1
|
Xia J, Zhao H, Edmondson JL, Koss B, Zhan F. Role of NEK2 in tumorigenesis and tumor progression. Trends Mol Med 2025; 31:79-93. [PMID: 39181803 PMCID: PMC11717647 DOI: 10.1016/j.molmed.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Never in mitosis A (NIMA)-related kinase 2 (NEK2) is a serine/threonine kinase found in the nucleus and cytoplasm throughout the cell cycle. NEK2 is overexpressed in many cancers and is a biomarker of poor prognosis. Factors contributing to NEK2 elevation in cancer cells include oncogenic transcription factors, decreased ubiquitination, DNA methylation, and the circular RNA (circRNA)/long noncoding RNA (lncRNA)-miRNA axis. NEK2 overexpression produces chromosomal instability and aneuploidy, thereby enhancing cancer progression and suppressing antitumor immunity, which highlights the prominence of NEK2 in tumorigenesis and tumor progression. Small-molecule inhibitors targeting NEK2 have demonstrated promising therapeutic potential in vitro and in vivo across various cancer types. This review outlines the regulatory mechanisms of NEK2 expression, emphasizes its functional roles in cancer initiation and progression, and highlights the anticancer properties of NEK2 inhibitors.
Collapse
Affiliation(s)
- Jiliang Xia
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28, Hengyang, 421001, Hunan, China.
| | - Hongyan Zhao
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28, Hengyang, 421001, Hunan, China
| | - Jacob L Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Shah D, Joshi M, Patel BM. Role of NIMA‐related kinase 2 in lung cancer: Mechanisms and therapeutic prospects. Fundam Clin Pharmacol 2022; 36:766-776. [DOI: 10.1111/fcp.12777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 01/04/2023]
Affiliation(s)
- Darshak Shah
- Institute of Pharmacy Nirma University Ahmedabad India
| | - Mit Joshi
- Institute of Pharmacy Nirma University Ahmedabad India
| | | |
Collapse
|
3
|
Feng X, Guo J, An G, Wu Y, Liu Z, Meng B, He N, Zhao X, Chen S, Zhu Y, Xia J, Li X, Yu Z, Li R, Ren G, Chen J, Wu M, He Y, Qiu L, Zhou J, Zhou W. Genetic Aberrations and Interaction of NEK2 and TP53 Accelerate Aggressiveness of Multiple Myeloma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104491. [PMID: 35088582 PMCID: PMC8948659 DOI: 10.1002/advs.202104491] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/11/2022] [Indexed: 05/31/2023]
Abstract
It has been previously shown that (never in mitosis gene A)-related kinase 2 (NEK2) is upregulated in multiple myeloma (MM) and contributes to drug resistance. However, the mechanisms behind this upregulation remain poorly understood. In this study, it is found that amplification of NEK2 and hypermethylation of distal CpG islands in its promoter correlate strongly with increased NEK2 expression. Patients with NEK2 amplification have a poor rate of survival and often exhibit TP53 deletion, which is an independent prognostic factor in MM. This combination of TP53 knockout and NEK2 overexpression induces asymmetric mitosis, proliferation, drug resistance, and tumorigenic behaviors in MM in vitro and in vivo. In contrast, delivery of wild type p53 and suppression of NEK2 in TP53-/- MM cell lines inhibit tumor formation and enhance the effect of Bortezomib against MM. It is also discovered that inactivating p53 elevates NEK2 expression genetically by inducing NEK2 amplification, transcriptionally by increased activity of cell cycle-related genes like E2F8 and epigenetically by upregulating DNA methyltransferases. Dual defects of TP53 and NEK2 may define patients with the poorest outcomes in MM with p53 inactivation, and NEK2 may serve as a novel therapeutic target in aggressive MM with p53 abnormalities.
