1
|
Donowitz M, Sarker R, Lin R, McNamara G, Tse CM, Singh V. Identification of Intestinal NaCl Absorptive-Anion Secretory Cells: Potential Functional Significance. Front Physiol 2022; 13:892112. [PMID: 35928564 PMCID: PMC9343792 DOI: 10.3389/fphys.2022.892112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Use of human enteroids studied in the undifferentiated and differentiated state that mimic the intestinal crypt and villus, respectively, has allowed studies of multiple enterocyte populations, including a large population of enterocytes that are transitioning from the crypt to the villus. This population expresses NHE3, DRA, and CFTR, representing a combination of Na absorptive and anion secretory functions. In this cell population, these three transporters physically interact, which affects their baseline and regulated activities. A study of this cell population and differentiated Caco-2 cells transduced with NHE3 and endogenously expressing DRA and CFTR has allowed an understanding of previous studies in which cAMP seemed to stimulate and inhibit DRA at the same time. Understanding the contributions of these cells to overall intestinal transport function as part of the fasting and post-prandial state and their contribution to the pathophysiology of diarrheal diseases and some conditions with constipation will allow new approaches to drug development.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Mark Donowitz,
| | - Rafiquel Sarker
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ruxian Lin
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - George McNamara
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chung Ming Tse
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Varsha Singh
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
A biophysical perspective of the regulatory mechanisms of ezrin/radixin/moesin proteins. Biophys Rev 2022; 14:199-208. [PMID: 35340609 PMCID: PMC8921360 DOI: 10.1007/s12551-021-00928-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Many signal transductions resulting from ligand-receptor interactions occur at the cell surface. These signaling pathways play essential roles in cell polarization, membrane morphogenesis, and the modulation of membrane tension at the cell surface. However, due to the large number of membrane-binding proteins, including actin-membrane linkers, and transmembrane proteins present at the cell surface, the molecular mechanisms underlying the regulation at the cell surface are yet unclear. Here, we describe the molecular functions of one of the key players at the cell surface, ezrin/radixin/moesin (ERM) proteins from a biophysical point of view. We focus our discussion on biophysical properties of ERM proteins revealed by using biophysical tools in live cells and in vitro reconstitution systems. We first describe the structural properties of ERM proteins and then discuss the interactions of ERM proteins with PI(4,5)P2 and the actin cytoskeleton. These properties of ERM proteins revealed by using biophysical approaches have led to a better understanding of their physiological functions in cells and tissues. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00928-0.
Collapse
|
3
|
Ran L, Yan T, Zhang Y, Niu Z, Kan Z, Song Z. The recycling regulation of sodium-hydrogen exchanger isoform 3(NHE3) in epithelial cells. Cell Cycle 2021; 20:2565-2582. [PMID: 34822321 DOI: 10.1080/15384101.2021.2005274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
As the main exchanger of electroneutral NaCl absorption, sodium-hydrogen exchanger isoform 3 (NHE3) circulates in the epithelial brush border (BB) and intracellular compartments in a multi-protein complex. The size of the NHE3 complex changes during rapid regulation events. Recycling regulation of NHE3 in epithelial cells can be roughly divided into three stages. First, when stimulated by Ca2+, cGMP, and cAMP-dependent signaling pathways, NHE3 is converted from an immobile complex found at the apical microvilli (MV) into an easily internalized and mobile form that relocates to a compartment near the base of the MV. Second, NHE3 is internalized by clathrin and albumin-dependent pathways into cytoplasmic endosomal compartments, where the complex is reprocessed and reassembled. Finally, NHE3 is translocated from the recycling endosomes (REs) to the apex of epithelial cells, a process that can be stimulated by an increase in sodium-glucose cotransporter 1 (SGLT1) activity, epidermal growth factor receptor (EGFR) signaling, Ca2+ signaling, and binding to βPix and SH3 and multiple ankyrin repeat domains 2 (Shank2) proteins. This review describes the molecular steps and protein interactions involved in the recycling movement of NHE3 from the apex of epithelial cells, into vesicles, where it is reprocessed and reassembled, and returned to its original location on the plasma membrane, where it exerts its physiological function.
