1
|
Prins K, Mutsters N, Volker F, Huisman M, Mies R, Delhanty PJD, Visser JA. Syndecans modulate ghrelin receptor signaling. J Mol Endocrinol 2025; 74:e240070. [PMID: 39565158 PMCID: PMC11729051 DOI: 10.1530/jme-24-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
Ghrelin is a gut hormone that enhances food intake and growth hormone secretion through its G-protein coupled receptor, the growth hormone secretagogue receptor (GHSR). Recently, we have shown that ghrelin interacts with syndecans (SDCs), a family of membrane proteins known to modulate hypothalamic appetite signaling. Here, we investigated whether SDCs impact ghrelin signaling at GHSR by assessing ghrelin-induced intracellular Ca2+ mobilization (iCa2+) and inositol phosphate 1 (IP1) production in HEK293 cells. Compared with controls, the overexpression of SDCs dose-dependently increased the maximum iCa2+ response two- to four-fold, without affecting EC50. The IP1 response was similarly amplified by SDCs, but it also indicated that they reduce constitutive (ghrelin-independent) activity of GHSR. These enhanced responses occurred despite a SDC dose-dependent reduction in plasma membrane GHSR levels. Although ghrelin-stimulated Gαq activation was unaltered by SDC1 expression, it failed to restore iCa2+ responsiveness in GNAQ/11 knockout cells, indicating dependence on Gαq/11, not another Gα subunit. This suggests that SDCs modulate either signaling downstream of Gαq/11 or quenching of β-arrestin2 recruitment to GHSR. Indeed, expression of SDCs at levels that only modestly suppress cell surface receptor reduced ghrelin-induced β-arrestin2 recruitment by ∼80%. SDC co-expression also delayed the peak β-arrestin2 response. However, peak β-arrestin2 recruitment follows the peak iCa2+ response, making it unclear whether reduced β-arrestin2 recruitment potentiated Ca2+ signaling. Altogether, SDCs enhanced iCa2+/IP1 and reduced β-arrestin2 recruitment by GHSR in response to ghrelin, likely by modulating signaling downstream of Gαq. This could be a novel mechanism through which SDCs affect metabolism and obesity.
Collapse
|
2
|
Chen L, Qu H, Liu B, Chen BC, Yang Z, Shi DZ, Zhang Y. Low or oscillatory shear stress and endothelial permeability in atherosclerosis. Front Physiol 2024; 15:1432719. [PMID: 39314624 PMCID: PMC11417040 DOI: 10.3389/fphys.2024.1432719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Endothelial shear stress is a tangential stress derived from the friction of the flowing blood on the endothelial surface of the arterial wall and is expressed in units of force/unit area (dyne/cm2). Branches and bends of arteries are exposed to complex blood flow patterns that generate low or oscillatory endothelial shear stress, which impairs glycocalyx integrity, cytoskeleton arrangement and endothelial junctions (adherens junctions, tight junctions, gap junctions), thus increasing endothelial permeability. The lipoproteins and inflammatory cells penetrating intima due to the increased endothelial permeability characterizes the pathological changes in early stage of atherosclerosis. Endothelial cells are critical sensors of shear stress, however, the mechanisms by which the complex shear stress regulate endothelial permeability in atherosclerosis remain unclear. In this review, we focus on the molecular mechanisms of the endothelial permeability induced by low or oscillatory shear stress, which will shed a novel sight in early stage of atherosclerosis.
Collapse
Affiliation(s)
- Li Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Bin Liu
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Bing-Chang Chen
- Graduate school, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Ying Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
3
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz MA. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. EMBO J 2024; 43:3175-3191. [PMID: 38886581 PMCID: PMC11294477 DOI: 10.1038/s44318-024-00142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function, and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs), and Plexin D1 located at cell-cell junctions mediates many of these events. However, available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial-specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology, and disease.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Minghao Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Andrew Prendergast
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Zhenwu Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Minhwan Chung
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Arya Mani
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Anthony Koleske
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT, USA
| | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Li N, Hao R, Ren P, Wang J, Dong J, Ye T, Zhao D, Qiao X, Meng Z, Gan H, Liu S, Sun Y, Dou G, Gu R. Glycosaminoglycans: Participants in Microvascular Coagulation of Sepsis. Thromb Haemost 2024; 124:599-612. [PMID: 38242171 PMCID: PMC11199054 DOI: 10.1055/a-2250-3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
Sepsis represents a syndromic response to infection and frequently acts as a common pathway leading to fatality in the context of various infectious diseases globally. The pathology of severe sepsis is marked by an excess of inflammation and activated coagulation. A substantial contributor to mortality in sepsis patients is widespread microvascular thrombosis-induced organ dysfunction. Multiple lines of evidence support the notion that sepsis induces endothelial damage, leading to the release of glycosaminoglycans, potentially causing microvascular dysfunction. This review aims to initially elucidate the relationship among endothelial damage, excessive inflammation, and thrombosis in sepsis. Following this, we present a summary of the involvement of glycosaminoglycans in coagulation, elucidating interactions among glycosaminoglycans, platelets, and inflammatory cells. In this section, we also introduce a reasoned generalization of potential signal pathways wherein glycosaminoglycans play a role in clotting. Finally, we discuss current methods for detecting microvascular conditions in sepsis patients from the perspective of glycosaminoglycans. In conclusion, it is imperative to pay closer attention to the role of glycosaminoglycans in the mechanism of microvascular thrombosis in sepsis. Dynamically assessing glycosaminoglycan levels in patients may aid in predicting microvascular conditions, enabling the monitoring of disease progression, adjustment of clinical treatment schemes, and mitigation of both acute and long-term adverse outcomes associated with sepsis.
Collapse
Affiliation(s)
- Nanxi Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Ruolin Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
| | - Jingya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
| | - Jiahui Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Tong Ye
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Danyang Zhao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Xuan Qiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Shuchen Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Yunbo Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| |
Collapse
|
5
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz MA. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598386. [PMID: 38915515 PMCID: PMC11195282 DOI: 10.1101/2024.06.13.598386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs) and PlexinD1 located at cell-cell junctions mediates many of these events. But available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn-2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology and disease.
Collapse
|
6
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Aitken C, Mehta V, Schwartz MA, Tzima E. Mechanisms of endothelial flow sensing. NATURE CARDIOVASCULAR RESEARCH 2023; 2:517-529. [PMID: 39195881 DOI: 10.1038/s44161-023-00276-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/14/2023] [Indexed: 08/29/2024]
Abstract
Fluid shear stress plays a key role in sculpting blood vessels during development, in adult vascular homeostasis and in vascular pathologies. During evolution, endothelial cells evolved several mechanosensors that convert physical forces into biochemical signals, a process termed mechanotransduction. This Review discusses our understanding of endothelial flow sensing and suggests important questions for future investigation.