Collapse
Affiliation(s)
- Xiangling Feng
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Jiaojiao Guo
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Gang An
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300041China
| | - Yangbowen Wu
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Zhenhao Liu
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Shanghai Center for Bioinformation TechnologyShanghai201203China
| | - Bin Meng
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Nihan He
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
| | - Xinying Zhao
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Shilian Chen
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
| | - Yinghong Zhu
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Jiliang Xia
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Xin Li
- The third Xiangya Hospital of Central South UniversityChangshaHunan410013China
| | - Zhiyong Yu
- Department of PathologyChangsha eighth hospitalChangshaHunan410199China
| | - Ruixuan Li
- The third Xiangya Hospital of Central South UniversityChangshaHunan410013China
| | - Guofeng Ren
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Jihua Chen
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Minghua Wu
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Yanjuan He
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
| | - Lugui Qiu
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300041China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300041China
| | - Wen Zhou
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| |
Collapse
|
4
|
Ghaleb A, Padellan M, Marchenko N. Mutant p53 drives the loss of heterozygosity by the upregulation of Nek2 in breast cancer cells. Breast Cancer Res 2020; 22:133. [PMID: 33267874 PMCID: PMC7709447 DOI: 10.1186/s13058-020-01370-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mutations in one allele of the TP53 gene in early stages are frequently followed by the loss of the remaining wild-type p53 (wtp53) allele (p53LOH) during tumor progression. Despite the strong notion of p53LOH as a critical step in tumor progression, its oncogenic outcomes that facilitate the selective pressure for p53LOH occurrence were not elucidated. METHODS Using MMTV;ErbB2 mouse model of breast cancer carrying heterozygous R172H p53 mutation, we identified a novel gain-of-function (GOF) activity of mutant p53 (mutp53): the exacerbated loss of wtp53 allele in response to γ-irradiation. RESULTS As consequences of p53LOH in mutp53 heterozygous cells, we observed profound stabilization of mutp53 protein, the loss of p21 expression, the abrogation of G2/M checkpoint, chromosomal instability, centrosome amplification, and transcriptional upregulation of mitotic kinase Nek2 (a member of Never in Mitosis (NIMA) Kinases family) involved in the regulation of centrosome function. To avoid the mitotic catastrophe in the absence of G2/M checkpoint, cells with centrosome amplification adapt Nek2-mediated centrosomes clustering as pro-survival mutp53 GOF mechanism enabling unrestricted proliferation and clonal expansion of cells with p53LOH. Thus, the clonal dominance of mutp53 cells with p53LOH may represent the mechanism of irradiation-induced p53LOH. We show that pharmacological and genetic ablation of Nek2 decreases centrosome clustering and viability of specifically mutp53 cells with p53LOH. CONCLUSION In a heterogeneous tumor population, Nek2 inhibition may alter the selective pressure for p53LOH by contraction of the mutp53 population with p53LOH, thus, preventing the outgrowth of genetically unstable, more aggressive cells.
Collapse
Affiliation(s)
- Amr Ghaleb
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794-8691, USA.
| | - Malik Padellan
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Natalia Marchenko
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794-8691, USA
| |
Collapse
|
5
|
Prognosis, Biology, and Targeting of TP53 Dysregulation in Multiple Myeloma. Cells 2020; 9:cells9020287. [PMID: 31991614 PMCID: PMC7072230 DOI: 10.3390/cells9020287] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological cancer and is characterized by genetic features including translocations, chromosomal copy number aberrations, and mutations in key oncogene and tumor suppressor genes. Dysregulation of the tumor suppressor TP53 is important in the pathogenesis of many cancers, including MM. In newly-diagnosed MM patients, TP53 dysregulation occurs in three subsets: monoallelic deletion as part of deletion of chromosome 17p (del17p) (~8%), monoallelic mutations (~6%), and biallelic inactivation (~4%). Del17p is an established high-risk feature in MM and is included in current disease staging criteria. Biallelic inactivation and mutation have also been reported in MM patients but are not yet included in disease staging criteria for high-risk disease. Emerging clinical and genomics data suggest that the biology of high-risk disease is complex, and so far, traditional drug development efforts to target dysregulated TP53 have not been successful. Here we review the TP53 dysregulation literature in cancer and in MM, including the three segments of TP53 dysregulation observed in MM patients. We propose a reverse translational approach to identify novel targets and disease drivers from TP53 dysregulated patients to address the unmet medical need in this setting.