Collapse
Affiliation(s)
- Ling Ran
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| | - Tao Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yiling Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| | - Zheng Niu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| | - Zifei Kan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| | - Zhenhui Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, China
| |
Collapse
|
4
|
cAMP Stimulates SLC26A3 Activity in Human Colon by a CFTR-Dependent Mechanism That Does Not Require CFTR Activity. Cell Mol Gastroenterol Hepatol 2019; 7:641-653. [PMID: 30659943 PMCID: PMC6438990 DOI: 10.1016/j.jcmgh.2019.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS SLC26A3 (DRA) is an electroneutral Cl-/HCO3- exchanger that is present in the apical domain of multiple intestinal segments. An area that has continued to be poorly understood is related to DRA regulation in acute adenosine 3',5'-cyclic monophosphate (cAMP)-related diarrheas, in which DRA appears to be both inhibited as part of NaCl absorption and stimulated to contribute to increased HCO3- secretion. Different cell models expressing DRA have shown that cAMP inhibits, stimulates, or does not affect its activity. METHODS This study re-evaluated cAMP regulation of DRA using new tools, including a successful knockout cell model, a specific DRA inhibitor (DRAinh-A250), specific antibodies, and a transport assay that did not rely on nonspecific inhibitors. The studies compared DRA regulation in colonoids made from normal human colon with regulation in the colon cancer cell line, Caco-2. RESULTS DRA is an apical protein in human proximal colon, differentiated colonoid monolayers, and Caco-2 cells. It is glycosylated and appears as 2 bands. cAMP (forskolin) acutely stimulated DRA activity in human colonoids and Caco-2 cells. In these cells, DRA is the predominant apical Cl-/HCO3- exchanger and is inhibited by DRAinh-A250 with a median inhibitory concentration of 0.5 and 0.2 μmol/L, respectively. However, there was no effect of cAMP in HEK293/DRA cells that lacked a cystic fibrosis transmembrane conductance regulator (CFTR). When CFTR was expressed in HEK293/DRA cells, cAMP also stimulated DRA activity. In all cases, cAMP stimulation of DRA was not inhibited by CFTRinh-172. CONCLUSIONS DRA is acutely stimulated by cAMP by a process that is CFTR-dependent, but appears to be one of multiple regulatory effects of CFTR that does not require CFTR activity.
Collapse
|
5
|
Avula LR, Chen T, Kovbasnjuk O, Donowitz M. Both NHERF3 and NHERF2 are necessary for multiple aspects of acute regulation of NHE3 by elevated Ca 2+, cGMP, and lysophosphatidic acid. Am J Physiol Gastrointest Liver Physiol 2018; 314:G81-G90. [PMID: 28882822 PMCID: PMC5866371 DOI: 10.1152/ajpgi.00140.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal epithelial brush border Na+/H+ exchanger NHE3 accounts for a large component of intestinal Na absorption. NHE3 is regulated during digestion by signaling complexes on its COOH terminus that include the four multi-PDZ domain-containing NHERF family proteins. All bind to NHE3 and take part in different aspects of NHE3 regulation. Because the roles of each NHERF appear to vary on the basis of the cell model or intestinal segment studied and because of our recent finding that a NHERF3-NHERF2 heterodimer appears important for NHE3 regulation in Caco-2 cells, we examined the role of NHERF3 and NHERF2 in C57BL/6 mouse jejunum using homozygous NHERF2 and NHERF3 knockout mice. NHE3 activity was determined with two-photon microscopy and the dual-emission pH-sensitive dye SNARF-4F. The jejunal apical membrane of NHERF3-null mice appeared similar to wild-type (WT) mice in surface area, microvillus number, and height, which is similar to results previously reported for jejunum of NHERF2-null mice. NHE3 basal activity was not different from WT in