Collapse
Affiliation(s)
- Claire Aitken
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vedanta Mehta
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Ellie Tzima
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
8
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
9
|
Askari H, Sadeghinejad M, Fancher IS. Mechanotransduction and the endothelial glycocalyx: Interactions with membrane and cytoskeletal proteins to transduce force. CURRENT TOPICS IN MEMBRANES 2023; 91:43-60. [PMID: 37080680 DOI: 10.1016/bs.ctm.2023.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The endothelial glycocalyx is an extracellular matrix that coats the endothelium and extends into the lumen of blood vessels, acting as a barrier between the vascular wall and blood flowing through the vessel. This positioning of the glycocalyx permits a variety of its constituents, including the major endothelial proteoglycans glypican-1 and syndecan-1, as well as the major glycosaminoglycans heparan sulfate and hyaluronic acid, to contribute to the processes of mechanosensation and subsequent mechanotransduction following such stimuli as elevated shear stress. To coordinate the vast array of processes that occur in response to physical force, the glycocalyx interacts with a plethora of membrane and cytoskeletal proteins to carry out specific signaling pathways resulting in a variety of responses of endothelial cells and, ultimately, blood vessels to mechanical force. This review focuses on proposed glycocalyx-protein relationships whereby the endothelial glycocalyx interacts with a variety of membrane and cytoskeletal proteins to transduce force into a myriad of chemical signaling pathways. The established and proposed interactions at the molecular level are discussed in context of how the glycocalyx regulates membrane/cytoskeletal protein function in the many processes of endothelial mechanotransduction.
Collapse
|
10
|
Kaloss AM, Theus MH. Leptomeningeal anastomoses: Mechanisms of pial collateral remodeling in ischemic stroke. WIREs Mech Dis 2022; 14:e1553. [PMID: 35118835 PMCID: PMC9283306 DOI: 10.1002/wsbm.1553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Arterial collateralization, as determined by leptomeningeal anastomoses or pial collateral vessels, is a well‐established vital player in cerebral blood flow restoration and neurological recovery from ischemic stroke. A secondary network of cerebral collateral circulation apart from the Circle of Willis, exist as remnants of arteriole development that connect the distal arteries in the pia mater. Recent interest lies in understanding the cellular and molecular adaptations that control the growth and remodeling, or arteriogenesis, of these pre‐existing collateral vessels. New findings from both animal models and human studies of ischemic stroke suggest a multi‐factorial and complex, temporospatial interplay of endothelium, immune and vessel‐associated cell interactions may work in concert to facilitate or thwart arteriogenesis. These valuable reports may provide critical insight into potential predictors of the pial collateral response in patients with large vessel occlusion and may aid in therapeutics to enhance collateral function and improve recovery from stroke. This article is categorized under:Neurological Diseases > Molecular and Cellular Physiology
Collapse
Affiliation(s)
- Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA.,School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA.,Center for Regenerative Medicine, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
11
|
Brandt MM, Cheng C, Merkus D, Duncker DJ, Sorop O. Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation. Front Physiol 2022; 12:771960. [PMID: 35002759 PMCID: PMC8733629 DOI: 10.3389/fphys.2021.771960] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
The coronary microvasculature plays a key role in regulating the tight coupling between myocardial perfusion and myocardial oxygen demand across a wide range of cardiac activity. Short-term regulation of coronary blood flow in response to metabolic stimuli is achieved via adjustment of vascular diameter in different segments of the microvasculature in conjunction with mechanical forces eliciting myogenic and flow-mediated vasodilation. In contrast, chronic adjustments in flow regulation also involve microvascular structural modifications, termed remodeling. Vascular remodeling encompasses changes in microvascular diameter and/or density being largely modulated by mechanical forces acting on the endothelium and vascular smooth muscle cells. Whereas in recent years, substantial knowledge has been gathered regarding the molecular mechanisms controlling microvascular tone and how these are altered in various diseases, the structural adaptations in response to pathologic situations are less well understood. In this article, we review the factors involved in coronary microvascular functional and structural alterations in obstructive and non-obstructive coronary artery disease and the molecular mechanisms involved therein with a focus on mechanobiology. Cardiovascular risk factors including metabolic dysregulation, hypercholesterolemia, hypertension and aging have been shown to induce microvascular (endothelial) dysfunction and vascular remodeling. Additionally, alterations in biomechanical forces produced by a coronary artery stenosis are associated with microvascular functional and structural alterations. Future studies should be directed at further unraveling the mechanisms underlying the coronary microvascular functional and structural alterations in disease; a deeper understanding of these mechanisms is critical for the identification of potential new targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Maarten M Brandt
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
12
|
Mishchenko EL, Mishchenko AM, Ivanisenko VA. Mechanosensitive molecular interactions in atherogenic regions of the arteries: development of atherosclerosis. Vavilovskii Zhurnal Genet Selektsii 2021; 25:552-561. [PMID: 34595377 PMCID: PMC8453358 DOI: 10.18699/vj21.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
A terrible disease of the cardiovascular system, atherosclerosis, develops in the areas of bends and
branches of arteries, where the direction and modulus of the blood flow velocity vector change, and consequently
so does the mechanical effect on endothelial cells in contact with the blood flow. The review focuses on topical
research studies on the development of atherosclerosis – mechanobiochemical events that transform the proatherogenic
mechanical stimulus of blood flow – low and low/oscillatory arterial wall shear stress in the chains of biochemical
reactions in endothelial cells, leading to the expression of specific proteins that cause the progression
of the pathological process. The stages of atherogenesis, systemic risk factors for atherogenesis and its important
hemodynamic factor, low and low/oscillatory wall shear stress exerted by blood flow on the endothelial cells lining
the arterial walls, have been described. The interactions of cell adhesion molecules responsible for the development
of atherosclerosis under low and low/oscillating shear stress conditions have been demonstrated. The activation
of the regulator of the expression of cell adhesion molecules, the transcription factor NF-κB, and the factors
regulating its activation under these conditions have been described. Mechanosensitive signaling pathways leading
to the expression of NF-κB in endothelial cells have been described. Studies of the mechanobiochemical signaling
pathways and interactions involved in the progression of atherosclerosis provide valuable information for the
development of approaches that delay or block the development of this disease.
Key words: atherogenesis; shear stress; transcription factor NF-κB; RelA expression; mechanosensitive receptors;
cell adhesion molecules; signaling pathways; mechanotransduction.