Collapse
|
6
|
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int J Mol Sci 2019; 20:ijms20225605. [PMID: 31717504 PMCID: PMC6888028 DOI: 10.3390/ijms20225605] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5′RRRCWWGYYY3′ sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.
Collapse
|
7
|
Jusino S, Saavedra HI. Role of E2Fs and mitotic regulators controlled by E2Fs in the epithelial to mesenchymal transition. Exp Biol Med (Maywood) 2019; 244:1419-1429. [PMID: 31575294 DOI: 10.1177/1535370219881360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a complex cellular process in which epithelial cells acquire mesenchymal properties. EMT occurs in three biological settings: development, wound healing and fibrosis, and tumor progression. Despite occurring in three independent biological settings, EMT signaling shares some molecular mechanisms that allow epithelial cells to de-differentiate and acquire mesenchymal characteristics that confer cells invasive and migratory capacity to distant sites. Here we summarize the molecular mechanism that delineates EMT and we will focus on the role of E2 promoter binding factors (E2Fs) in EMT during tumor progression. Since the E2Fs are presently undruggable due to their control in numerous pivotal cellular functions and due to the lack of selectivity against individual E2Fs, we will also discuss the role of three mitotic regulators and/or mitotic kinases controlled by the E2Fs (NEK2, Mps1/TTK, and SGO1) in EMT that can be useful as drug targets. Impact statement The study of the epithelial to mesenchymal transition (EMT) is an active area of research since it is one of the early intermediates to invasion and metastasis—a state of the cancer cells that ultimately kills many cancer patients. We will present in this review that besides their canonical roles as regulators of proliferation, unregulated expression of the E2F transcription factors may contribute to cancer initiation and progression to metastasis by signaling centrosome amplification, chromosome instability, and EMT. Since our discovery that the E2F activators control centrosome amplification and mitosis in cancer cells, we have identified centrosome and mitotic regulators that may represent actionable targets against EMT and metastasis in cancer cells. This is impactful to all of the cancer patients in which the Cdk/Rb/E2F pathway is deregulated, which has been estimated to be most cancer patients with solid tumors.
Collapse
Affiliation(s)
- Shirley Jusino
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Research Institute, Ponce Health Sciences University, Ponce PR 00732, USA
| | - Harold I Saavedra
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Research Institute, Ponce Health Sciences University, Ponce PR 00732, USA
| |
Collapse
|
8
|
Literature-based automated discovery of tumor suppressor p53 phosphorylation and inhibition by NEK2. Proc Natl Acad Sci U S A 2018; 115:10666-10671. [PMID: 30266789 PMCID: PMC6196525 DOI: 10.1073/pnas.1806643115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Scientific progress depends on formulating testable hypotheses informed by the literature. In many domains, however, this model is strained because the number of research papers exceeds human readability. Here, we developed computational assistance to analyze the biomedical literature by reading PubMed abstracts to suggest new hypotheses. The approach was tested experimentally on the tumor suppressor p53 by ranking its most likely kinases, based on all available abstracts. Many of the best-ranked kinases were found to bind and phosphorylate p53 (P value = 0.005), suggesting six likely p53 kinases so far. One of these, NEK2, was studied in detail. A known mitosis promoter, NEK2 was shown to phosphorylate p53 at Ser315 in vitro and in vivo and to functionally inhibit p53. These bona fide validations of text-based predictions of p53 phosphorylation, and the discovery of an inhibitory p53 kinase of pharmaceutical interest, suggest that automated reasoning using a large body of literature can generate valuable molecular hypotheses and has the potential to accelerate scientific discovery.
Collapse
|
9
|
Fischer M. Census and evaluation of p53 target genes. Oncogene 2017; 36:3943-3956. [PMID: 28288132 PMCID: PMC5511239 DOI: 10.1038/onc.2016.502] [Citation(s) in RCA: 668] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation.
