1
|
Candela-Ferre J, Pérez-Alemany J, Diego-Martin B, Pandey V, Wohlschlegel J, Lozano-Juste J, Gallego-Bartolomé J. Plant BCL-DOMAIN HOMOLOG proteins play a conserved role in SWI/SNF complex stability. Proc Natl Acad Sci U S A 2025; 122:e2413346122. [PMID: 39823297 PMCID: PMC11761322 DOI: 10.1073/pnas.2413346122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/21/2024] [Indexed: 01/19/2025] Open
Abstract
The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-DOMAIN HOMOLOG (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of bdh mutants, revealing the role of BDH in hypocotyl cell elongation. Through detailed analysis of BDH domains, we identified a plant-specific N-terminal domain that facilitates the interaction between BDH and the rest of the complex. Additionally, we uncovered the critical role of the BDH β-hairpin domain, which is phylogenetically related to mammalian BCL7 SWI/SNF subunits. While phylogenetic analyses did not identify BDH/BCL7 orthologs in fungi, structure prediction modeling demonstrated strong similarities between the SWI/SNF catalytic modules of plants, animals, and fungi and revealed the yeast Rtt102 protein as a structural homolog of BDH and BCL7. This finding is supported by the ability of Rtt102 to interact with the Arabidopsis catalytic module subunit ARP7 and partially rescue the bdh mutant phenotypes. Further experiments revealed that BDH promotes the stability of the ARP4-ARP7 heterodimer, leading to the partial destabilization of ARP4 in the SWI/SNF complexes. In summary, our study unveils the molecular function of BDH proteins in plant SWI/SNF complexes and suggests that β-hairpin-containing proteins are evolutionarily conserved subunits crucial for ARP heterodimer stability and SWI/SNF activity across eukaryotes.
Collapse
Affiliation(s)
- Joan Candela-Ferre
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Jaime Pérez-Alemany
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Borja Diego-Martin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| |
Collapse
|
2
|
Candela-Ferre J, Pérez-Alemany J, Diego-Martin B, Pandey V, Wohlschlegel JA, Lozano-Juste J, Gallego-Bartolomé J. Plant BCL-Domain Homologues play a conserved role in SWI/SNF complex stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.612632. [PMID: 39345447 PMCID: PMC11429869 DOI: 10.1101/2024.09.17.612632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-Domain Homolog (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of bdh mutants, revealing a previously overlooked impact on hypocotyl cell elongation. Through detailed analysis of BDH domains, we identified a plant-specific N-terminal domain that facilitates the interaction between BDH and the rest of the complex. Additionally, we uncovered the critical role of the BDH β-hairpin domain, which is phylogenetically related to metazoan BCL7 SWI/SNF subunits. While phylogenetic analyses did not identify BDH/BCL7 orthologs in fungi, structure prediction modeling demonstrated strong similarities between the SWI/SNF catalytic modules of plants, animals, and fungi, and revealed the yeast Rtt102 protein as a structural homolog of BDH and BCL7. This finding is supported by the ability of Rtt102 to interact with the Arabidopsis catalytic module subunit ARP7 and partially rescue the bdh mutant phenotypes. Further experiments revealed that BDH promotes the stability of the ARP4-ARP7 heterodimer, leading to the partial destabilization of ARP4 in the SWI/SNF complexes. In summary, our study unveils the molecular function of BDH proteins in plant SWI/SNF complexes and suggests that β-hairpin-containing proteins are evolutionarily conserved subunits crucial for ARP heterodimer stability and SWI/SNF activity across eukaryotes.