Collapse
Affiliation(s)
- E L Mishchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - V A Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
13
|
Bartosch AMW, Mathews R, Mahmoud MM, Cancel LM, Haq ZS, Tarbell JM. Heparan sulfate proteoglycan glypican-1 and PECAM-1 cooperate in shear-induced endothelial nitric oxide production. Sci Rep 2021; 11:11386. [PMID: 34059731 PMCID: PMC8166914 DOI: 10.1038/s41598-021-90941-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to clarify the role of glypican-1 and PECAM-1 in shear-induced nitric oxide production in endothelial cells. Atomic force microscopy pulling was used to apply force to glypican-1 and PECAM-1 on the surface of human umbilical vein endothelial cells and nitric oxide was measured using a fluorescent reporter dye. Glypican-1 pulling for 30 min stimulated nitric oxide production while PECAM-1 pulling did not. However, PECAM-1 downstream activation was necessary for the glypican-1 force-induced response. Glypican-1 knockout mice exhibited impaired flow-induced phosphorylation of eNOS without changes to PECAM-1 expression. A cooperation mechanism for the mechanotransduction of fluid shear stress to nitric oxide production was elucidated in which glypican-1 senses flow and phosphorylates PECAM-1 leading to endothelial nitric oxide synthase phosphorylation and nitric oxide production.
Collapse
Affiliation(s)
- Anne Marie W Bartosch
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Rick Mathews
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.,The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Marwa M Mahmoud
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Zahin S Haq
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|
14
|
Tanaka K, Joshi D, Timalsina S, Schwartz MA. Early events in endothelial flow sensing. Cytoskeleton (Hoboken) 2021; 78:217-231. [PMID: 33543538 DOI: 10.1002/cm.21652] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Responses of vascular and lymphatic endothelial cells (ECs) to fluid shear stress (FSS) from blood or lymphatic fluid flow govern the development, physiology, and diseases of these structures. Extensive research has characterized the signaling, gene expression and cytoskeletal pathways that mediate effects on EC phenotype and vascular morphogenesis. But the primary mechanisms by which ECs transduce the weak forces from flow into biochemical signals are less well understood. This review covers recent advances in our understanding of the immediate mechanisms of FSS mechanotransduction, integrating results from different disciplines, addressing their roles in development, physiology and disease, and suggesting important questions for future work.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Sushma Timalsina
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Cell Biology, Yale University, New Haven, Connecticut, USA.,Department of Biomedical engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
15
|
The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovasc Eng Technol 2020; 12:37-71. [PMID: 32959164 PMCID: PMC7505222 DOI: 10.1007/s13239-020-00485-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
Purpose In 2007 the two senior authors wrote a review on the structure and function of the endothelial glycocalyx layer (Weinbaum in Annu Rev Biomed Eng 9:121–167, 2007). Since then there has been an explosion of interest in this hydrated gel-like structure that coats the luminal surface of endothelial cells that line our vasculature due to its important functions in (A) basic vascular physiology and (B) vascular related diseases. This review will highlight the major advances that have occurred since our 2007 paper. Methods A literature search mainly focusing on the role of the glycocalyx in the two major areas described above was performed using electronic databases. Results In part (A) of this review, the new formulation of the century old Starling principle, now referred to as the Michel–Weinbaum glycoclayx model or revised Starling hypothesis, is described including new subtleties and physiological ramifications. New insights into mechanotransduction and release of nitric oxide due to fluid shear stress sensed by the glycocalyx are elaborated. Major advances in understanding the organization and function of glycocalyx components, and new techniques for measuring both its thickness and spatio-chemical organization based on super resolution, stochastic optical reconstruction microscopy (STORM) are presented. As discussed in part (B) of this review, it is now recognized that artery wall stiffness associated with hypertension and aging induces glycocalyx degradation, endothelial dysfunction and vascular disease. In addition to atherosclerosis and cardiovascular diseases, the glycocalyx plays an important role in lifestyle related diseases (e.g., diabetes) and cancer. Infectious diseases including sepsis, Dengue, Zika and Corona viruses, and malaria also involve the glycocalyx. Because of increasing recognition of the role of the glycocalyx in a wide range of diseases, there has been a vigorous search for methods to protect the glycocalyx from degradation or to enhance its synthesis in disease environments. Conclusion As we have seen in this review, many important developments in our basic understanding of GCX structure, function and role in diseases have been described since the 2007 paper. The future is wide open for continued GCX research.
Collapse
|
16
|
Beurskens DMH, Huckriede JP, Schrijver R, Hemker HC, Reutelingsperger CP, Nicolaes GAF. The Anticoagulant and Nonanticoagulant Properties of Heparin. Thromb Haemost 2020; 120:1371-1383. [PMID: 32820487 DOI: 10.1055/s-0040-1715460] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heparins represent one of the most frequently used pharmacotherapeutics. Discovered around 1926, routine clinical anticoagulant use of heparin was initiated only after the publication of several seminal papers in the early 1970s by the group of Kakkar. It was shown that heparin prevents venous thromboembolism and mortality from pulmonary embolism in patients after surgery. With the subsequent development of low-molecular-weight heparins and synthetic heparin derivatives, a family of related drugs was created that continues to prove its clinical value in thromboprophylaxis and in prevention of clotting in extracorporeal devices. Fundamental and applied research has revealed a complex pharmacodynamic profile of heparins that goes beyond its anticoagulant use. Recognition of the complex multifaceted beneficial effects of heparin underscores its therapeutic potential in various clinical situations. In this review we focus on the anticoagulant and nonanticoagulant activities of heparin and, where possible, discuss the underlying molecular mechanisms that explain the diversity of heparin's biological actions.
Collapse
Affiliation(s)
- Danielle M H Beurskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Joram P Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Roy Schrijver
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - H Coenraad Hemker
- Synapse BV, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
17
|
Fancher IS, Le Master E, Ahn SJ, Adamos C, Lee JC, Berdyshev E, Dull RO, Phillips SA, Levitan I. Impairment of Flow-Sensitive Inwardly Rectifying K + Channels via Disruption of Glycocalyx Mediates Obesity-Induced Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2020; 40:e240-e255. [PMID: 32698687 DOI: 10.1161/atvbaha.120.314935] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine if endothelial dysfunction in a mouse model of diet-induced obesity and in obese humans is mediated by the suppression of endothelial Kir (inwardly rectifying K+) channels. Approach and Results: Endothelial dysfunction, observed as reduced dilations to flow, occurred after feeding mice a high-fat, Western diet for 8 weeks. The functional downregulation of endothelial Kir2.1 using dominant-negative Kir2.1 construct resulted in substantial reductions in the response to flow in mesenteric arteries of lean mice, whereas no effect was observed in arteries of obese mice. Overexpressing wild-type-Kir2.1 in endothelium of arteries from obese mice resulted in full recovery of the flow response. Exposing freshly isolated endothelial cells to fluid shear during patch-clamp electrophysiology revealed that the flow-sensitivity of Kir was virtually abolished in cells from obese mice. Atomic force microscopy revealed that the endothelial glycocalyx was stiffer and the thickness of the glycocalyx layer reduced in arteries from obese mice. We also identified that the length of the glycocalyx is critical to the flow-activation of Kir. Overexpressing Kir2.1 in endothelium of arteries from obese mice restored flow- and heparanase-sensitivity, indicating an important role for heparan sulfates in the flow-activation of Kir. Furthermore, the Kir2.1-dependent component of flow-induced vasodilation was lost in the endothelium of resistance arteries of obese humans obtained from biopsies collected during bariatric surgery. CONCLUSIONS We conclude that obesity-induced impairment of flow-induced vasodilation is attributed to the loss of flow-sensitivity of endothelial Kir channels and propose that the latter is mediated by the biophysical alterations of the glycocalyx.
