1
|
Abdi G, Jain M, Patil N, Upadhyay B, Vyas N, Dwivedi M, Kaushal RS. 14-3-3 proteins-a moonlight protein complex with therapeutic potential in neurological disorder: in-depth review with Alzheimer's disease. Front Mol Biosci 2024; 11:1286536. [PMID: 38375509 PMCID: PMC10876095 DOI: 10.3389/fmolb.2024.1286536] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/05/2024] [Indexed: 02/21/2024] Open
Abstract
Alzheimer's disease (AD) affects millions of people worldwide and is a gradually worsening neurodegenerative condition. The accumulation of abnormal proteins, such as tau and beta-amyloid, in the brain is a hallmark of AD pathology. 14-3-3 proteins have been implicated in AD pathology in several ways. One proposed mechanism is that 14-3-3 proteins interact with tau protein and modulate its phosphorylation, aggregation, and toxicity. Tau is a protein associated with microtubules, playing a role in maintaining the structural integrity of neuronal cytoskeleton. However, in the context of Alzheimer's disease (AD), an abnormal increase in its phosphorylation occurs. This leads to the aggregation of tau into neurofibrillary tangles, which is a distinctive feature of this condition. Studies have shown that 14-3-3 proteins can bind to phosphorylated tau and regulate its function and stability. In addition, 14-3-3 proteins have been shown to interact with beta-amyloid (Aβ), the primary component of amyloid plaques in AD. 14-3-3 proteins can regulate the clearance of Aβ through the lysosomal degradation pathway by interacting with the lysosomal membrane protein LAMP2A. Dysfunction of lysosomal degradation pathway is thought to contribute to the accumulation of Aβ in the brain and the progression of AD. Furthermore, 14-3-3 proteins have been found to be downregulated in the brains of AD patients, suggesting that their dysregulation may contribute to AD pathology. For example, decreased levels of 14-3-3 proteins in cerebrospinal fluid have been suggested as a biomarker for AD. Overall, these findings suggest that 14-3-3 proteins may play an important role in AD pathology and may represent a potential therapeutic target for the disease. However, further research is needed to fully understand the mechanisms underlying the involvement of 14-3-3 proteins in AD and to explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Gholamareza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Mukul Jain
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Nil Patil
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Bindiya Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Nigam Vyas
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Biophysics and Structural Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Biophysics and Structural Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
2
|
Li J, Liu Y, Lai W, Song L, Deng J, Li C, Jiang S. MicroRNA-126 regulates macrophage polarization to prevent the resorption of alveolar bone in diabetic periodontitis. Arch Oral Biol 2023; 150:105686. [PMID: 36947912 DOI: 10.1016/j.archoralbio.2023.105686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVE This study aims to investigate the effects of microRNA-126 (miR-126) on the macrophage polarization in vitro and alveolar bone resorption in vivo. DESIGN The relationship between miR-126 and MEK/ERK kinase 2 (MEKK2) was confirmed by dual-luciferase reporter assay. Real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay or Western blot was used to detect the changes of miR-126, inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1), tumor necrosis factor (TNF)-α, interleukin (IL)-10, MEKK2 and MEKK2-related pathways: mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) in RAW264.7 macrophages challenged with Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) and/or high glucose and/or miR-126 mimic. In mice with diabetic periodontitis, the expressions of iNOS and Arg-1 in gingiva, and alveolar bone level were detected after miR-126 mimic injection. RESULTS MiR-126 could directly bind with MEKK2 3'-untranslated region (UTR). MEKK2, phosphorylation of NF-κB and MAPK signaling proteins, TNF-α and iNOS increased (P < 0.05), while miR-126, Arg-1 and IL-10 were inhibited (P < 0.05) in macrophage challenged with high glucose and/or P. gingivalis LPS, however, miR-126 mimic reversed these effects (P < 0.05). The expressions of iNOS in gingiva and alveolar bone resorption were elevated (P < 0.05), the expression of Arg-1 in gingiva decreased (P < 0.05) in mice with diabetic periodontitis, which could be inhibited by miR-126 mimic. CONCLUSIONS miR-126 might prevent alveolar bone resorption in diabetic periodontitis and inhibit macrophage M1 polarization via regulating MEKK2 signaling pathway.