either NHERF2- or NHERF3-null jejunum, while d-glucose-stimulated NHE3 activity was reduced in NHERF2, but similar to WT in NHERF3 KO. LPA stimulation and UTP (elevated Ca2+) and cGMP inhibition of NHE3 were markedly reduced in both NHERF2- and NHERF3-null jejunum. Forskolin inhibited NHE3 in NHERF3-null jejunum, but the extent of inhibition was reduced compared with WT. The forskolin inhibition of NHE3 in NHERF2-null mice was too inconsistent to determine whether there was an effect and whether it was altered compared with the WT response. These results demonstrate similar requirement for NHERF2 and NHERF3 in mouse jejunal NHE3 regulation by LPA, Ca2+, and cGMP. The explanation for the similarity is not known but is consistent with involvement of a brush-border NHERF3-NHERF2 heterodimer or sequential NHERF-dependent effects in these aspects of NHE3 regulation. NEW & NOTEWORTHY NHERF2 and NHERF3 are apical membrane multi-PDZ domain-containing proteins that are involved in regulation of intestinal NHE3. This study demonstrates that NHERF2 and NHERF3 have overlapping roles in NHE3 stimulation by LPA and inhibition by elevated Ca2+ and cGMP. These results are consistent with their role being as a NHERF3-NHERF2 heterodimer or via sequential NHERF-dependent signaling steps, and they begin to clarify a role for multiple NHERF proteins in NHE3 regulation.
Collapse
Affiliation(s)
- Leela Rani Avula
- 1Department of Medicine, the Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Tiane Chen
- 1Department of Medicine, the Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Olga Kovbasnjuk
- 1Department of Medicine, the Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Mark Donowitz
- 1Department of Medicine, the Johns Hopkins School of Medicine, Baltimore, Maryland,2Department of Physiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Sarker R, Cha B, Kovbasnjuk O, Cole R, Gabelli S, Tse CM, Donowitz M. Phosphorylation of NHE3-S 719 regulates NHE3 activity through the formation of multiple signaling complexes. Mol Biol Cell 2017; 28:1754-1767. [PMID: 28495796 PMCID: PMC5491184 DOI: 10.1091/mbc.e16-12-0862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/09/2017] [Accepted: 05/04/2017] [Indexed: 12/02/2022] Open
Abstract
CK2 regulates NHE3 by phosphorylating a single C-terminal amino acid, which, when mutated, reduces basal NHE3 activity and its acute stimulation and inhibition. It also is necessary for binding of proteins throughout the C-terminus, which means that it determines the C-terminal structure. Casein kinase 2 (CK2) binds to the NHE3 C-terminus and constitutively phosphorylates a downstream site (S719) that accounts for 40% of basal NHE3 activity. The role of CK2 in regulation of NHE3 activity in polarized Caco-2/bbe cells was further examined by mutation of NHE3-S719 to A (not phosphorylated) or D (phosphomimetic). NHE3-S719A but not -S719D had multiple changes in NHE3 activity: 1) reduced basal NHE3 activity—specifically, inhibition of the PI3K/AKT-dependent component; 2) reduced acute stimulation of NHE3 activity by LPA/LPA5R stimulation; and 3) reduced acute inhibition of NHE3 activity—specifically, elevated Ca2+ related (carbachol/Ca2+ ionophore), but there was normal inhibition by forskolin and hyperosmolarity. The S719A mutant had reduced NHE3 complex size, reduced expression in lipid rafts, increased BB mobile fraction, and reduced binding to multiple proteins that bind throughout the NHE3 intracellular C-terminus, including calcineurin homologous protein, the NHERF family and SNX27 (related PDZ domains). These studies show that phosphorylation of the NHE3 at a single amino acid in the distal part of the C-terminus affects multiple aspects of NHE3 complex formation and changes the NHE3 lipid raft distribution, which cause changes in specific aspects of basal as well as acutely stimulated and inhibited Na+/H+ exchange activity.