Collapse
Affiliation(s)
- Ibra S Fancher
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine (I.S.F., E.L.M., S.J.A., C.A., I.L.), University of Illinois at Chicago
| | - Elizabeth Le Master
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine (I.S.F., E.L.M., S.J.A., C.A., I.L.), University of Illinois at Chicago
| | - Sang Joon Ahn
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine (I.S.F., E.L.M., S.J.A., C.A., I.L.), University of Illinois at Chicago
| | - Crystal Adamos
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine (I.S.F., E.L.M., S.J.A., C.A., I.L.), University of Illinois at Chicago
| | - James C Lee
- Departement of Bioengineering (J.C.L.), University of Illinois at Chicago
| | - Evgeny Berdyshev
- Division of Pulmonary, Critical Care and Sleep Medicine, Departement of Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Randal O Dull
- Department of Anesthesiology, University of Arizona College of Medicine, Banner-University Medical Center, Tucson (R.O.D.)
| | - Shane A Phillips
- Department of Physical Therapy (S.A.P.), University of Illinois at Chicago
| | - Irena Levitan
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine (I.S.F., E.L.M., S.J.A., C.A., I.L.), University of Illinois at Chicago
| |
Collapse
|
18
|
Abstract
BACKGROUND Endothelial cells (ECs) sense the forces from blood flow through the glycocalyx, a carbohydrate rich luminal surface layer decorating most cells, and through forces transmitted through focal adhesions (FAs) on the abluminal side of the cell. OBJECTIVES This perspective paper explores a complementary hypothesis, that glycocalyx molecules on the abluminal side of the EC between the basement membrane and the EC membrane, occupying the space outside of FAs, work in concert with FAs to sense blood flow-induced shear stress applied to the luminal surface. RESULTS First, we summarize recent studies suggesting that the glycocalyx repels the plasma membrane away from the basement membrane, while integrin molecules attach to extracellular matrix (ECM) ligands. This coordinated attraction and repulsion results in the focal nature of integrin-mediated adhesion making the abluminal glycocalyx a participant in mechanotransduction. Further, the glycocalyx mechanically links the plasma membrane to the basement membrane providing a mechanism of force transduction when the cell deforms in the peri-FA space. To determine if the membrane might deform against a restoring force of an elastic abluminal glycocalyx in the peri-FA space we present some analysis from a multicomponent elastic finite element model of a sheared and focally adhered endothelial cell whose abluminal topography was assessed using quantitative total internal reflection fluorescence microscopy with an assumption that glycocalyx fills the space between the membrane and extracellular matrix. CONCLUSIONS While requiring experimental verification, this analysis supports the hypothesis that shear on the luminal surface can be transmitted to the abluminal surface and deform the cell in the vicinity of the focal adhesions, with the magnitude of deformation depending on the abluminal glycocalyx modulus.
Collapse
Affiliation(s)
- Peter J Butler
- Department of Biomedical Engineering and Intercollege Graduate Program of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| | - Amit Bhatnagar
- Department of Biomedical Engineering and Intercollege Graduate Program of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
Ma T, Bai YP. The hydromechanics in arteriogenesis. Aging Med (Milton) 2020; 3:169-177. [PMID: 33103037 PMCID: PMC7574636 DOI: 10.1002/agm2.12101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022] Open
Abstract
Coronary heart diseases are tightly associated with aging. Although current revascularization therapies, such as percutaneous coronary interventions (PCI) and coronary artery bypass graft (CABG), improve the clinical outcomes of patients with coronary diseases, their application and therapeutic effects are limited in elderly patients. Thus, developing novel therapeutic strategies, like prompting collateral development or the process of arteriogenesis, is necessary for the treatment of the elderly with coronary diseases. Arteriogenesis (ie, the vascular remodeling from pre‐existent arterioles to collateral conductance networks) functions as an essential compensation for tissue hypoperfusion caused by artery occlusion or stenosis, and its mechanisms remain to be elucidated. In this review, we will summarize the roles of the major hydromechanical components in laminar conditions in arteriogenesis, and discuss the potential effects of disturbed flow components in non‐laminar conditions.
Collapse
Affiliation(s)
- Tianqi Ma
- Department of Geriatric Medicine Xiangya Hospital Central South University Changsha China
| | - Yong-Ping Bai
- Department of Geriatric Medicine Xiangya Hospital Central South University Changsha China
| |
Collapse
|
20
|
Fumagalli A, Zarca A, Neves M, Caspar B, Hill SJ, Mayor F, Smit MJ, Marin P. CXCR4/ACKR3 Phosphorylation and Recruitment of Interacting Proteins: Key Mechanisms Regulating Their Functional Status. Mol Pharmacol 2019; 96:794-808. [PMID: 30837297 DOI: 10.1124/mol.118.115360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/21/2019] [Indexed: 01/14/2023] Open
Abstract
The C-X-C motif chemokine receptor type 4 (CXCR4) and the atypical chemokine receptor 3 (ACKR3/CXCR7) are class A G protein-coupled receptors (GPCRs). Accumulating evidence indicates that GPCR subcellular localization, trafficking, transduction properties, and ultimately their pathophysiological functions are regulated by both interacting proteins and post-translational modifications. This has encouraged the development of novel techniques to characterize the GPCR interactome and to identify residues subjected to post-translational modifications, with a special focus on phosphorylation. This review first describes state-of-the-art methods for the identification of GPCR-interacting proteins and GPCR phosphorylated sites. In addition, we provide an overview of the current knowledge of CXCR4 and ACKR3 post-translational modifications and an exhaustive list of previously identified CXCR4- or ACKR3-interacting proteins. We then describe studies highlighting the importance of the reciprocal influence of CXCR4/ACKR3 interactomes and phosphorylation states. We also discuss their impact on the functional status of each receptor. These studies suggest that deeper knowledge of the CXCR4/ACKR3 interactomes along with their phosphorylation and ubiquitination status would shed new light on their regulation and pathophysiological functions.