Collapse
Affiliation(s)
- M Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Zhang S, Zhang Y, Yu P, Hu Y, Zhou H, Guo L, Xu X, Zhu X, Waqas M, Qi J, Zhang X, Liu Y, Chen F, Tang M, Qian X, Shi H, Gao X, Chai R. Characterization of Lgr5+ Progenitor Cell Transcriptomes after Neomycin Injury in the Neonatal Mouse Cochlea. Front Mol Neurosci 2017; 10:213. [PMID: 28725177 PMCID: PMC5496572 DOI: 10.3389/fnmol.2017.00213] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/16/2017] [Indexed: 12/17/2022] Open
Abstract
Lgr5+ supporting cells (SCs) are enriched hair cell (HC) progenitors in the cochlea. Both in vitro and in vivo studies have shown that HC injury can spontaneously activate Lgr5+ progenitors to regenerate HCs in the neonatal mouse cochlea. Promoting HC regeneration requires the understanding of the mechanism of HC regeneration, and this requires knowledge of the key genes involved in HC injury-induced self-repair responses that promote the proliferation and differentiation of Lgr5+ progenitors. Here, as expected, we found that neomycin-treated Lgr5+ progenitors (NLPs) had significantly greater HC regeneration ability, and greater but not significant proliferation ability compared to untreated Lgr5+ progenitors (ULPs) in response to neomycin exposure. Next, we used RNA-seq analysis to determine the differences in the gene-expression profiles between the transcriptomes of NLPs and ULPs from the neonatal mouse cochlea. We first analyzed the genes that were enriched and differentially expressed in NLPs and ULPs and then analyzed the cell cycle genes, the transcription factors, and the signaling pathway genes that might regulate the proliferation and differentiation of Lgr5+ progenitors. We found 9 cell cycle genes, 88 transcription factors, 8 microRNAs, and 16 cell-signaling pathway genes that were significantly upregulated or downregulated after neomycin injury in NLPs. Lastly, we constructed a protein-protein interaction network to show the interaction and connections of genes that are differentially expressed in NLPs and ULPs. This study has identified the genes that might regulate the proliferation and HC regeneration of Lgr5+ progenitors after neomycin injury, and investigations into the roles and mechanisms of these genes in the cochlea should be performed in the future to identify potential therapeutic targets for HC regeneration.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Research Institute of OtolaryngologyNanjing, China.,Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Pengfei Yu
- Bioinformatics Department, Admera Health LLCSouth Plainfield, NJ, United States
| | - Yao Hu
- School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical UniversityNanjing, China
| | - Han Zhou
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaochen Xu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaocheng Zhu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Muhammad Waqas
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and TechnologyKarachi, Pakistan
| | - Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaoli Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Yan Liu
- School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical UniversityNanjing, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and TechnologyShenzhen, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaoyun Qian
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Haibo Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong UniversityShanghai, China
| | - Xia Gao
- Research Institute of OtolaryngologyNanjing, China.,Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Research Institute of OtolaryngologyNanjing, China.,Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| |
Collapse
|
11
|
Abstract
Never in Mitosis (NIMA) Related Kinase 2 (NEK2) plays a key role in regulating mitotic processes, including centrosome duplication and separation, microtubule stabilization, kinetochore attachment and spindle assembly checkpoint. NEK2 is aberrantly overexpressed in a wide variety of human cancers and has been implicated in various aspects of malignant transformation, including tumorigenesis, drug resistance and tumor progression. The close relationship between NEK2 and cancer has made it an attractive target for anticancer therapeutic development; however, the mechanisms of how NEK2 coordinates altered signaling to malignant transformation remains unclear. In this paper, we discuss the functional roles of NEK2 in cancer development; highlight some of the significant NEK2 signaling in cancer, and summarize recent advances in the development of NEK2 inhibitors.