Collapse
Affiliation(s)
- Jiajun Li
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Yue Liu
- School of Stomatology, Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China; Stomatological Center, Peking University Shenzhen Hospital, Shenzhen 5180036, Guangdong, People's Republic of China; Guangdong Provincial High-level Clinical Key Specialty, Shenzhen 5180036, Guangdong, People's Republic of China; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen 5180036, Guangdong, People's Republic of China
| | - Wen Lai
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Liting Song
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Jiayin Deng
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Changyi Li
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China.
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen 5180036, Guangdong, People's Republic of China; Guangdong Provincial High-level Clinical Key Specialty, Shenzhen 5180036, Guangdong, People's Republic of China; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen 5180036, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Seo SB, Lee JJ, Yun HH, Im CN, Kim YS, Ko JH, Lee JH. 14-3-3β Depletion Drives a Senescence Program in Glioblastoma Cells Through the ERK/SKP2/p27 Pathway. Mol Neurobiol 2017; 55:1259-1270. [PMID: 28116547 DOI: 10.1007/s12035-017-0407-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
The induction of senescence in cancer cells has recently been implicated as a mechanism of tumor regression in response to various modes of stress. 14-3-3 proteins are conserved scaffolding molecules that are involved in various cellular functions. Among the seven isoforms, 14-3-3β is specifically expressed in astrocytoma in correlation with the malignancy grade. We investigated the possible role of 14-3-3β in the regulation of senescence induction in A172 glioblastoma cells. The knockdown of 14-3-3β by specific small interfering RNA resulted in a significant change in cellular phenotypes and an increase in cells staining positive for senescence-associated β-galactosidase. Western blotting of the 14-3-3β-depleted A172 cells revealed increased p27 expression and decreased SKP2 expression, while the expression of p53 and p21 was not altered. Subsequently, we demonstrated that ERK is a key modulator of SKP2/p27 axis activity in 14-3-3β-mediated senescence based on the following: (1) 14-3-3β knockdown decreased p-ERK levels; (2) treatment with U0126, an MEK inhibitor, completely reproduced the senescence morphology as well as the expression profiles of p27 and SKP2; and (3) the senescence phenotypes induced by 14-3-3β depletion were considerably recovered by constitutively active ERK expression. Our results indicate that 14-3-3β negatively regulates senescence in glioblastoma cells via the ERK/SKP2/p27 pathway. Furthermore, 14-3-3β depletion also resulted in senescence phenotypes in U87 glioblastoma cells, suggesting that 14-3-3β could be targeted to induce premature senescence as a therapeutic strategy against glioblastoma progression.
Collapse
Affiliation(s)
- Sung Bin Seo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Je-Jung Lee
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Republic of Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Chang-Nim Im
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
4
|
Zhu G, Qiu W, Li Y, Zhao C, He F, Zhou M, Wang L, Zhao D, Lu Y, Zhang J, Liu Y, Yu T, Wang Y. Sublytic C5b-9 Induces Glomerular Mesangial Cell Apoptosis through the Cascade Pathway of MEKK2-p38 MAPK-IRF-1-TRADD-Caspase 8 in Rat Thy-1 Nephritis. THE JOURNAL OF IMMUNOLOGY 2016; 198:1104-1118. [PMID: 28039298 DOI: 10.4049/jimmunol.1600403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
The apoptosis of glomerular mesangial cells (GMCs) in the early phase of rat Thy-1 nephritis (Thy-1N), a model of human mesangioproliferative glomerulonephritis (MsPGN), is primarily triggered by sublytic C5b-9. However, the mechanism of GMC apoptosis induced by sublytic C5b-9 remains unclear. In this study, we demonstrate that expressions of TNFR1-associated death domain-containing protein (TRADD) and IFN regulatory factor-1 (IRF-1) were simultaneously upregulated in the renal tissue of Thy-1N rats (in vivo) and in GMCs under sublytic C5b-9 stimulation (in vitro). In vitro, TRADD was confirmed to be a downstream gene of IRF-1, because IRF-1 could bind to TRADD gene promoter to promote its transcription, leading to caspase 8 activation and GMC apoptosis. Increased phosphorylation of p38 MAPK was verified to contribute to IRF-1 and TRADD production and caspase 8 activation, as well as to GMC apoptosis induced by sublytic C5b-9. Furthermore, phosphorylation of MEK kinase 2 (MEKK2) mediated p38 MAPK activation. More importantly, three sites (Ser153/164/239) of MEKK2 phosphorylation were identified and demonstrated to be necessary for p38 MAPK activation. In addition, silencing of renal MEKK2, IRF-1, and TRADD genes or inhibition of p38 MAPK activation in vivo had obvious inhibitory effects on GMC apoptosis, secondary proliferation, and urinary protein secretion in rats with Thy-1N. Collectively, these findings indicate that the cascade axis of MEKK2-p38 MAPK-IRF-1-TRADD-caspase 8 may play an important role in GMC apoptosis following exposure to sublytic C5b-9 in rat Thy-1N.