Collapse
Affiliation(s)
- Amos Fumagalli
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Aurélien Zarca
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Maria Neves
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Birgit Caspar
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Stephen J Hill
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Federico Mayor
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Martine J Smit
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| |
Collapse
|
21
|
Dela Paz NG, Frangos JA. Rapid flow-induced activation of Gα q/11 is independent of Piezo1 activation. Am J Physiol Cell Physiol 2019; 316:C741-C752. [PMID: 30811222 PMCID: PMC6580164 DOI: 10.1152/ajpcell.00215.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
Endothelial cell (EC) mechanochemical transduction is the process by which mechanical stimuli are sensed by ECs and transduced into biochemical signals and ultimately into physiological responses. Identifying the mechanosensor/mechanochemical transducer(s) and describing the mechanism(s) by which they receive and transmit the signals has remained a central focus within the field. The heterotrimeric G protein, Gαq/11, is proposed to be part of a macromolecular complex together with PECAM-1 at EC junctions and may constitute the mechanochemical transducer as it is rapidly activated within seconds of flow onset. The mechanically activated cation channel Piezo1 has recently been implicated due to its involvement in mediating early responses, such as calcium and ATP release. Here, we investigate the role of Piezo1 in rapid shear stress-induced Gαq/11 activation. We show that flow-induced dissociation of Gαq/11 from PECAM-1 in ECs at 15 s is abrogated by BIM-46187, a selective inhibitor of Gαq/11 activation, suggesting that Gαq/11 activation is required for PECAM-1/Gαq/11 dissociation. Although siRNA knockdown of Piezo1 caused a dramatic decrease in PECAM-1/Gαq/11 association in the basal condition, it had no effect on flow-induced dissociation. Interestingly, siRNA knockdown of Piezo1 caused a marked decrease in PECAM-1 expression. Additionally, selective blockade of Piezo1 with ion channel inhibitors had no effect on flow-induced PECAM-1/Gαq/11 dissociations. Lastly, flow onset caused increased association of Gβ1 with Piezo1 as well as with the p101 subunit of phosphoinositide 3-kinase, which were both blocked by the Gβγ inhibitor gallein. Together, our results indicate that flow-induced activation of Piezo1 is not upstream of G protein activation.
Collapse
Affiliation(s)
| | - John A Frangos
- La Jolla Bioengineering Institute , La Jolla, California
| |
Collapse
|
22
|
James BD, Allen JB. Vascular Endothelial Cell Behavior in Complex Mechanical Microenvironments. ACS Biomater Sci Eng 2018; 4:3818-3842. [PMID: 33429612 DOI: 10.1021/acsbiomaterials.8b00628] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vascular mechanical microenvironment consists of a mixture of spatially and temporally changing mechanical forces. This exposes vascular endothelial cells to both hemodynamic forces (fluid flow, cyclic stretching, lateral pressure) and vessel forces (basement membrane mechanical and topographical properties). The vascular mechanical microenvironment is "complex" because these forces are dynamic and interrelated. Endothelial cells sense these forces through mechanosensory structures and transduce them into functional responses via mechanotransduction pathways, culminating in behavior directly affecting vascular health. Recent in vitro studies have shown that endothelial cells respond in nuanced and unique ways to combinations of hemodynamic and vessel forces as compared to any single mechanical force. Understanding the interactive effects of the complex mechanical microenvironment on vascular endothelial behavior offers the opportunity to design future biomaterials and biomedical devices from the bottom-up by engineering for the cellular response. This review describes and defines (1) the blood vessel structure, (2) the complex mechanical microenvironment of the vascular endothelium, (3) the process in which vascular endothelial cells sense mechanical forces, and (4) the effect of mechanical forces on vascular endothelial cells with specific attention to recent works investigating the influence of combinations of mechanical forces. We conclude this review by providing our perspective on how the field can move forward to elucidate the effects of the complex mechanical microenvironment on vascular endothelial cell behavior.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Computational Engineering, University of Florida, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| | - Josephine B Allen
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Cell and Tissue Science and Engineering, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| |
Collapse
|
23
|
Weckbach LT, Preissner KT, Deindl E. The Role of Midkine in Arteriogenesis, Involving Mechanosensing, Endothelial Cell Proliferation, and Vasodilation. Int J Mol Sci 2018; 19:E2559. [PMID: 30158425 PMCID: PMC6163309 DOI: 10.3390/ijms19092559] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces in blood circulation such as shear stress play a predominant role in many physiological and pathophysiological processes related to vascular responses or vessel remodeling. Arteriogenesis, defined as the growth of pre-existing arterioles into functional collateral arteries compensating for stenosed or occluded arteries, is such a process. Midkine, a pleiotropic protein and growth factor, has originally been identified to orchestrate embryonic development. In the adult organism its expression is restricted to distinct tissues (including tumors), whereby midkine is strongly expressed in inflamed tissue and has been shown to promote inflammation. Recent investigations conferred midkine an important function in vascular remodeling and growth. In this review, we introduce the midkine gene and protein along with its cognate receptors, and highlight its role in inflammation and the vascular system with special emphasis on arteriogenesis, particularly focusing on shear stress-mediated vascular cell proliferation and vasodilatation.
Collapse
Affiliation(s)
- Ludwig T Weckbach
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, LMU Munich, 81377 Munich, Germany.
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany.
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35390 Giessen, Germany.
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
24
|
The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:1-27. [PMID: 30315537 DOI: 10.1007/978-3-319-96445-4_1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endothelial cells (ECs) forming the inner wall of every blood vessel are constantly exposed to the mechanical forces generated by blood flow. The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system. A variety of mechanosensors and transducers, locating on the EC surface, intra- and trans-EC membrane, and within the EC cytoskeleton, have thus been identified to ensure proper functions of ECs. Among them, the most recent candidate is the endothelial surface glycocalyx (ESG), which is a matrix-like thin layer covering the luminal surface of the EC. It consists of various proteoglycans, glycosaminoglycans, and plasma proteins and is close to other prominent EC mechanosensors and transducers. This chapter summarizes the ESG composition, thickness, and structure observed by different labeling and visualization techniques and in different types of vessels. It also presents the literature in determining the ESG mechanical properties by atomic force microscopy and optical tweezers. The molecular mechanisms by which the ESG plays the role in EC mechanosensing and transduction are described as well as the ESG remodeling by shear stress, the actin cytoskeleton, the membrane rafts, the angiogenic factors, and the sphingosine-1-phosphate.
