with concurrently more effective treatment response.
Collapse
Affiliation(s)
- Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ahmed Mahfouz
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.,Leiden Computational Biology Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequence Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Evelyn Houtman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter den Hollander
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jamie Soul
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Eka Suchiman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nico Lakenberg
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jennifer Meessen
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Department Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kasper Huetink
- Department Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel Reinders
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.,Leiden Computational Biology Center, Leiden, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Monteiro FA, Miranda RM, Samina MC, Dias AF, Raposo AASF, Oliveira P, Reguenga C, Castro DS, Lima D. Tlx3 Exerts Direct Control in Specifying Excitatory Over Inhibitory Neurons in the Dorsal Spinal Cord. Front Cell Dev Biol 2021; 9:642697. [PMID: 33996801 PMCID: PMC8117147 DOI: 10.3389/fcell.2021.642697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022] Open
Abstract
The spinal cord dorsal horn is a major station for integration and relay of somatosensory information and comprises both excitatory and inhibitory neuronal populations. The homeobox gene Tlx3 acts as a selector gene to control the development of late-born excitatory (dILB) neurons by specifying glutamatergic transmitter fate in dorsal spinal cord. However, since Tlx3 direct transcriptional targets remain largely unknown, it remains to be uncovered how Tlx3 functions to promote excitatory cell fate. Here we combined a genomics approach based on chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) and expression profiling, with validation experiments in Tlx3 null embryos, to characterize the transcriptional program of Tlx3 in mouse embryonic dorsal spinal cord. We found most dILB neuron specific genes previously identified to be directly activated by Tlx3. Surprisingly, we found Tlx3 also directly represses many genes associated with the alternative inhibitory dILA neuronal fate. In both cases, direct targets include transcription factors and terminal differentiation genes, showing that Tlx3 directly controls cell identity at distinct levels. Our findings provide a molecular frame for the master regulatory role of Tlx3 in developing glutamatergic dILB neurons. In addition, they suggest a novel function for Tlx3 as direct repressor of GABAergic dILA identity, pointing to how generation of the two alternative cell fates being tightly coupled.
Collapse
Affiliation(s)
- Filipe A Monteiro
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rafael M Miranda
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Marta C Samina
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana F Dias
- Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alexandre A S F Raposo
- Molecular Neurobiology Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Diagnostics, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Carlos Reguenga
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Diogo S Castro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Molecular Neurobiology Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Stem Cells & Neurogenesis Group, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Deolinda Lima
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Zuccotti P, Peroni D, Potrich V, Quattrone A, Dassi E. Hyperconserved Elements in Human 5'UTRs Shape Essential Post-transcriptional Regulatory Networks. Front Mol Biosci 2020; 7:220. [PMID: 33005630 PMCID: PMC7484617 DOI: 10.3389/fmolb.2020.00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
Post-transcriptional regulation (PTR) of gene expression is a powerful determinant of cellular phenotypes. The 5′ and 3′ untranslated regions of the mRNA (UTRs) mediate this role through sequence and secondary structure elements bound by RNA-binding proteins (RBPs) and non-coding RNAs. While functional regions in the 3′UTRs have been extensively studied, the 5′UTRs are still relatively uncharacterized. To fill this gap, we used a computational approach exploiting phylogenetic conservation to identify hyperconserved elements in human 5′UTRs (5′HCEs). Our assumption was that 5′HCEs would represent evolutionarily stable and hence important PTR sites. We identified over 5000 5′HCEs occurring in 10% of human protein-coding genes. These sequence elements are rather short and mostly found in narrowly-spaced clusters. 5′HCEs-containing genes are enriched in essential cellular functions and include 20% of all homeotic genes. Homeotic genes are essential transcriptional regulators, driving body plan and neuromuscular development. However, the role of PTR in their expression is mostly unknown. By integrating computational and experimental approaches we identified RBMX as the initiator RBP of a post-transcriptional cascade regulating many homeotic genes. This work thus establishes 5′HCEs as mediators of essential post-transcriptional regulatory networks.