Collapse
Affiliation(s)
- Ganqian Zhu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yongting Li
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Chenhui Zhao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China; and
| | - Fengxia He
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Mengya Zhou
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Lulu Wang
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yanlai Lu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Jing Zhang
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yu Liu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Tianyi Yu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China; .,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
6
|
Shen CT, Qiu ZL, Song HJ, Wei WJ, Luo QY. miRNA-106a directly targeting RARB associates with the expression of Na(+)/I(-) symporter in thyroid cancer by regulating MAPK signaling pathway. J Exp Clin Cancer Res 2016; 35:101. [PMID: 27342319 PMCID: PMC4919890 DOI: 10.1186/s13046-016-0377-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Serum miRNAs profiles between papillary thyroid carcinoma (PTC) patients with non-(131)I and (131)I-avid lung metastases are differentially expressed. These miRNAs have to be further validated and the role of these miRNAs in the molecular function level of thyroid cancer cell lines has not been investigated. METHODS Expression levels of six identified miRNAs were assessed via quantitative real-time PCR (qRT-PCR) in the serum of eligible patients. Dual-luciferase reporter assay was used to determine the potential target of miR-106a. Cell viability and apoptosis were evaluated by MTT assay and flow cytometry analysis, respectively. The change of gene expression was detected by qRT-PCR and western blotting analysis. In vitro iodine uptake assay was conducted by a γ-counter. RESULTS Compared to PTC patients with (131)I-avid lung metastases, miR-106a was up-regulated in the serum of patients with non-(131)I-avid lung metastases. The results of dual-luciferase reporter assay demonstrated that miR-106a directly targeted retinoic acid receptor beta (RARB) 3'-UTR. miR-106a-RARB promoted viability of thyroid cancer cells by regulating MEKK2-ERK1/2 and MEKK2-ERK5 pathway. miR-106a-RARB inhibited apoptosis of thyroid cancer cells by regulating ASK1-p38 pathway. Moreover, miR-106a-RARB could regulate the expression of sodium iodide symporter, TSH receptor and alter the iodine uptake function of thyroid cancer cells. CONCLUSIONS miRNA-106a, directly targeting RARB, associates with the viability, apoptosis, differentiation and the iodine uptake function of thyroid cancer cell lines by regulating MAPK signaling pathway in vitro. These findings in the present study may provide new strategies for the diagnosis and treatment in radioiodine-refractory differentiated thyroid carcinoma.