Collapse
|
25
|
Umezawa Y, Akiyama H, Okada K, Ishida S, Nogami A, Oshikawa G, Kurosu T, Miura O. Molecular mechanisms for enhancement of stromal cell-derived factor 1-induced chemotaxis by platelet endothelial cell adhesion molecule 1 (PECAM-1). J Biol Chem 2017; 292:19639-19655. [PMID: 28974577 DOI: 10.1074/jbc.m117.779603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/26/2017] [Indexed: 01/16/2023] Open
Abstract
Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell adhesion protein involved in the regulation of cell adhesion and migration. Interestingly, several PECAM-1-deficient hematopoietic cells exhibit impaired chemotactic responses to stromal cell-derived factor 1 (SDF-1), a chemokine essential for B lymphopoiesis and bone marrow myelopoiesis. However, whether PECAM-1 is involved in SDF-1-regulated chemotaxis is unknown. We report here that SDF-1 induces tyrosine phosphorylation of PECAM-1 at its immunoreceptor tyrosine-based inhibition motifs in several hematopoietic cell lines via the Src family kinase Lyn, Bruton's tyrosine kinase, and JAK2 and that inhibition of these kinases reduced chemotaxis. Overexpression and knockdown of PECAM-1 enhanced and down-regulated, respectively, SDF-1-induced Gαi-dependent activation of the PI3K/Akt/mTORC1 pathway and small GTPase Rap1 in hematopoietic 32Dcl3 cells, and these changes in activation correlated with chemotaxis. Furthermore, pharmacological or genetic inhibition of the PI3K/Akt/mTORC1 pathway or Rap1, respectively, revealed that these pathways are independently activated and required for SDF-1-induced chemotaxis. When coexpressed in 293T cells, PECAM-1 physically associated with the SDF-1 receptor CXCR4. Moreover, PECAM-1 overexpression and knockdown reduced and enhanced SDF-1-induced endocytosis of CXCR4, respectively. Furthermore, when expressed in 32Dcl3 cells, an endocytosis-defective CXCR4 mutant, CXCR4-S324A/S325A, could activate the PI3K/Akt/mTORC1 pathway as well as Rap1 and induce chemotaxis in a manner similar to PECAM-1 overexpression. These findings suggest that PECAM-1 enhances SDF-1-induced chemotaxis by augmenting and prolonging activation of the PI3K/Akt/mTORC1 pathway and Rap1 and that PECAM-1, at least partly, exerts its activity by inhibiting SDF-1-induced internalization of CXCR4.
Collapse
Affiliation(s)
- Yoshihiro Umezawa
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Hiroki Akiyama
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Keigo Okada
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Shinya Ishida
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Ayako Nogami
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Gaku Oshikawa
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Tetsuya Kurosu
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Osamu Miura
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| |
Collapse
|
26
|
Endothelial Glycocalyx-Mediated Nitric Oxide Production in Response to Selective AFM Pulling. Biophys J 2017; 113:101-108. [PMID: 28700908 DOI: 10.1016/j.bpj.2017.05.033] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 05/05/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a regulatory molecule in the vascular system and its inhibition due to endothelial injury contributes to cardiovascular disease. The glycocalyx is a thin layer of glycolipids, glycoproteins, and proteoglycans on the surface of mammalian epithelial cells. Extracellular forces are transmitted through the glycocalyx to initiate intracellular signaling pathways. In endothelial cells (ECs), previous studies have shown the glycocalyx to be a significant mediator of NO production; degradation of the endothelial glycocalyx layer (EGL) drastically reduces EC production of NO in response to fluid shear stress. However, the specific EGL components involved in this process are not well established. Recent work using short-hairpin RNA approaches in vitro suggest that the proteoglycan glypican-1, not syndecan-1, is the dominant core protein mediating shear-induced NO production. We utilized atomic force microscopy (AFM) to apply force selectively to components of the EGL of confluent rat fat pad ECs (RFPECs), including proteoglycans and glycosaminoglycans, to observe how each component individually contributes to force-induced production of NO. 4,5-diaminofluorescein diacetate, a cell-permeable fluorescent molecule, was used to detect changes in intracellular NO production. Antibody-coated AFM probes exhibited strong surface binding to RFPEC monolayers, with 100-300 pN mean adhesion forces. AFM pulling on glypican-1 and heparan sulfate for 10 min caused significantly increased NO production, whereas pulling on syndecan-1, CD44, hyaluronic acid, and with control probes did not. We conclude that AFM pulling can be used to activate EGL-mediated NO production and that the heparan sulfate proteoglycan glypican-1 is a primary mechanosensor for shear-induced NO production.
Collapse
|
27
|
IP 3 receptor signaling and endothelial barrier function. Cell Mol Life Sci 2017; 74:4189-4207. [PMID: 28803370 DOI: 10.1007/s00018-017-2624-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/18/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022]
Abstract
The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial cells that is critical to control of vascular tone and endothelial permeability. The ion Ca2+ is stored inside the intracellular organelles and released into the cytosol in response to environmental cues. The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3R clusters, a key event responsible for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts related to architecture and dynamics of IP3R clusters, and their specific role in propagation of Ca2+ signals in endothelial cells.
Collapse
|
28
|
Dela Paz NG, Melchior B, Frangos JA. Shear stress induces Gα q/11 activation independently of G protein-coupled receptor activation in endothelial cells. Am J Physiol Cell Physiol 2017; 312:C428-C437. [PMID: 28148497 DOI: 10.1152/ajpcell.00148.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/17/2022]
Abstract
Mechanochemical signal transduction occurs when mechanical forces, such as fluid shear stress, are converted into biochemical responses within the cell. The molecular mechanisms by which endothelial cells (ECs) sense/transduce shear stress into biological signals, including the nature of the mechanosensor, are still unclear. G proteins and G protein-coupled receptors (GPCRs) have been postulated independently to mediate mechanotransduction. In this study, we used in situ proximity ligation assay (PLA) to investigate the role of a specific GPCR/Gαq/11 pair in EC shear stress-induced mechanotransduction. We demonstrated that sphingosine 1-phosphate (S1P) stimulation causes a rapid dissociation at 0.5 min of Gαq/11 from its receptor S1P3, followed by an increased association within 2 min of GPCR kinase-2 (GRK2) and β-arrestin-1/2 with S1P3 in human coronary artery ECs, which are consistent with GPCR/Gαq/11 activation and receptor desensitization/internalization. The G protein activator AlF4 resulted in increased dissociation of Gαq/11 from S1P3, but no increase in association between S1P3 and either GRK2 or β-arrestin-1/2. The G protein inhibitor guanosine 5'-(β-thio) diphosphate (GDP-β-S) and the S1P3 antagonist VPC23019 both prevented S1P-induced activation. Shear stress also caused the rapid activation within 7 s of S1P3/Gαq/11 There were no increased associations between S1P3 and GRK2 or S1P3 and β-arrestin-1/2 until 5 min. GDP-β-S, but not VPC23019, prevented dissociation of Gαq/11 from S1P3 in response to shear stress. Shear stress did not induce rapid dephosphorylation of β-arrestin-1 or rapid internalization of S1P3, indicating no GPCR activation. These findings suggest that Gαq/11 participates in the sensing/transducing of shear stress independently of GPCR activation in ECs.