Collapse
Affiliation(s)
- Yanfen Fang
- a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University , Shanghai , China
| | - Xiongwen Zhang
- a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University , Shanghai , China
| |
Collapse
|
12
|
Grasso C, Trevisan M, Fiano V, Tarallo V, De Marco L, Sacerdote C, Richiardi L, Merletti F, Gillio-Tos A. Performance of Different Analytical Software Packages in Quantification of DNA Methylation by Pyrosequencing. PLoS One 2016; 11:e0150483. [PMID: 26934703 PMCID: PMC4775062 DOI: 10.1371/journal.pone.0150483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/14/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pyrosequencing has emerged as an alternative method of nucleic acid sequencing, well suited for many applications which aim to characterize single nucleotide polymorphisms, mutations, microbial types and CpG methylation in the target DNA. The commercially available pyrosequencing systems can harbor two different types of software which allow analysis in AQ or CpG mode, respectively, both widely employed for DNA methylation analysis. OBJECTIVE Aim of the study was to assess the performance for DNA methylation analysis at CpG sites of the two pyrosequencing software which allow analysis in AQ or CpG mode, respectively. Despite CpG mode having been specifically generated for CpG methylation quantification, many investigations on this topic have been carried out with AQ mode. As proof of equivalent performance of the two software for this type of analysis is not available, the focus of this paper was to evaluate if the two modes currently used for CpG methylation assessment by pyrosequencing may give overlapping results. METHODS We compared the performance of the two software in quantifying DNA methylation in the promoter of selected genes (GSTP1, MGMT, LINE-1) by testing two case series which include DNA from paraffin embedded prostate cancer tissues (PC study, N = 36) and DNA from blood fractions of healthy people (DD study, N = 28), respectively. RESULTS We found discrepancy in the two pyrosequencing software-based quality assignment of DNA methylation assays. Compared to the software for analysis in the AQ mode, less permissive criteria are supported by the Pyro Q-CpG software, which enables analysis in CpG mode. CpG mode warns the operators about potential unsatisfactory performance of the assay and ensures a more accurate quantitative evaluation of DNA methylation at CpG sites. CONCLUSION The implementation of CpG mode is strongly advisable in order to improve the reliability of the methylation analysis results achievable by pyrosequencing.
Collapse
Affiliation(s)
- Chiara Grasso
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Morena Trevisan
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valentina Fiano
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valentina Tarallo
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Laura De Marco
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
- Cancer Epidemiology Unit, Department of Medical Sciences, City of Health and Science Hospital, Turin, Italy
| | - Carlotta Sacerdote
- Cancer Epidemiology Unit, Department of Medical Sciences, City of Health and Science Hospital, Turin, Italy
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Franco Merletti
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
- Cancer Epidemiology Unit, Department of Medical Sciences, City of Health and Science Hospital, Turin, Italy
| | - Anna Gillio-Tos
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
- * E-mail:
| |
Collapse
|
13
|
Role of NEK2A in human cancer and its therapeutic potentials. BIOMED RESEARCH INTERNATIONAL 2015; 2015:862461. [PMID: 25705694 PMCID: PMC4330945 DOI: 10.1155/2015/862461] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/14/2014] [Indexed: 02/08/2023]
Abstract
Chromosome instability (CIN) has been identified as a common feature of most human cancers. A number of centrosomal kinases are thought to cause CIN in cancer cells. Part of those centrosomal kinases exhibit elevated expression in a wide variety of tumours and cancer cell lines. Additionally, critical roles in many aspects of cancer cell growth, proliferation, metastasis, and drug resistance have been assigned to some of these centrosomal kinases, such as polo-like kinase 1 (PLk1) and Aurora-A kinase. Recent studies from our group and others revealed that a centrosomal kinase, Never in Mitosis (NIMA) Related Kinase 2A (NEK2A), is frequently upregulated in multiple types of human cancers. Uncontrolled activity of NEK2A activates several oncogenic pathways and ABC transporters, thereby leading to CIN, cancer cell proliferation, metastasis, and enhanced drug resistance. In this paper, we highlight recent findings on the aberrant expression and functional significance of NEK2A in human cancers and emphasize their significance for therapeutic potentials.
Collapse
|
14
|
Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58. [PMID: 25486564 PMCID: PMC4612452 DOI: 10.4161/15384101.2014.949083] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| | - Lydia Steiner
- Center for Complexity & Collective Computation; Wisconsin Institute for Discovery; Madison, WI USA
- Computational EvoDevo Group & Bioinformatics Group; Department of Computer Science and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| |
Collapse
|