Collapse
Affiliation(s)
- Chen-Tian Shen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Zhong-Ling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Hong-Jun Song
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Wei-Jun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| |
Collapse
|
7
|
Na HS, Park MH, Song YR, Kim S, Kim HJ, Lee JY, Choi JI, Chung J. Elevated MicroRNA-128 in Periodontitis Mitigates Tumor Necrosis Factor-α Response via p38 Signaling Pathway in Macrophages. J Periodontol 2016; 87:e173-82. [PMID: 27240473 DOI: 10.1902/jop.2016.160033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease resulting from an inflammatory response to subgingival plaque bacteria, including Porphyromonas gingivalis. MicroRNA (miRNA) is a current focus in regulating the inflammatory processes. In this study, the inflammatory miRNA expression in gingival tissues of patients with periodontitis and of healthy individuals is compared, and its role in regulating the inflammatory response is examined. METHODS Gingival tissues from patients with periodontitis and healthy individuals were collected for miRNA microarray. THP-1 and CA9-22 cells were challenged with P. gingivalis, and miRNA expression was determined by real-time polymerase chain reaction. Target genes for miRNA were predicted using TargetScanHuman database, and miRNA gene expressions were reviewed using public databases. For the functional study, THP-1 cells were transfected with a miRNA-128 mimic, and target gene expression was compared with THP-1 cells challenged with P. gingivalis. For the tolerance test, THP-1 cells transfected with miRNA-128 mimic were treated with phorbol 12-myristate 13-acetate (PMA) or paraformaldehyde (PFA)-fixed Escherichia coli. Tumor necrosis factor (TNF)-α production was determined by enzyme-linked immunosorbent assay, and mitogen-activated protein kinase (MAPK) protein phosphorylation was determined by Western blot. RESULTS Gingival tissues from patients with periodontitis showed increased expression of miRNA-128, miRNA-34a, and miRNA-381 and decreased expression of miRNA-15b, miRNA-211, miRNA-372, and miRNA-656. THP-1 cells and CA9-22 cells challenged with P. gingivalis showed increased miRNA-128 expression. Among the predicted miRNA-128 target genes, several genes that are involved in MAPK signaling pathway showed similar gene expression pattern between P. gingivalis challenge and miRNA-128 mimic transfection. In THP-1 cells transfected with miRNA-128 mimic, TNF-α production was lower, and phosphorylation of p38 was inhibited when challenged with PMA or PFA-fixed E. coli. CONCLUSION miRNA-128 may be involved in mitigating the inflammatory response induced by P. gingivalis in periodontitis.
Collapse
Affiliation(s)
- Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Mi Hee Park
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Yu Ri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Seyeon Kim
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Hyung-Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University
| | - Ju Youn Lee
- Department of Periodontics, School of Dentistry, Pusan National University
| | - Jeom-Il Choi
- Department of Periodontics, School of Dentistry, Pusan National University
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
8
|
Kurakin A, Bredesen DE. Dynamic self-guiding analysis of Alzheimer's disease. Oncotarget 2016; 6:14092-122. [PMID: 26041885 PMCID: PMC4546454 DOI: 10.18632/oncotarget.4221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 01/25/2023] Open
Abstract
We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Alexei Kurakin
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Dale E Bredesen
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, University of California, Los Angeles, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
9
|
The cerebral cavernous malformation proteins CCM2L and CCM2 prevent the activation of the MAP kinase MEKK3. Proc Natl Acad Sci U S A 2015; 112:14284-9. [PMID: 26540726 DOI: 10.1073/pnas.1510495112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Three genes, CCM1, CCM2, and CCM3, interact genetically and biochemically and are mutated in cerebral cavernous malformations (CCM). A recently described member of this CCM family of proteins, CCM2-like (CCM2L), has high homology to CCM2. Here we show that its relative expression in different tissues differs from that of CCM2 and, unlike CCM2, the expression of CCM2L in endothelial cells is regulated by density, flow, and statins. In vitro, both CCM2L and CCM2 bind MEKK3 in a complex with CCM1. Both CCM2L and CCM2 interfere with MEKK3 activation and its ability to phosphorylate MEK5, a downstream target. The in vivo relevance of this regulation was investigated in zebrafish. A knockdown of ccm2l and ccm2 in zebrafish leads to a more severe "big heart" and circulation defects compared with loss of function of ccm2 alone, and also leads to substantial body axis abnormalities. Silencing of mekk3 rescues the big heart and body axis phenotype, suggesting cross-talk between the CCM proteins and MEKK3 in vivo. In endothelial cells, CCM2 deletion leads to activation of ERK5 and a transcriptional program that are downstream of MEKK3. These findings suggest that CCM2L and CCM2 cooperate to regulate the activity of MEKK3.