Collapse
Affiliation(s)
- Paola Zuccotti
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Daniele Peroni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Valentina Potrich
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
4
|
Phan HE, Northorp M, Lalonde RL, Ngo D, Akimenko MA. Differential actinodin1 regulation in embryonic development and adult fin regeneration in Danio rerio. PLoS One 2019; 14:e0216370. [PMID: 31048899 PMCID: PMC6497306 DOI: 10.1371/journal.pone.0216370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
Actinotrichia are the first exoskeletal elements formed during zebrafish fin development. These rigid fibrils serve as skeletal support for the fin fold and as substrates for mesenchymal cell migration. In the adult intact fins, actinotrichia are restricted to the distal domain of the fin. Following fin amputation, actinotrichia also reform during regeneration. The actinodin gene family codes for structural proteins of actinotrichia. We have previously identified cis-acting regulatory elements in a 2kb genomic region upstream of the first exon of actinodin1, termed 2P, required for tissue-specific expression in the fin fold ectoderm and mesenchyme during embryonic development. Indeed, 2P contains an ectodermal enhancer in a 150bp region named epi. Deletion of epi from 2P results in loss of ectodermal-specific activity. In the present study, we sought to further characterize the activity of these regulatory sequences throughout fin development and during adult fin regeneration. Using a reporter transgenic approach, we show that a site within the epi region, termed epi3, contains an early mesenchymal-specific repressor. We also show that the larval fin fold ectodermal enhancer within epi3 remains functional in the basal epithelial layer during fin regeneration. We show that the first non-coding exon and first intron of actinodin1 contains a transcriptional enhancer and an alternative promoter that are necessary for the persistence of reporter expression reminiscent of actinodin1 expression during adulthood. Altogether, we have identified cis-acting regulatory elements that are required for tissue-specific expression as well as full recapitulation of actinodin1 expression during adulthood. Furthermore, the characterization of these elements provides us with useful molecular tools for the enhancement of transgene expression in adulthood.
Collapse
Affiliation(s)
- Hue-Eileen Phan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marissa Northorp
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert L. Lalonde
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dung Ngo
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
5
|
Dong J, Lv Z, Chen Q, Wang X, Li F. PRRX1 drives tamoxifen therapy resistance through induction of epithelial-mesenchymal transition in MCF-7 breast cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2629-2635. [PMID: 31938377 PMCID: PMC6958258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/20/2018] [Indexed: 06/10/2023]
Abstract
PURPOSE Resistance to endocrine therapies is a major cause of disease relapse and mortality in estrogen receptor (ER)-positive breast cancers, which has been associated with tumor epithelial-mesenchymal transition (EMT). In this study, we investigated the contribution of the EMT-inducing factor paired related homeobox 1 (PRRX1) to tamoxifen (TAM) resistance acquired in vitro using ER-positive MCF-7 breast cancer cells. METHODS PRRX1 was overexpressed in MCF-7 cells through transfection; cells transfected with a blank vector served as the control. The morphological changes and transfection efficiency were observed by inverted fluorescence microscopy. The expression of ER and EMT-related proteins and genes was evaluated by Western blot and real-time polymerase chain reaction analysis, respectively. Finally, we evaluated the EMT features of the breast cancer cells and their response to TAM treatment. RESULTS The transfection efficiency was greater than 80%, and the expression level of PRRX1 protein was significantly higher after transfection, whereas the expression of ER protein was significantly lower after transfection. The overexpression of PRRX1 changed the morphology of breast cancer cells from a "paving stone" to a long spindle shape. The mRNA expression levels of PRRX1 and vimentin were significantly higher, whereas that of E-cadherin was significantly lower after transfection. The proliferative level of the breast cancer cells after transfection was significantly increased at 12, 24 and 48 h after treatment with TAM. At 24 h of TAM treatment, the half-maximal inhibitory concentration of the transfected cells was significantly higher than that before transfection. Moreover, the PRRX1-overexpressing MCF-7 breast cancer cells acquired an EMT phenotype and displayed decreased levels of ER targets to ultimately acquire resistance to TAM. CONCLUSIONS PRRX1 overexpression can induce EMT to promote resistance to TAM in MCF-7 breast cancer cells, partly by reducing ER expression. It is suggested that in clinical practice, PRRX1 gene expression detection can be performed in patients with hormone-receptor-positive breast cancer to guide our medication and prognosis.