Collapse
Affiliation(s)
- Rafiquel Sarker
- Department of Physiology and Department of Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Boyoung Cha
- Department of Physiology and Department of Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Olga Kovbasnjuk
- Department of Physiology and Department of Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sandra Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Chung Ming Tse
- Department of Physiology and Department of Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mark Donowitz
- Department of Physiology and Department of Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
7
|
Castelo-Branco RC, Leite-Dellova DCA, Fernandes FB, Malnic G, de Mello-Aires M. The effects of angiotensin-(1-7) on the exchanger NHE3 and on [Ca 2+] i in the proximal tubules of spontaneously hypertensive rats. Am J Physiol Renal Physiol 2017; 313:F450-F460. [PMID: 28490531 DOI: 10.1152/ajprenal.00557.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
The acute effects of angiotensin-1-7 [ANG-(1-7)] on the reabsorptive bicarbonate flow (J[Formula: see text]) were evaluated using stationary microperfusion in vivo in the proximal tubules of spontaneously hypertensive rats (SHR) and their normotensive controls, Wistar-Kyoto (WKY) rats, using a microelectrode sensitive to H+ In WKY rats, the control J[Formula: see text] was 2.40 ± 0.10 nmol·cm-2·s-1 (n = 120); losartan (10-7 M) or A779 (10-6 M, a specific Mas antagonist), alone or in combination with losartan, decreased the J[Formula: see text] ANG-(1-7) had biphasic effects on J[Formula: see text]: at 10-9 M, it inhibited, and at 10-6, it stimulated the flow. S3226 [10-6 M, a specific Na+-H+ exchanger 3 (NHE3) antagonist] decreased J[Formula: see text] and changed the stimulatory effect of ANG-(1-7) to an inhibitory one but did not alter the inhibitory action of ANG-(1-7). In SHR, the control J[Formula: see text] was 2.04 ± 0.13 nmol·cm-2·s-1 (n = 56), and A779 and/or losartan reduced the flow. ANG-(1-7) at 10-9 M increased J[Formula: see text], and ANG-(1-7) at 10-6 M reduced it. The effects of A779, losartan, and S3226 on the J[Formula: see text] were similar to those found in WKY rats, which indicated that in SHR, the ANG-(1-7) action on the NHE3 was via Mas and ANG II type 1. The cytosolic calcium in the WKY or SHR rats was ~100 nM and was increased by ANG-(1-7) at 10-9 or 10-6 M. In hypertensive animals, a high plasma level of ANG-(1-7) inhibited NHE3 in the proximal tubule, which mitigated the hypertension caused by the high plasma level of ANG II.