Collapse
|
10
|
Aghazadeh Y, Papadopoulos V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discov Today 2015; 21:278-87. [PMID: 26456530 DOI: 10.1016/j.drudis.2015.09.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022]
Abstract
14-3-3 proteins regulate intracellular signaling pathways, such as signal transduction, protein trafficking, cell cycle, and apoptosis. In addition to the ubiquitous roles of 14-3-3 isoforms, unique tissue-specific functions are also described for each isoform. Owing to their role in regulating cell cycle, protein trafficking, and steroidogenesis, 14-3-3 proteins are prevalent in human diseases, such as cancer, neurodegeneration, and reproductive disorders, and, therefore, serve as valuable drug targets. In this review, we summarize the role of 14-3-3 proteins in normal and disease states, with a focus on 14-3-3γ and ɛ. We also discuss drug compounds targeting 14-3-3 proteins and their potential therapeutic uses.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
11
|
Woodcock JM, Coolen C, Goodwin KL, Baek DJ, Bittman R, Samuel MS, Pitson SM, Lopez AF. Destabilisation of dimeric 14-3-3 proteins as a novel approach to anti-cancer therapeutics. Oncotarget 2015; 6:14522-36. [PMID: 25971334 PMCID: PMC4546484 DOI: 10.18632/oncotarget.3995] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/11/2015] [Indexed: 12/24/2022] Open
Abstract
14-3-3 proteins play a pivotal role in controlling cell proliferation and survival, two commonly dysregulated hallmarks of cancers. 14-3-3 protein expression is enhanced in many human cancers and correlates with more aggressive tumors and poor prognosis, suggesting a role for 14-3-3 proteins in tumorigenesis and/or progression. We showed previously that the dimeric state of 14-3-3 proteins is regulated by the lipid sphingosine, a physiological inducer of apoptosis. As the functions of 14-3-3 proteins are dependent on their dimeric state, this sphingosine-mediated 14-3-3 regulation provides a possible means to target dimeric 14-3-3 for therapeutic effect. However, sphingosine mimics are needed that are not susceptible to sphingolipid metabolism. We show here the identification and optimization of sphingosine mimetics that render dimeric 14-3-3 susceptible to phosphorylation at a site buried in the dimer interface and induce mitochondrial-mediated apoptosis. Two such compounds, RB-011 and RB-012, disrupt 14-3-3 dimers at low micromolar concentrations and induce rapid down-regulation of Raf-MAPK and PI3K-Akt signaling in Jurkat cells. Importantly, both RB-011 and RB-012 induce apoptosis of human A549 lung cancer cells and RB-012, through disruption of MAPK signaling, reduces xenograft growth in mice. Thus, these compounds provide proof-of-principle for this novel 14-3-3-targeting approach for anti-cancer drug discovery.
Collapse
Affiliation(s)
- Joanna M. Woodcock
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Carl Coolen
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Katy L. Goodwin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Dong Jae Baek
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, NY, USA
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, NY, USA
| | - Michael S. Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stuart M. Pitson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Angel F. Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Chen DY, Dai DF, Hua Y, Qi WQ. p53 suppresses 14-3-3γ by stimulating proteasome-mediated 14-3-3γ protein degradation. Int J Oncol 2014; 46:818-24. [PMID: 25384678 DOI: 10.3892/ijo.2014.2740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/26/2014] [Indexed: 11/05/2022] Open
Abstract
14-3-3 proteins are a family of highly conserved polypeptides that interact with a large number of proteins and play a role in a wide variety of cellular processes. 14-3-3 proteins have been demonstrated overexpressed in several cancers and serving as potential oncogenes. In a previous study we showed one isoform of the 14-3-3 family, 14-3-3γ was negatively regulated by p53 through binding to its promoter and inhibiting its transcription. In the present study we investigated both p53 and 14-3-3γ protein levels in human lung cancerous tissues and normal lung tissues. We found 14-3-3γ expression correlated to p53 overexpression in lung cancer tissues. Ecotopic expression of wild-type p53, but not mutant p53 (R175H) suppressed both endogenous and exogenous 14-3-3γ in colon and lung cancer cell lines. Further examination demonstrated that p53 interacted with C-terminal domain of 14-3-3γ and induced 14-3-3γ ubiquitination. MG132, a specific inhibitor of the 26S proteasome, could block the effect of p53 on 14-3-3γ protein levels, suggesting that p53 suppressed 14-3-3γ by stimulating the process of proteasome-mediated degradation of 14-3-3γ. These results indicate that the inhibitory effect of p53 on 14-3-3γ is mediated also by a post-transcriptional mechanism. Loss of p53 function may result in upregulation of 14-3-3γ in lung cancers.