Collapse
Affiliation(s)
- Joan Candela-Ferre
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Jaime Pérez-Alemany
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Borja Diego-Martin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
3
|
Structure of the NuA4 acetyltransferase complex bound to the nucleosome. Nature 2022; 610:569-574. [PMID: 36198799 DOI: 10.1038/s41586-022-05303-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Deoxyribonucleic acid in eukaryotes wraps around the histone octamer to form nucleosomes1, the fundamental unit of chromatin. The N termini of histone H4 interact with nearby nucleosomes and play an important role in the formation of high-order chromatin structure and heterochromatin silencing2-4. NuA4 in yeast and its homologue Tip60 complex in mammalian cells are the key enzymes that catalyse H4 acetylation, which in turn regulates chromatin packaging and function in transcription activation and DNA repair5-10. Here we report the cryo-electron microscopy structure of NuA4 from Saccharomyces cerevisiae bound to the nucleosome. NuA4 comprises two major modules: the catalytic histone acetyltransferase (HAT) module and the transcription activator-binding (TRA) module. The nucleosome is mainly bound by the HAT module and is positioned close to a polybasic surface of the TRA module, which is important for the optimal activity of NuA4. The nucleosomal linker DNA carrying the upstream activation sequence is oriented towards the conserved, transcription activator-binding surface of the Tra1 subunit, which suggests a potential mechanism of NuA4 to act as a transcription co-activator. The HAT module recognizes the disk face of the nucleosome through the H2A-H2B acidic patch and nucleosomal DNA, projecting the catalytic pocket of Esa1 to the N-terminal tail of H4 and supporting its function in selective acetylation of H4. Together, our findings illustrate how NuA4 is assembled and provide mechanistic insights into nucleosome recognition and transcription co-activation by a HAT.
Collapse
|
4
|
The RSC (Remodels the Structure of Chromatin) complex of Candida albicans shows compositional divergence with distinct roles in regulating pathogenic traits. PLoS Genet 2020; 16:e1009071. [PMID: 33151931 PMCID: PMC7671503 DOI: 10.1371/journal.pgen.1009071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/17/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023] Open
Abstract
Regulation of gene expression programs is crucial for the survival of microbial pathogens in host environments and for their ability to cause disease. Here we investigated the epigenetic regulator RSC (Remodels the Structure of Chromatin) in the most prevalent human fungal pathogen Candida albicans. Biochemical analysis showed that CaRSC comprises 13 subunits and contains two novel non-essential members, which we named Nri1 and Nri2 (Novel RSC Interactors) that are exclusive to the CTG clade of Saccharomycotina. Genetic analysis showed distinct essentiality of C. albicans RSC subunits compared to model fungal species suggesting functional and structural divergence of RSC functions in this fungal pathogen. Transcriptomic and proteomic profiling of a conditional mutant of the essential catalytic subunit gene STH1 demonstrated global roles of RSC in C. albicans biology, with the majority of growth-related processes affected, as well as mis-regulation of genes involved in morphotype switching, host-pathogen interaction and adaptive fitness. We further assessed the functions of non-essential CaRSC subunits, showing that the novel subunit Nri1 and the bromodomain subunit Rsc4 play roles in filamentation and stress responses; and also interacted at the genetic level to regulate cell viability. Consistent with these roles, Rsc4 is required for full virulence of C. albicans in the murine model of systemic infection. Taken together, our data builds the first comprehensive study of the composition and roles of RSC in C. albicans, showing both conserved and distinct features compared to model fungal systems. The study illuminates how C. albicans uses RSC-dependent transcriptional regulation to respond to environmental signals and drive survival fitness and virulence in mammals.
Collapse
|
5
|
Jungblut A, Hopfner KP, Eustermann S. Megadalton chromatin remodelers: common principles for versatile functions. Curr Opin Struct Biol 2020; 64:134-144. [PMID: 32771531 DOI: 10.1016/j.sbi.2020.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
ATP-dependent chromatin remodelers are enigmatic macromolecular machines that govern the arrangement and composition of nucleosomes across eukaryotic genomes. Here, we review the recent breakthrough provided by cryo-electron microscopy that reveal the first high-resolution insights into all four families of remodelers. We highlight the emerging structural and mechanistic principles with a particular focus on multi-subunit SWI/SNF and INO80/SWR1 complexes. A conserved architecture comprising a motor, rotor, stator and grip suggests a unifying mechanism for how stepwise DNA translocation enables large scale reconfigurations of nucleosomes. A molecular circuitry involving the nuclear actin containing module establishes a framework for understanding allosteric regulation. Remodelers emerge as programable hubs that enable differential processing of genetic and epigenetic information in response to the physiological state of a cell.