Collapse
Affiliation(s)
| | - Deise C A Leite-Dellova
- Department of Basic Sciences, Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Pirassununga, Brazil; and
| | - Fernanda Barrinha Fernandes
- Presbiteriana Mackenzie University of São Paulo and Department of Nephrology, Federal University of São Paulo-Universidade Estadual Paulista, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Margarida de Mello-Aires
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Briffa JF, Grinfeld E, Jenkin KA, Mathai ML, Poronnik P, McAinch AJ, Hryciw DH. Diet induced obesity in rats reduces NHE3 and Na(+) /K(+) -ATPase expression in the kidney. Clin Exp Pharmacol Physiol 2016; 42:1118-26. [PMID: 26173747 DOI: 10.1111/1440-1681.12452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/25/2015] [Accepted: 07/01/2015] [Indexed: 01/25/2023]
Abstract
The consumption of a high fat diet (HFD) is associated with proteinuria and altered sodium handling and excretion, which can lead to kidney disease. In the proximal tubule, the Na(+) /H(+) Exchanger 3 (NHE3) is responsible for normal protein reabsorption and the reabsorption of approximately 70% of the renal sodium load. It is the Na(+) /K(+) -ATPase that provides the driving force for the reabsorption of sodium and its exit across the basolateral membrane. This study investigates the effects that consumption of a HFD for 12 weeks has on NHE3 and Na(+) /K(+) -ATPase expression in the kidney. Western blot analysis identified a significant reduction in NHE3 and its modulator, phosphorylated protein kinase B, in renal lysate from obese rats. In the obese rats, a reduction in NHE3 expression in the proximal tubule may impact on the acidification of endosomes which are responsible for albumin uptake, suggesting a key role for the exchanger in protein endocytosis in obesity. Western blot analysis identified a reduction in Na(+) /K(+) -ATPase which could also potentially impact on albumin uptake and sodium reabsorption. This study demonstrates that consumption of a HFD for 12 weeks reduces renal NHE3 and Na(+) /K(+) -ATPase expression, an effect that may contribute to the albuminuria associated with obesity. Furthermore the reduction in these transporters is not likely to contribute to the reduced sodium excretion in obesity. These data highlight a potential link between NHE3 and Na(+) /K(+) -ATPase in the pathophysiological changes in renal protein handling observed in obesity.
Collapse
Affiliation(s)
- J F Briffa
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Victoria, Australia.,Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - E Grinfeld
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Victoria, Australia
| | - K A Jenkin
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Victoria, Australia
| | - M L Mathai
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Victoria, Australia
| | - P Poronnik
- Department of Physiology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - A J McAinch
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Victoria, Australia
| | - D H Hryciw
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Lugowska I, Mierzejewska E, Lenarcik M, Klepacka T, Koch I, Michalak E, Szamotulska K. The clinical significance of changes in ezrin expression in osteosarcoma of children and young adults. Tumour Biol 2016; 37:12071-12078. [PMID: 27207343 DOI: 10.1007/s13277-016-5091-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/15/2016] [Indexed: 12/20/2022] Open
Abstract
Ezrin is a protein that functions as a cross-linker between actin cytoskeleton and plasma membrane. Its clinical role in osteosarcoma is unclear. The aim of this study was to investigate, in osteosarcoma, the prognostic value of ezrin expression at biopsy and changes in expression levels after preoperative chemotherapy. Thirty-eight newly diagnosed osteosarcoma patients aged 6-23 years were included. At diagnosis, 20 patients had localized disease, the others had distant metastases. Median follow-up was 75 months (range 13-135). Ezrin expression was assessed immunohistochemically in biopsy tissue and primary tumour specimens resected after chemotherapy. The influence on survival of changes in ezrin expression after chemotherapy was analysed. Ezrin expression was significantly higher after preoperative chemotherapy and changes compared to biopsy tissue were significantly lower in patients with early progression than in patients with relapse or no further evidence of disease (p = 0.006 and p = 0.002, respectively). Similarly, ezrin expression was higher after preoperative chemotherapy and exhibited less change in expression in deceased patients compared to patients surviving more than 5 years (both p = 0.001). Ezrin expression at biopsy was significantly associated with both histopathological aggressiveness (p < 0.001) and tumour size (p = 0.037). The results of this study provide evidence that changes in overexpression of ezrin due to preoperative chemotherapy could be a useful predictive and prognostic marker in patients with osteosarcoma.