Collapse
Affiliation(s)
| | - Zhidong Lv
- Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, China
| | - Qingfeng Chen
- Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, China
| | - Xingang Wang
- Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, China
| | - Funian Li
- Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong Province, China
| |
Collapse
|
6
|
Mondejar R, Lucas M. Molecular diagnosis in cerebral cavernous malformations. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2015.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
A role for prolyl isomerase PIN1 in the phosphorylation-dependent modulation of PRRXL1 function. Biochem J 2017; 474:683-697. [PMID: 28049756 DOI: 10.1042/bcj20160560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/10/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022]
Abstract
Prrxl1 encodes for a paired-like homeodomain transcription factor essential for the correct establishment of the dorsal root ganglion - spinal cord nociceptive circuitry during development. Prrxl1-null mice display gross anatomical disruption of this circuitry, which translates to a markedly diminished sensitivity to noxious stimuli. Here, by the use of an immunoprecipitation and mass spectrometry approach, we identify five highly conserved phosphorylation sites (T110, S119, S231, S233 and S251) in PRRXL1 primary structure. Four are phospho-S/T-P sites, which suggest a role for the prolyl isomerase PIN1 in regulating PRRXL1. Accordingly, PRRXL1 physically interacts with PIN1 and displays diminished transcriptional activity in a Pin1-null cell line. Additionally, these S/T-P sites seem to be important for PRRXL1 conformation, and their point mutation to alanine or aspartate down-regulates PRRXL1 transcriptional activity. Altogether, our findings provide evidence for a putative novel role of PIN1 in the development of the nociceptive system and indicate phosphorylation-mediated conformational changes as a mechanism for regulating the PRRXL1 role in the process.
Collapse
|
8
|
Analysis of CCM1 expression uncovers novel minor-form exons and variable splicing patterns. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0435-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Mondejar R, Lucas M. Molecular diagnosis in cerebral cavernous malformations. Neurologia 2015; 32:540-545. [PMID: 26304651 DOI: 10.1016/j.nrl.2015.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Cerebral cavernous malformations (CCMs; OMIM 116860) are enlarged vascular cavities without intervening brain parenchyma whose estimated prevalence in the general population is between 0.1% and 0.5%. Familial CCM is an autosomal dominant disease with incomplete clinical and radiological penetrance. Three genes have been linked to development of the lesions: CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10. DEVELOPMENT The aetiological mutation is not detected in a large percentage of cases and new approaches are therefore needed. The aim of this review is to analyse current molecular techniques and the possible mutations or variations which can be detected in a molecular genetics or molecular biology laboratory. Likewise, we will analyse other alternatives that may help detect mutations in those patients showing negative results. CONCLUSIONS A molecular diagnosis of cerebral cavernous malformations should provide at least the copy number variation and sequencing of CCM genes. In addition, appropriate genetic counselling is a crucial source of information and support for patients and their relatives.