Collapse
Affiliation(s)
- De-Yu Chen
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Dong-Fang Dai
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Ye Hua
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Wen-Qing Qi
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
13
|
Mazur PK, Reynoird N, Khatri P, Jansen PWTC, Wilkinson AW, Liu S, Barbash O, Van Aller GS, Huddleston M, Dhanak D, Tummino PJ, Kruger RG, Garcia BA, Butte AJ, Vermeulen M, Sage J, Gozani O. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 2014; 510:283-7. [PMID: 24847881 PMCID: PMC4122675 DOI: 10.1038/nature13320] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Abstract
Deregulation in lysine methylation signaling has emerged as a common etiologic factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics1. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumors2-4. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP Kinase signaling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma (PDAC) and lung adenocarcinoma (LAC), we found that abrogating SMYD3 catalytic activity inhibits tumor development in response to oncogenic Ras. We employed protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signaling module. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP Kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signaling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signaling.
Collapse
Affiliation(s)
- Pawel K Mazur
- 1] Department of Pediatrics, Stanford University School of Medicine, California 94305, USA [2] Department of Genetics, Stanford University School of Medicine, California 94305, USA [3]
| | - Nicolas Reynoird
- 1] Department of Biology, Stanford University, California 94305, USA [2]
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, and Department of Medicine, Stanford University School of Medicine, California 94305, USA
| | - Pascal W T C Jansen
- Department of Molecular Cancer Research and Department of Medical Oncology, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Alex W Wilkinson
- Department of Biology, Stanford University, California 94305, USA
| | - Shichong Liu
- Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Olena Barbash
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA
| | - Glenn S Van Aller
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA
| | - Michael Huddleston
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA
| | - Dashyant Dhanak
- 1] Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA [2] Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, USA (D.D.); Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525GA Nijmegen, The Netherlands (M.V.)
| | - Peter J Tummino
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA
| | - Ryan G Kruger
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania 19426 USA
| | - Benjamin A Garcia
- Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Atul J Butte
- 1] Department of Pediatrics, Stanford University School of Medicine, California 94305, USA [2] Department of Genetics, Stanford University School of Medicine, California 94305, USA
| | - Michiel Vermeulen
- 1] Department of Molecular Cancer Research and Department of Medical Oncology, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands [2] Janssen Research and Development, 1400 McKean Road, Spring House, Pennsylvania 19477, USA (D.D.); Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525GA Nijmegen, The Netherlands (M.V.)
| | - Julien Sage
- 1] Department of Pediatrics, Stanford University School of Medicine, California 94305, USA [2] Department of Genetics, Stanford University School of Medicine, California 94305, USA [3]
| | - Or Gozani
- 1] Department of Biology, Stanford University, California 94305, USA [2]
| |
Collapse
|
14
|
MEKK2 regulates focal adhesion stability and motility in invasive breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:945-54. [PMID: 24491810 DOI: 10.1016/j.bbamcr.2014.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 01/08/2023]
Abstract
MEK Kinase 2 (MEKK2) is a serine/threonine kinase that functions as a MAPK kinase kinase (MAP3K) to regulate activation of Mitogen-activated Protein Kinases (MAPKs). We recently have demonstrated that ablation of MEKK2 expression in invasive breast tumor cells dramatically inhibits xenograft metastasis, but the mechanism by which MEKK2 influences metastasis-related tumor cell function is unknown. In this study, we investigate MEKK2 function and demonstrate that silencing MEKK2 expression in breast tumor cell significantly enhances cell spread area and focal adhesion stability while reducing cell migration. We show that cell attachment to the matrix proteins fibronectin or Matrigel induces MEKK2 activation and localization to focal adhesions. Further, we reveal that MEKK2 ablation enhances focal adhesion size and frequency, thereby linking MEKK2 function to focal adhesion stability. Finally, we show that MEKK2 knockdown inhibits fibronectin-induced Extracellular Signal-Regulated Kinase 5 (ERK5) signaling and Focal Adhesion Kinase (FAK) autophosphorylation. Taken together, our results strongly support a role for MEKK2 as a regulator of signaling that modulates breast tumor cell spread area and migration through control of focal adhesion stability.
Collapse
|