1
|
Luo D, Luo H, Yan X, Lei A, He J, Liao Y, Peng K, Li X, Ye Y, Chen L, Zeng Z, Xiao H, Zeng Y. Mycoplasma genitalium Protein of Adhesion Suppresses T Cell Activation via CypA-CaN-NFAT Pathway. Microbiol Spectr 2023; 11:e0450322. [PMID: 37074201 PMCID: PMC10269615 DOI: 10.1128/spectrum.04503-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/21/2023] [Indexed: 04/20/2023] Open
Abstract
Mycoplasma genitalium is a prokaryotic microorganism that causes urogenital tract infections. M. genitalium protein of adhesion (MgPa) was essential for M. genitalium attachment and subsequent invasion into host cells. Our prior research confirmed that Cyclophilin A (CypA) was the binding receptor for MgPa and MgPa-CypA interaction can lead to the production of inflammatory cytokines. In this study, we revealed that the recombinant MgPa (rMgPa) could inhibit the CaN-NFAT signaling pathway to reduce the level of IFN-γ, IL-2, CD25, and CD69 in Jurkat cells by binding to the CypA receptor. Moreover, rMgPa inhibited the expressions of IFN-γ, IL-2, CD25, and CD69 in primary mouse T cells. Likewise, the expressions of these T cells activation-related molecules in CypA-siRNA-transfected cells and CypA-/- mouse primary T cell was strengthened by rMgPa. These findings showed that rMgPa suppressed T cell activation by downregulating the CypA-CaN-NFAT pathway, and as a result, acted as an immunosuppressive agent. IMPORTANCE Mycoplasma genitalium is a sexually transmitted bacterium that can co-infect with other infections and causes nongonococcal urethritis in males, cervicitis, pelvic inflammatory disease, premature birth, and ectopic pregnancy in women. The adhesion protein of M. genitalium (MgPa) is the primary virulence factor in the complicated pathogenicity of M. genitalium. This research proved that MgPa could interact with host cell Cyclophilin A (CypA) and prevent T cell activation by inhibiting Calcineurin (CaN) phosphorylation and NFAT nuclear translocation, which clarified the immunosuppression mechanism of M. genitalium to host T cells. Therefore, this study can provide a new idea that CypA can be used for a therapeutic or prophylactic target for M. genitalium infection.
Collapse
Affiliation(s)
- Dan Luo
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
- Department of Clinical Laboratory, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Haodang Luo
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
- Department of Clinical Laboratory, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoliang Yan
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Aihua Lei
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Jun He
- Department of Clinical Laboratory, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yating Liao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Kailan Peng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Xia Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Youyuan Ye
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Li Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Zhuo Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Hua Xiao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| |
Collapse
|
2
|
Klug YA, Schwarzer R, Rotem E, Charni M, Nudelman A, Gramatica A, Zarmi B, Rotter V, Shai Y. The HIV gp41 Fusion Protein Inhibits T-Cell Activation through the Lentiviral Lytic Peptide 2 Motif. Biochemistry 2019; 58:818-832. [PMID: 30602116 DOI: 10.1021/acs.biochem.8b01175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human immunodeficiency virus enters its host cells by membrane fusion, initiated by the gp41 subunit of its envelope protein. gp41 has also been shown to bind T-cell receptor (TCR) complex components, interfering with TCR signaling leading to reduced T-cell activation. This immunoinhibitory activity is suggested to occur during the membrane fusion process and is attributed to various membranotropic regions of the gp41 ectodomain and to the transmembrane domain. Although extensively studied, the cytosolic region of gp41, termed the cytoplasmic tail (CT), has not been examined in the context of immune suppression. Here we investigated whether the CT inhibits T-cell activation in different T-cell models by utilizing gp41-derived peptides and expressed full gp41 proteins. We found that a conserved region of the CT, termed lentiviral lytic peptide 2 (LLP2), specifically inhibits the activation of mouse, Jurkat, and human primary T-cells. This inhibition resulted in reduced T-cell proliferation, gene expression, cytokine secretion, and cell surface expression of CD69. Differential activation of the TCR signaling cascade revealed that CT-based immune suppression occurs downstream of the TCR complex. Moreover, LLP2 peptide treatment of Jurkat and primary human T-cells impaired Akt but not NFκB and ERK1/2 activation, suggesting that immune suppression occurs through the Akt pathway. These findings identify a novel gp41 T-cell suppressive element with a unique inhibitory mechanism that can take place post-membrane fusion.
Collapse
Affiliation(s)
- Yoel A Klug
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Roland Schwarzer
- Gladstone Institute for Virology and Immunology , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Etai Rotem
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Meital Charni
- Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Alon Nudelman
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Andrea Gramatica
- Gladstone Institute for Virology and Immunology , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Batya Zarmi
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Varda Rotter
- Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| |
Collapse
|
3
|
Rotem E, Faingold O, Charni M, Klug YA, Harari D, Shmuel-Galia L, Nudelman A, Rotter V, Shai Y. The HTLV-1 gp21 fusion peptide inhibits antigen specific T-cell activation in-vitro and in mice. PLoS Pathog 2018; 14:e1007044. [PMID: 29727445 PMCID: PMC5955599 DOI: 10.1371/journal.ppat.1007044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 04/18/2018] [Indexed: 11/17/2022] Open
Abstract
The ability of the Lentivirus HIV-1 to inhibit T-cell activation by its gp41 fusion protein is well documented, yet limited data exists regarding other viral fusion proteins. HIV-1 utilizes membrane binding region of gp41 to inhibit T-cell receptor (TCR) complex activation. Here we examined whether this T-cell suppression strategy is unique to the HIV-1 gp41. We focused on T-cell modulation by the gp21 fusion peptide (FP) of the Human T-lymphotropic Virus 1 (HTLV-1), a Deltaretrovirus that like HIV infects CD4+ T-cells. Using mouse and human in-vitro T-cell models together with in-vivo T-cell hyper activation mouse model, we reveal that HTLV-1's FP inhibits T-cell activation and unlike the HIV FP, bypasses the TCR complex. HTLV FP inhibition induces a decrease in Th1 and an elevation in Th2 responses observed in mRNA, cytokine and transcription factor profiles. Administration of the HTLV FP in a T-cell hyper activation mouse model of multiple sclerosis alleviated symptoms and delayed disease onset. We further pinpointed the modulatory region within HTLV-1's FP to the same region previously identified as the HIV-1 FP active region, suggesting that through convergent evolution both viruses have obtained the ability to modulate T-cells using the same region of their fusion protein. Overall, our findings suggest that fusion protein based T-cell modulation may be a common viral trait.
Collapse
Affiliation(s)
- Etai Rotem
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Omri Faingold
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Meital Charni
- Department of molecular cell biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yoel A Klug
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Liraz Shmuel-Galia
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Alon Nudelman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of molecular cell biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|