1
|
Islami V, Bittner P, Fiala T, Hentzen NB, Zenobi R, Wennemers H. Self-Sorting Collagen Heterotrimers. J Am Chem Soc 2024; 146:1789-1793. [PMID: 38156954 DOI: 10.1021/jacs.3c12295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nature uses elaborate methods to control protein assembly, including that of heterotrimeric collagen. Here, we established design principles for the composition and register-selective assembly of synthetic collagen heterotrimers. The assembly code enabled the self-sorting of eight different strands into three─out of 512 possible─triple helices via complementary (4S)-aminoproline and aspartate residues. Native ESI-MS corroborated the specific assembly into coexisting heterotrimers.
Collapse
Affiliation(s)
- Valdrin Islami
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Philipp Bittner
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Tomas Fiala
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Nina B Hentzen
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Hulgan SAH, Jalan AA, Li IC, Walker DR, Miller MD, Kosgei AJ, Xu W, Phillips GN, Hartgerink JD. Covalent Capture of Collagen Triple Helices Using Lysine–Aspartate and Lysine–Glutamate Pairs. Biomacromolecules 2020; 21:3772-3781. [DOI: 10.1021/acs.biomac.0c00878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sarah A. H. Hulgan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Abhishek A. Jalan
- Department of Biochemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - I-Che Li
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Douglas R. Walker
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Mitchell D. Miller
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Abigael J. Kosgei
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Weijun Xu
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - George N. Phillips
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Li IC, Hulgan SAH, Walker DR, Farndale RW, Hartgerink JD, Jalan AA. Covalent Capture of a Heterotrimeric Collagen Helix. Org Lett 2019; 21:5480-5484. [DOI: 10.1021/acs.orglett.9b01771] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- I-Che Li
- Rice University Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Sarah A. H. Hulgan
- Rice University Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Douglas R. Walker
- Rice University Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Richard W. Farndale
- University of Cambridge Department of Biochemistry, Downing Site, Cambridge CB2 1QW, U.K
| | - Jeffrey D. Hartgerink
- Rice University Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Abhishek A. Jalan
- University of Bayreuth Department of Biochemistry, Universitätsstraße 30, Bayreuth 95447, Germany
| |
Collapse
|
4
|
How electrostatic networks modulate specificity and stability of collagen. Proc Natl Acad Sci U S A 2018; 115:6207-6212. [PMID: 29844169 DOI: 10.1073/pnas.1802171115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One-quarter of the 28 types of natural collagen exist as heterotrimers. The oligomerization state of collagen affects the structure and mechanics of the extracellular matrix, providing essential cues to modulate biological and pathological processes. A lack of high-resolution structural information limits our mechanistic understanding of collagen heterospecific self-assembly. Here, the 1.77-Å resolution structure of a synthetic heterotrimer demonstrates the balance of intermolecular electrostatics and hydrogen bonding that affects collagen stability and heterospecificity of assembly. Atomistic simulations and mutagenesis based on the solved structure are used to explore the contributions of specific interactions to energetics. A predictive model of collagen stability and specificity is developed for engineering novel collagen structures.
Collapse
|
5
|
Nanda V, Belure SV, Shir OM. Searching for the Pareto frontier in multi-objective protein design. Biophys Rev 2017; 9:339-344. [PMID: 28799089 DOI: 10.1007/s12551-017-0288-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022] Open
Abstract
The goal of protein engineering and design is to identify sequences that adopt three-dimensional structures of desired function. Often, this is treated as a single-objective optimization problem, identifying the sequence-structure solution with the lowest computed free energy of folding. However, many design problems are multi-state, multi-specificity, or otherwise require concurrent optimization of multiple objectives. There may be tradeoffs among objectives, where improving one feature requires compromising another. The challenge lies in determining solutions that are part of the Pareto optimal set-designs where no further improvement can be achieved in any of the objectives without degrading one of the others. Pareto optimality problems are found in all areas of study, from economics to engineering to biology, and computational methods have been developed specifically to identify the Pareto frontier. We review progress in multi-objective protein design, the development of Pareto optimization methods, and present a specific case study using multi-objective optimization methods to model the tradeoff between three parameters, stability, specificity, and complexity, of a set of interacting synthetic collagen peptides.