Collapse
Affiliation(s)
- Iwona Lugowska
- Department of Epidemiology and Biostatistics, Institute of Mother and Child, M. Kasprzak Street 17a, 01-211, Warsaw, Poland. .,Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, K. W. Roentgen Street, 02-781, Warsaw, Poland.
| | - Ewa Mierzejewska
- Department of Epidemiology and Biostatistics, Institute of Mother and Child, M. Kasprzak Street 17a, 01-211, Warsaw, Poland
| | - Malgorzata Lenarcik
- Department of Pathology, Institute of Mother and Child, M. Kasprzak Street 17a, 01-211, Warsaw, Poland
| | - Teresa Klepacka
- Department of Pathology, Institute of Mother and Child, M. Kasprzak Street 17a, 01-211, Warsaw, Poland
| | - Irena Koch
- Department of Pathology, Institute of Mother and Child, M. Kasprzak Street 17a, 01-211, Warsaw, Poland
| | - Elzbieta Michalak
- Department of Pathology, Institute of Mother and Child, M. Kasprzak Street 17a, 01-211, Warsaw, Poland
| | - Katarzyna Szamotulska
- Department of Epidemiology and Biostatistics, Institute of Mother and Child, M. Kasprzak Street 17a, 01-211, Warsaw, Poland
| |
Collapse
|
10
|
Pandey MK, DeGrado TR. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging. Am J Cancer Res 2016; 6:571-93. [PMID: 26941849 PMCID: PMC4775866 DOI: 10.7150/thno.14334] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed.
Collapse
|
11
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
12
|
The NHERF2 sequence adjacent and upstream of the ERM-binding domain affects NHERF2-ezrin binding and dexamethasone stimulated NHE3 activity. Biochem J 2015; 470:77-90. [PMID: 26251448 PMCID: PMC4613507 DOI: 10.1042/bj20150238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The microvillar localization of Na+-H+ exchanger regulatory factor (NHERF)1/2 requires not only ezrin, radixin and moesin (ERM)-binding domain (EBD) but also a newly defined ERM-binding regulatory sequence (EBRS) that modulates NHERF1/2–ezrin binding. NHERF2 EBRS is also regulated by phosphorylation, which affects NHE3 (Na+-H+ exchanger 3) stimulation by dexamethasone. In the brush border of intestinal and kidney epithelial cells, scaffolding proteins ezrin, Na+-H+ exchanger regulatory factor (NHERF)1 and NHERF2 play important roles in linking transmembrane proteins to the cytoskeleton and assembling signalling regulatory complexes. The last 30 carboxyl residues of NHERF1 and NHERF2 form the EBDs [ezrin, radixin and moesin (ERM)-binding domain]. The current study found that NHERF1/2 contain an ERM-binding regulatory sequence (EBRS), which facilitates the interaction between the EBD and ezrin. The EBRSs are located within 24 and 19 residues immediately upstream of EBDs for NHERF1 and NHERF2 respectively. In OK (opossum kidney) epithelial cells, EBRSs are necessary along with the EBD to distribute NHERF1 and NHERF2 exclusively to the apical domain. Furthermore, phosphorylation of Ser303 located in the EBRS of NHERF2, decreases the binding affinity for ezrin, dislocates apical NHERF2 into the cytosol and increases the NHERF2 microvillar mobility rate. Moreover, increased phosphorylation of Ser303 was functionally significant preventing acute stimulation of NHE3 (Na+-H+ exchanger 3) activity by dexamethasone.