Collapse
Affiliation(s)
- R Mondejar
- Servicio de Biología Molecular, UGC Bioquímica Clínica, Hospital Universitario Virgen Macarena, Sevilla, España.
| | - M Lucas
- Servicio de Biología Molecular, UGC Bioquímica Clínica, Hospital Universitario Virgen Macarena, Sevilla, España
| |
Collapse
|
10
|
Regadas I, Soares-Dos-Reis R, Falcão M, Matos MR, Monteiro FA, Lima D, Reguenga C. Dual role of Tlx3 as modulator of Prrxl1 transcription and phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1121-31. [PMID: 25138281 DOI: 10.1016/j.bbagrm.2014.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/25/2014] [Accepted: 08/11/2014] [Indexed: 01/17/2023]
Abstract
The proper establishment of the dorsal root ganglion/spinal cord nociceptive circuitry depends on a group of homeodomain transcription factors that includes Prrxl1, Brn3a and Tlx3. By the use of epistatic analysis, it was suggested that Tlx3 and Brn3a, which highly co-localize with Prrxl1 in these tissues, are required to maintain Prrxl1 expression. Here, we report two Tlx3-dependent transcriptional mechanisms acting on Prrxl1 alternative promoters, referred to as P3 and P1/P2 promoters. We demonstrate that (i) Tlx3 induces the transcriptional activity of the TATA-containing promoter P3 by directly binding to a bipartite DNA motif and (ii) it synergistically interacts with Prrxl1 by indirectly activating the Prrxl1 TATA-less promoters P1/P2 via the action of Brn3a. The Tlx3 N-terminal domain 1-38 was shown to have a major role on the overall Tlx3 transcriptional activity and the C-terminus domain (amino acids 256-291) to mediate the Tlx3 effect on promoters P1/P2. On the other hand, the 76-111 domain was shown to decrease Tlx3 activity on the TATA-promoter P3. In addition to its action on Prrxl1 alternative promoters, Tlx3 proved to have the ability to induce Prrxl1 phosphorylation. The Tlx3 domain responsible for Prrxl1 hyperphosphorylation was mapped and encompasses amino acid residues 76 to 111. Altogether, our results suggest that Tlx3 uses distinct mechanisms to tightly modulate Prrxl1 activity, either by controlling its transcriptional levels or by increasing Prrxl1 phosphorylation state.
Collapse
Affiliation(s)
- Isabel Regadas
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto Porto, 4200-319, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150, Portugal
| | - Ricardo Soares-Dos-Reis
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto Porto, 4200-319, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150, Portugal; Centro Hospitalar de São João, Porto 4200-319, Portugal
| | - Miguel Falcão
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto Porto, 4200-319, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150, Portugal
| | - Mariana Raimundo Matos
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto Porto, 4200-319, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150, Portugal
| | - Filipe Almeida Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto Porto, 4200-319, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150, Portugal
| | - Deolinda Lima
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto Porto, 4200-319, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150, Portugal
| | - Carlos Reguenga
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto Porto, 4200-319, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150, Portugal.
| |
Collapse
|
11
|
Monteiro CB, Costa MF, Reguenga C, Lima D, Castro DS, Monteiro FA. Paired related homeobox protein-like 1 (Prrxl1) controls its own expression by a transcriptional autorepression mechanism. FEBS Lett 2014; 588:3475-82. [PMID: 25131932 DOI: 10.1016/j.febslet.2014.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/21/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
The homeodomain factor paired related homeobox protein-like 1 (Prrxl1) is crucial for proper assembly of dorsal root ganglia (DRG)-dorsal spinal cord (SC) pain-sensing circuit. By performing chromatin immunoprecipitation with either embryonic DRG or dorsal SC, we identified two evolutionarily conserved regions (i.e. proximal promoter and intron 4) of Prrxl1 locus that show tissue-specific binding of Prrxl1. Transcriptional assays confirm the identified regions can mediate repression by Prrxl1, while gain-of-function studies in Prrxl1 expressing ND7/23 cells indicate Prrxl1 can down-regulate its own expression. Altogether, our results suggest that Prrxl1 uses distinct regulatory regions to repress its own expression in DRG and dorsal SC.
Collapse
Affiliation(s)
- César B Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| | - Mariana F Costa
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| | - Carlos Reguenga
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| | - Deolinda Lima
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| | - Diogo S Castro
- Molecular Neurobiology, IGC - Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| | - Filipe A Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| |
Collapse
|