Collapse
Affiliation(s)
- Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
- Department of Biochemistry and Molecular Biophysics, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| | - Sandeep V Belure
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
- Department of Biochemistry and Molecular Biophysics, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Ofer M Shir
- Department of Computer Science, Tel-Hai College, Kiryat Shmona, Upper Galilee, Israel
- The Galilee Research Institute-Migal, Kiryat Shmona, Upper Galilee, Israel
| |
Collapse
|
6
|
Sharma U, Carrique L, Vadon-Le Goff S, Mariano N, Georges RN, Delolme F, Koivunen P, Myllyharju J, Moali C, Aghajari N, Hulmes DJS. Structural basis of homo- and heterotrimerization of collagen I. Nat Commun 2017; 8:14671. [PMID: 28281531 PMCID: PMC5353611 DOI: 10.1038/ncomms14671] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Fibrillar collagen molecules are synthesized as precursors, procollagens, with large propeptide extensions. While a homotrimeric form (three α1 chains) has been reported in embryonic tissues as well as in diseases (cancer, fibrosis, genetic disorders), collagen type I usually occurs as a heterotrimer (two α1 chains and one α2 chain). Inside the cell, the role of the C-terminal propeptides is to gather together the correct combination of three α chains during molecular assembly, but how this occurs for different forms of the same collagen type is so far unknown. Here, by structural and mutagenic analysis, we identify key amino acid residues in the α1 and α2 C-propeptides that determine homo- and heterotrimerization. A naturally occurring mutation in one of these alters the homo/heterotrimer balance. These results show how the C-propeptide of the α2 chain has specifically evolved to permit the appearance of heterotrimeric collagen I, the major extracellular building block among the metazoa.
Collapse
Affiliation(s)
- Urvashi Sharma
- Molecular Microbiology and Structural Biochemistry Unit, UMR 5086 CNRS - University of Lyon 1, 7 passage du Vercors, F-69367 Lyon, France
| | - Loïc Carrique
- Molecular Microbiology and Structural Biochemistry Unit, UMR 5086 CNRS - University of Lyon 1, 7 passage du Vercors, F-69367 Lyon, France
| | - Sandrine Vadon-Le Goff
- Tissue Biology and Therapeutic Engineering Unit, UMR 5305 CNRS - University of Lyon 1, 7 passage du Vercors, F-69367 Lyon, France
| | - Natacha Mariano
- Tissue Biology and Therapeutic Engineering Unit, UMR 5305 CNRS - University of Lyon 1, 7 passage du Vercors, F-69367 Lyon, France
| | - Rainier-Numa Georges
- Tissue Biology and Therapeutic Engineering Unit, UMR 5305 CNRS - University of Lyon 1, 7 passage du Vercors, F-69367 Lyon, France
| | - Frederic Delolme
- Tissue Biology and Therapeutic Engineering Unit, UMR 5305 CNRS - University of Lyon 1, 7 passage du Vercors, F-69367 Lyon, France.,SFR Biosciences - Protein Science Facility, University of Lyon 1, Ecole Normale Supérieure de Lyon, INSERM US8, CNRS UMS 3444, 50 Avenue Tony Garnier, F-69366 Lyon, France
| | - Peppi Koivunen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Unit, UMR 5305 CNRS - University of Lyon 1, 7 passage du Vercors, F-69367 Lyon, France
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry Unit, UMR 5086 CNRS - University of Lyon 1, 7 passage du Vercors, F-69367 Lyon, France
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering Unit, UMR 5305 CNRS - University of Lyon 1, 7 passage du Vercors, F-69367 Lyon, France
| |
Collapse
|
7
|
Structural insight for chain selection and stagger control in collagen. Sci Rep 2016; 6:37831. [PMID: 27897211 PMCID: PMC5126661 DOI: 10.1038/srep37831] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
Collagen plays a fundamental role in all known metazoans. In collagens three polypeptides form a unique triple-helical structure with a one-residue stagger to fit every third glycine residue in the inner core without disturbing the poly-proline type II helical conformation of each chain. There are homo- and hetero-trimeric types of collagen consisting of one, two or three distinct chains. Thus there must be mechanisms that control composition and stagger during collagen folding. Here, we uncover the structural basis for both chain selection and stagger formation of a collagen molecule. Three distinct chains (α1, α2 and α3) of the non-collagenous domain 2 (NC2) of type IX collagen are assembled to guide triple-helical sequences in the leading, middle and trailing positions. This unique domain opens the door for generating any fragment of collagen in its native composition and stagger.