Collapse
|
13
|
Babich V, Di Sole F. The Na+/H+ Exchanger-3 (NHE3) Activity Requires Ezrin Binding to Phosphoinositide and Its Phosphorylation. PLoS One 2015; 10:e0129306. [PMID: 26042733 PMCID: PMC4455992 DOI: 10.1371/journal.pone.0129306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/08/2015] [Indexed: 11/19/2022] Open
Abstract
Na+/H+ exchanger-3 (NHE3) plays an essential role in maintaining sodium and fluid homeostasis in the intestine and kidney epithelium. Thus, NHE3 is highly regulated and its function depends on binding to multiple regulatory proteins. Ezrin complexed with NHE3 affects its activity via not well-defined mechanisms. This study investigates mechanisms by which ezrin regulates NHE3 activity in epithelial Opossum Kidney cells. Ezrin is activated sequentially by phosphatidylinositol-4,5-bisphosphate (PIP2) binding and phosphorylation of threonine 567. Expression of ezrin lacking PIP2 binding sites inhibited NHE3 activity (-40%) indicating that ezrin binding to PIP2 is required for preserving NHE3 activity. Expression of a phosphomimetic ezrin mutated at the PIP2 binding region was sufficient not only to reverse NHE3 activity to control levels but also to increase its activity (+80%) similar to that of the expression of ezrin carrying the phosphomimetic mutation alone. Calcineurin Homologous Protein-1 (CHP1) is part, with ezrin, of the NHE3 regulatory complex. CHP1-mediated activation of NHE3 activity was blocked by expression of an ezrin variant that could not be phosphorylated but not by an ezrin variant unable to bind PIP2. Thus, for NHE3 activity under baseline conditions not only ezrin phosphorylation, but also ezrin spatial-temporal targeting on the plasma membrane via PIP2 binding is required; however, phosphorylation of ezrin appears to overcome the control of NHE3 transport. CHP1 action on NHE3 activity is not contingent on ezrin binding to PIP2 but rather on ezrin phosphorylation. These findings are important in understanding the interrelation and dynamics of a CHP1-ezrin-NHE3 regulatory complex.
Collapse
Affiliation(s)
- Victor Babich
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Francesca Di Sole
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Physiology and Pharmacology Department, Des Moines University, Iowa, United States of America
- * E-mail:
| |
Collapse
|
14
|
Singh V, Yang J, Cha B, Chen TE, Sarker R, Yin J, Avula LR, Tse M, Donowitz M. Sorting nexin 27 regulates basal and stimulated brush border trafficking of NHE3. Mol Biol Cell 2015; 26:2030-43. [PMID: 25851603 PMCID: PMC4472014 DOI: 10.1091/mbc.e14-12-1597] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/01/2015] [Indexed: 12/21/2022] Open
Abstract
In polarized epithelial cells, SNX27 regulates PDZ domain–directed trafficking of NHE3 from endosomes to the plasma membrane and increases the stability of brush border NHE3. This establishes SNX27 as an important regulator of polarized sorting in epithelial cells. Sorting nexin 27 (SNX27) contains a PDZ domain that is phylogenetically related to the PDZ domains of the NHERF proteins. Studies on nonepithelial cells have shown that this protein is located in endosomes, where it regulates trafficking of cargo proteins in a PDZ domain–dependent manner. However, the role of SNX27 in trafficking of cargo proteins in epithelial cells has not been adequately explored. Here we show that SNX27 directly interacts with NHE3 (C-terminus) primarily through the SNX27 PDZ domain. A combination of knockdown and reconstitution experiments with wild type and a PDZ domain mutant (GYGF → GAGA) of SNX27 demonstrate that the PDZ domain of SNX27 is required to maintain basal NHE3 activity and surface expression of NHE3 in polarized epithelial cells. Biotinylation-based recycling and degradation studies in intestinal epithelial cells show that SNX27 is required for the exocytosis (not endocytosis) of NHE3 from early endosome to plasma membrane. SNX27 is also required to regulate the retention of NHE3 on the plasma membrane. The findings of the present study extend our understanding of PDZ-mediated recycling of cargo proteins from endosome to plasma membrane in epithelial cells.