Collapse
|
29
|
Russell-Puleri S, Dela Paz NG, Adams D, Chattopadhyay M, Cancel L, Ebong E, Orr AW, Frangos JA, Tarbell JM. Fluid shear stress induces upregulation of COX-2 and PGI 2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. Am J Physiol Heart Circ Physiol 2016; 312:H485-H500. [PMID: 28011582 PMCID: PMC5402016 DOI: 10.1152/ajpheart.00035.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022]
Abstract
Vascular endothelial cells play an important role in the regulation of vascular function in response to mechanical stimuli in both healthy and diseased states. Prostaglandin I2 (PGI2) is an important antiatherogenic prostanoid and vasodilator produced in endothelial cells through the action of the cyclooxygenase (COX) isoenzymes COX-1 and COX-2. However, the mechanisms involved in sustained, shear-induced production of COX-2 and PGI2 have not been elucidated but are determined in the present study. We used cultured endothelial cells exposed to steady fluid shear stress (FSS) of 10 dyn/cm2 for 5 h to examine shear stress-induced induction of COX-2/PGI2 Our results demonstrate the relationship between the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1) and the intracellular mechanoresponsive molecules phosphatidylinositol 3-kinase (PI3K), focal adhesion kinase (FAK), and mitogen-activated protein kinase p38 in the FSS induction of COX-2 expression and PGI2 release. Knockdown of PECAM-1 (small interference RNA) expression inhibited FSS-induced activation of α5β1-integrin, upregulation of COX-2, and release of PGI2 in both bovine aortic endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs). Furthermore, inhibition of the PI3K pathway (LY294002) substantially inhibited FSS activation of α5β1-integrin, upregulation of COX-2 gene and protein expression, and release of PGI2 in BAECs. Inhibition of integrin-associated FAK (PF573228) and MAPK p38 (SB203580) also inhibited the shear-induced upregulation of COX-2. Finally, a PECAM-1-/- mouse model was characterized by reduced COX-2 immunostaining in the aorta and reduced plasma PGI2 levels compared with wild-type mice, as well as complete inhibition of acute flow-induced PGI2 release compared with wild-type animals.NEW & NOTEWORTHY In this study we determined the major mechanotransduction pathway by which blood flow-driven shear stress activates cyclooxygenase-2 (COX-2) and prostaglandin I2 (PGI2) release in endothelial cells. Our work has demonstrated for the first time that COX-2/PGI2 mechanotransduction is mediated by the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1).
Collapse
Affiliation(s)
| | | | - Diana Adams
- La Jolla Bioengineering Institute, La Jolla, California
| | | | - Limary Cancel
- Department of Biomedical Engineering, City College of New York, New York, New York
| | - Eno Ebong
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts; and
| | - A Wayne Orr
- Department of Pathology, Louisiana State University, Shreveport, Louisiana
| | | | - John M Tarbell
- Department of Biomedical Engineering, City College of New York, New York, New York;
| |
Collapse
|
30
|
Zhang Y, Liao B, Li M, Cheng M, Fu Y, Liu Q, Chen Q, Liu H, Fang Y, Zhang G, Yu F. Shear stress regulates endothelial cell function through SRB1-eNOS signaling pathway. Cardiovasc Ther 2016; 34:308-13. [PMID: 27225585 DOI: 10.1111/1755-5922.12199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology; Traditional Chinese Medicine Hospital of Luzhou Medical College; Luzhou Sichuan Province China
| | - Bin Liao
- The Affiliated Hospital of Luzhou Medical College; Cardiothoracic Surgery; Luzhou Sichuan Province China
- Institute of Cardiovascular Research; Luzhou Medical College; Luzhou Sichuan Province China
| | - Miaoling Li
- Institute of Cardiovascular Research; Luzhou Medical College; Luzhou Sichuan Province China
- Key Laboratory of Medical Electrophysiology; Ministry of Education of China; Luzhou Sichuan Province China
| | - Min Cheng
- Medicine Research Center; Weifang Medical University; Weifang Shandong China
| | - Yong Fu
- The Affiliated Hospital of Luzhou Medical College; Cardiothoracic Surgery; Luzhou Sichuan Province China
| | - Qing Liu
- Department of Anesthesiology; Traditional Chinese Medicine Hospital of Luzhou Medical College; Luzhou Sichuan Province China
| | - Qi Chen
- Department of Anesthesiology; Traditional Chinese Medicine Hospital of Luzhou Medical College; Luzhou Sichuan Province China
| | - Hongduan Liu
- The Affiliated Hospital of Luzhou Medical College; Cardiothoracic Surgery; Luzhou Sichuan Province China
| | - Yibing Fang
- The Affiliated Hospital of Luzhou Medical College; Cardiothoracic Surgery; Luzhou Sichuan Province China
| | - Gen Zhang
- The Affiliated Hospital of Luzhou Medical College; Cardiothoracic Surgery; Luzhou Sichuan Province China
| | - Fengxu Yu
- The Affiliated Hospital of Luzhou Medical College; Cardiothoracic Surgery; Luzhou Sichuan Province China
- Institute of Cardiovascular Research; Luzhou Medical College; Luzhou Sichuan Province China
| |
Collapse
|
31
|
Abstract
SIGNIFICANCE Forces are important in the cardiovascular system, acting as regulators of vascular physiology and pathology. Residing at the blood vessel interface, cells (endothelial cell, EC) are constantly exposed to vascular forces, including shear stress. Shear stress is the frictional force exerted by blood flow, and its patterns differ based on vessel geometry and type. These patterns range from uniform laminar flow to nonuniform disturbed flow. Although ECs sense and differentially respond to flow patterns unique to their microenvironment, the mechanisms underlying endothelial mechanosensing remain incompletely understood. RECENT ADVANCES A large body of work suggests that ECs possess many mechanosensors that decorate their apical, junctional, and basal surfaces. These potential mechanosensors sense blood flow, translating physical force into biochemical signaling events. CRITICAL ISSUES Understanding the mechanisms by which proposed mechanosensors sense and respond to shear stress requires an integrative approach. It is also critical to understand the role of these mechanosensors not only during embryonic development but also in the different vascular beds in the adult. Possible cross talk and integration of mechanosensing via the various mechanosensors remain a challenge. FUTURE DIRECTIONS Determination of the hierarchy of endothelial mechanosensors is critical for future work, as is determination of the extent to which mechanosensors work together to achieve force-dependent signaling. The role and primary sensors of shear stress during development also remain an open question. Finally, integrative approaches must be used to determine absolute mechanosensory function of potential mechanosensors. Antioxid. Redox Signal. 25, 373-388.