Collapse
Affiliation(s)
- Anna Jungblut
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany; Candidate for joint PhD degree from EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Eustermann
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany.
| |
Collapse
|
6
|
The nuclear actin-containing Arp8 module is a linker DNA sensor driving INO80 chromatin remodeling. Nat Struct Mol Biol 2018; 25:823-832. [PMID: 30177756 DOI: 10.1038/s41594-018-0115-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
Abstract
Nuclear actin (N-actin) and actin-related proteins (Arps) are critical components of several chromatin modulating complexes, including the chromatin remodeler INO80, but their function is largely elusive. Here, we report the crystal structure of the 180-kDa Arp8 module of Saccharomyces cerevisiae INO80 and establish its role in recognition of extranucleosomal linker DNA. Arp8 engages N-actin in a manner distinct from that of other actin-fold proteins and thereby specifies recruitment of the Arp4-N-actin heterodimer to a segmented scaffold of the helicase-SANT-associated (HSA) domain of Ino80. The helical HSA domain spans over 120 Å and provides an extended binding platform for extranucleosomal entry DNA that is required for nucleosome sliding and genome-wide nucleosome positioning. Together with the recent cryo-electron microscopy structure of INO80Core-nucleosome complex, our findings suggest an allosteric mechanism by which INO80 senses 40-bp linker DNA to conduct highly processive chromatin remodeling.
Collapse
|
7
|
Actin-related proteins regulate the RSC chromatin remodeler by weakening intramolecular interactions of the Sth1 ATPase. Commun Biol 2018; 1:1. [PMID: 29809203 PMCID: PMC5969521 DOI: 10.1038/s42003-017-0002-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The catalytic subunits of SWI/SNF-family and INO80-family chromatin remodelers bind actin and actin-related proteins (Arps) through an N-terminal helicase/SANT-associated (HSA) domain. Between the HSA and ATPase domains lies a conserved post-HSA (pHSA) domain. The HSA domain of Sth1, the catalytic subunit of the yeast SWI/SNF-family remodeler RSC, recruits the Rtt102-Arp7/9 heterotrimer. Rtt102-Arp7/9 regulates RSC function, but the mechanism is unclear. We show that the pHSA domain interacts directly with another conserved region of the catalytic subunit, protrusion-1. Rtt102-Arp7/9 binding to the HSA domain weakens this interaction and promotes the formation of stable, monodisperse complexes with DNA and nucleosomes. A crystal structure of Rtt102-Arp7/9 shows that ATP binds to Arp7 but not Arp9. However, Arp7 does not hydrolyze ATP. Together, the results suggest that Rtt102 and ATP stabilize a conformation of Arp7/9 that potentiates binding to the HSA domain, which releases intramolecular interactions within Sth1 and controls DNA and nucleosome binding. Bengi Turegun et al. report an interaction of the highly-conserved pHSA and P1 domains of Sth1, the catalytic subunit of the SWI/SNF-family chromatin remodeler RSC. This interaction is released when ATP-bound Rtt102-Arp7/9 binds to the HSA domain, modulating DNA and nucleosome binding by Sth.
Collapse
|
8
|
Clapier CR, Kasten MM, Parnell TJ, Viswanathan R, Szerlong H, Sirinakis G, Zhang Y, Cairns BR. Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection. Mol Cell 2017; 62:453-461. [PMID: 27153540 DOI: 10.1016/j.molcel.2016.03.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/29/2016] [Accepted: 03/30/2016] [Indexed: 11/30/2022]
Abstract
The RSC chromatin remodeler slides and ejects nucleosomes, utilizing a catalytic subunit (Sth1) with DNA translocation activity, which can pump DNA around the nucleosome. A central question is whether and how DNA translocation is regulated to achieve sliding versus ejection. Here, we report the regulation of DNA translocation efficiency by two domains residing on Sth1 (Post-HSA and Protrusion 1) and by actin-related proteins (ARPs) that bind Sth1. ARPs facilitated sliding and ejection by improving "coupling"-the amount of DNA translocation by Sth1 relative to ATP hydrolysis. We also identified and characterized Protrusion 1 mutations that promote "coupling," and Post-HSA mutations that improve ATP hydrolysis; notably, the strongest mutations conferred efficient nucleosome ejection without ARPs. Taken together, sliding-to-ejection involves a continuum of DNA translocation efficiency, consistent with higher magnitudes of ATPase and coupling activities (involving ARPs and Sth1 domains), enabling the simultaneous rupture of multiple histone-DNA contacts facilitating ejection.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Margaret M Kasten
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Timothy J Parnell
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ramya Viswanathan
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Heather Szerlong
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - George Sirinakis
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Bradley R Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|