Collapse
Affiliation(s)
- Varsha Singh
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jianbo Yang
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Boyoung Cha
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Tiane-e Chen
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Rafiquel Sarker
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jianyi Yin
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Leela Rani Avula
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ming Tse
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mark Donowitz
- Gastroenterology Division, Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
15
|
Zhu XC, Sarker R, Horton JR, Chakraborty M, Chen TE, Tse CM, Cha B, Donowitz M. Nonsynonymous single nucleotide polymorphisms of NHE3 differentially decrease NHE3 transporter activity. Am J Physiol Cell Physiol 2015; 308:C758-66. [PMID: 25715704 DOI: 10.1152/ajpcell.00421.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/23/2015] [Indexed: 12/24/2022]
Abstract
Genetic determinants appear to play a role in susceptibility to chronic diarrhea, but the genetic abnormalities involved have only been identified in a few conditions. The Na⁺/H⁺ exchanger 3 (NHE3) accounts for a large fraction of physiologic intestinal Na⁺ absorption. It is highly regulated through effects on its intracellular COOH-terminal regulatory domain. The impact of genetic variation in the NHE3 gene, such as single nucleotide polymorphisms (SNPs), on transporter activity remains unexplored. From a total of 458 SNPs identified in the entire NHE3 gene, we identified three nonsynonymous mutations (R474Q, V567M, and R799C), which were all in the protein's intracellular COOH-terminal domain. Here we evaluated whether these SNPs affect NHE3 activity by expressing them in a mammalian cell line that is null for all plasma membrane NHEs. These variants significantly reduced basal NHE3 transporter activity through a reduction in intrinsic NHE3 function in variant R474Q, abnormal trafficking in variant V567M, or defects in both intrinsic NHE3 function and trafficking in variant R799C. In addition, variants NHE3 R474Q and R799C failed to respond to acute dexamethasone stimulation, suggesting cells with these mutant proteins might be defective in NHE3 function during postprandial stimulation and perhaps under stressful conditions. Finally, variant R474Q was shown to exhibit an aberrant interaction with calcineurin B homologous protein (CHP), an NHE3 regulatory protein required for basal NHE3 activity. Taken together, these results demonstrate decreased transport activity in three SNPs of NHE3 and provide mechanistic insight into how these SNPs impact NHE3 function.
Collapse
Affiliation(s)
- Xinjun Cindy Zhu
- Department of Medicine, Division of Gastroenterology and Hepatology, Center of Cardiovascular Sciences, Albany Medical Center, Albany, New York; Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Rafiquel Sarker
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - John R Horton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - Molee Chakraborty
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Tian-E Chen
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - C Ming Tse
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Boyoung Cha
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Mark Donowitz
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
16
|
Mao ZJ, Li GQ, Huang J, 南 华. Role of GSK-3β in triptolide induced apoptosis of pancreatic cancer cells. Shijie Huaren Xiaohua Zazhi 2015; 23:256-260. [DOI: 10.11569/wcjd.v23.i2.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of glycogen synthase kinase 3β (GSK-3β) in triptolide induced apoptosis of pancreatic cancer cells.
METHODS: Pancreatic cancer AsPC-1 cells were treated with triptolide in the presence or absence of GSK-3β inhibitor LiCl. Cell apoptosis was assessed using flow cytometry. The expression of GSK-3β, p-glycogen synthase kinase-3β (p-GSK-3β) and B-cell lymphoma-2 (Bcl-2) proteins was detected by Western blot.
RESULTS: Treatment with triptolide (TPL) at 6.54 ng/mL and 15.51 ng/mL significantly reduced the growth of AsPC-1 cells, and the rates of reduced growth were 39.64% and 52.19%, respectively. LiCl pretreatment reduced the rates of reduced growth to 27.36% and 41.94%, respectively. LiCl pretreatment significantly reduced the apoptosis rate of AsPC-1 cells. Triptolide treatment significantly increased the level of p-GSK-3β in AsPC-1 cells, but had no significant impact on GSK-3β expression; LiCl pretreatment significantly increased the expression level of p-GSK-3β in AsPC-1 cells, had no significant impact on GSK-3β expression, and significantly reduced the expression of apoptosis-related factors Bcl-2, B-cell lymphoma-xl (Bcl-xl) and myeloid cell leukemia-1 (Mcl-1).
CONCLUSION: The increased level of p-GSK-3βcan inhibit triptolide induced pancreatic cancer cell apoptosis.
Collapse
|