Collapse
|
8
|
Pike DH, Nanda V. Empirical estimation of local dielectric constants: Toward atomistic design of collagen mimetic peptides. Biopolymers 2016; 104:360-70. [PMID: 25784456 DOI: 10.1002/bip.22644] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 12/21/2022]
Abstract
One of the key challenges in modeling protein energetics is the treatment of solvent interactions. This is particularly important in the case of peptides, where much of the molecule is highly exposed to solvent due to its small size. In this study, we develop an empirical method for estimating the local dielectric constant based on an additive model of atomic polarizabilities. Calculated values match reported apparent dielectric constants for a series of Staphylococcus aureus nuclease mutants. Calculated constants are used to determine screening effects on Coulombic interactions and to determine solvation contributions based on a modified Generalized Born model. These terms are incorporated into the protein modeling platform protCAD, and benchmarked on a data set of collagen mimetic peptides for which experimentally determined stabilities are available. Computing local dielectric constants using atomistic protein models and the assumption of additive atomic polarizabilities is a rapid and potentially useful method for improving electrostatics and solvation calculations that can be applied in the computational design of peptides.
Collapse
Affiliation(s)
- Douglas H Pike
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854
| |
Collapse
|
9
|
Chiang CH, Horng JC. Cation-π Interaction Induced Folding of AAB-Type Collagen Heterotrimers. J Phys Chem B 2016; 120:1205-11. [PMID: 26821230 DOI: 10.1021/acs.jpcb.5b11189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Collagen is the most predominant component of the extracellular matrix. Natural collagens consist of all identical (AAA, homotrimer), two different (AAB, heterotrimer), or three different (ABC, heterotrimer) peptide chains. Many natural collagens are either AAB- or ABC-type heterotrimers, making heterotrimeric helices better mimics for studying collagen structures in nature. We prepared collagen-mimetic peptides containing cationic (Arg) or aromatic (Phe, Tyr) residues to explore collagen heterotrimer folding via cation-π interactions. Circular dichroism, differential scanning calorimetry, and nuclear magnetic resonance (NMR) measurements showed that the interchain cation-π interactions between cationic and aromatic peptides could induce AAB-type heterotrimer formation. By controlling the mixing molar ratios of cationic and aromatic peptides in solution, we could obtain the heterotrimers with various compositions. We demonstrate the effectiveness of cation-π interactions as a force to fold collagen heterotrimers.
Collapse
Affiliation(s)
- Chu-Harn Chiang
- Department of Chemistry, National Tsing Hua University , 101 Sec. 2 Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University , 101 Sec. 2 Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C.,Frontier Research Center on Fundamental and Applied Science of Matters, National Tsing Hua University , 101 Sec. 2 Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C
| |
Collapse
|
10
|
Jiang T, Vail OA, Jiang Z, Zuo X, Conticello VP. Rational Design of Multilayer Collagen Nanosheets with Compositional and Structural Control. J Am Chem Soc 2015; 137:7793-802. [DOI: 10.1021/jacs.5b03326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Jiang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Owen A. Vail
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhigang Jiang
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xiaobing Zuo
- X-ray
Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | | |
Collapse
|