Collapse
Affiliation(s)
- Chris Givens
- 1 Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina
| | - Ellie Tzima
- 1 Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina.,2 Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics , Oxford, United Kingdom
| |
Collapse
|
32
|
Scheitlin CG, Julian JA, Shanmughapriya S, Madesh M, Tsoukias NM, Alevriadou BR. Endothelial mitochondria regulate the intracellular Ca2+ response to fluid shear stress. Am J Physiol Cell Physiol 2016; 310:C479-90. [PMID: 26739489 DOI: 10.1152/ajpcell.00171.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/04/2016] [Indexed: 02/04/2023]
Abstract
Shear stress is known to stimulate an intracellular free calcium concentration ([Ca(2+)]i) response in vascular endothelial cells (ECs). [Ca(2+)]i is a key second messenger for signaling that leads to vasodilation and EC survival. Although it is accepted that the shear-induced [Ca(2+)]i response is, in part, due to Ca(2+) release from the endoplasmic reticulum (ER), the role of mitochondria (second largest Ca(2+) store) is unknown. We hypothesized that the mitochondria play a role in regulating [Ca(2+)]i in sheared ECs. Cultured ECs, loaded with a Ca(2+)-sensitive fluorophore, were exposed to physiological levels of shear stress. Shear stress elicited [Ca(2+)]i transients in a percentage of cells with a fraction of them displaying oscillations. Peak magnitudes, percentage of oscillating ECs, and oscillation frequencies depended on the shear level. [Ca(2+)]i transients/oscillations were present when experiments were conducted in Ca(2+)-free solution (plus lanthanum) but absent when ECs were treated with a phospholipase C inhibitor, suggesting that the ER inositol 1,4,5-trisphosphate receptor is responsible for the [Ca(2+)]i response. Either a mitochondrial uncoupler or an electron transport chain inhibitor, but not a mitochondrial ATP synthase inhibitor, prevented the occurrence of transients and especially inhibited the oscillations. Knockdown of the mitochondrial Ca(2+) uniporter also inhibited the shear-induced [Ca(2+)]i transients/oscillations compared with controls. Hence, EC mitochondria, through Ca(2+) uptake/release, regulate the temporal profile of shear-induced ER Ca(2+) release. [Ca(2+)]i oscillation frequencies detected were within the range for activation of mechanoresponsive kinases and transcription factors, suggesting that dysfunctional EC mitochondria may contribute to cardiovascular disease by deregulating the shear-induced [Ca(2+)]i response.
Collapse
Affiliation(s)
- Christopher G Scheitlin
- Departments of Biomedical Engineering and Internal Medicine, Division of Cardiovascular Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Justin A Julian
- Departments of Biomedical Engineering and Internal Medicine, Division of Cardiovascular Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry and Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry and Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Nikolaos M Tsoukias
- Department of Biomedical Engineering, Florida International University, Miami, Florida
| | - B Rita Alevriadou
- Departments of Biomedical Engineering and Internal Medicine, Division of Cardiovascular Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
33
|
Weber EW, Han F, Tauseef M, Birnbaumer L, Mehta D, Muller WA. TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response. ACTA ACUST UNITED AC 2015; 212:1883-99. [PMID: 26392222 PMCID: PMC4612081 DOI: 10.1084/jem.20150353] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
Weber et al. identify TRPC6 as the calcium channel mediating the transient increase in endothelial cytosolic free calcium concentration required for transendothelial migration of leukocytes during the inflammatory response. Leukocyte transendothelial migration (TEM) is a tightly regulated, multistep process that is critical to the inflammatory response. A transient increase in endothelial cytosolic free calcium ion concentration (↑[Ca2+]i) is required for TEM. However, the mechanism by which endothelial ↑[Ca2+]i regulates TEM and the channels mediating this ↑[Ca2+]i are unknown. Buffering ↑[Ca2+]i in endothelial cells does not affect leukocyte adhesion or locomotion but selectively blocks TEM, suggesting a role for ↑[Ca2+]i specifically for this step. Transient receptor potential canonical 6 (TRPC6), a Ca2+ channel expressed in endothelial cells, colocalizes with platelet/endothelial cell adhesion molecule-1 (PECAM) to surround leukocytes during TEM and clusters when endothelial PECAM is engaged. Expression of dominant-negative TRPC6 or shRNA knockdown in endothelial cells arrests neutrophils apically over the junction, similar to when PECAM is blocked. Selectively activating endothelial TRPC6 rescues TEM during an ongoing PECAM blockade, indicating that TRPC6 functions downstream of PECAM. Furthermore, endothelial TRPC6 is required for trafficking of lateral border recycling compartment membrane, which facilitates TEM. Finally, mice lacking TRPC6 in the nonmyeloid compartment (i.e., endothelium) exhibit a profound defect in neutrophil TEM with no effect on leukocyte trafficking. Our findings identify endothelial TRPC6 as the calcium channel mediating the ↑[Ca2+]i required for TEM at a step downstream of PECAM homophilic interactions.
Collapse
Affiliation(s)
- Evan W Weber
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Fei Han
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Mohammad Tauseef
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois in Chicago College of Medicine, Chicago, IL 60612
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Dolly Mehta
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois in Chicago College of Medicine, Chicago, IL 60612
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
34
|
Zsila F. Glycosaminoglycan and DNA Binding Induced Intra- and Intermolecular Exciton Coupling of thebis-4-Aminoquinoline Surfen. Chirality 2015; 27:605-12. [DOI: 10.1002/chir.22471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/28/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Ferenc Zsila
- Research Group of Chemical Biology; Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| |
Collapse
|
35
|
Deng Q, Huo Y, Luo J. Endothelial mechanosensors: the gatekeepers of vascular homeostasis and adaptation under mechanical stress. SCIENCE CHINA-LIFE SCIENCES 2014; 57:755-62. [PMID: 25104447 DOI: 10.1007/s11427-014-4705-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/05/2014] [Indexed: 01/27/2023]
Abstract
Endothelial cells (ECs) not only serve as a barrier between blood and extravascular space to modulate the exchange of fluid, macromolecules and cells, but also play a critical role in regulation of vascular homeostasis and adaptation under mechanical stimulus via intrinsic mechanotransduction. Recently, with the dissection of microdomains responsible for cellular responsiveness to mechanical stimulus, a lot of mechanosensing molecules (mechanosensors) and pathways have been identified in ECs. In addition, there is growing evidence that endothelial mechanosensors not only serve as key vascular gatekeepers, but also contribute to the pathogenesis of various vascular disorders. This review focuses on recent findings in endothelial mechanosensors in subcellular microdomains and their roles in regulation of physiological and pathological functions under mechanical stress.
Collapse
Affiliation(s)
- QiuPing Deng
- Laboratory of Vascular Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | | | | |
Collapse
|
36
|
Abstract
Mammals are endowed with a complex set of mechanisms that sense mechanical forces imparted by blood flow to endothelial cells (ECs), smooth muscle cells, and circulating blood cells to elicit biochemical responses through a process referred to as mechanotransduction. These biochemical responses are critical for a host of other responses, including regulation of blood pressure, control of vascular permeability for maintaining adequate perfusion of tissues, and control of leukocyte recruitment during immunosurveillance and inflammation. This review focuses on the role of the endothelial surface proteoglycan/glycoprotein layer-the glycocalyx (GCX)-that lines all blood vessel walls and is an agent in mechanotransduction and the modulation of blood cell interactions with the EC surface. We first discuss the biochemical composition and ultrastructure of the GCX, highlighting recent developments that reveal gaps in our understanding of the relationship between composition and spatial organization. We then consider the roles of the GCX in mechanotransduction and in vascular permeability control and review the prominent interaction of plasma-borne sphingosine-1 phosphate (S1P), which has been shown to regulate both the composition of the GCX and the endothelial junctions. Finally, we consider the association of GCX degradation with inflammation and vascular disease and end with a final section on future research directions.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031
| | | | | |
Collapse
|