1
|
Gao Q, Hägglund P, Gamon LF, Davies MJ. Inactivation of mitochondrial pyruvate dehydrogenase by singlet oxygen involves lipoic acid oxidation, side-chain modification and structural changes. Free Radic Biol Med 2025; 234:19-33. [PMID: 40203999 DOI: 10.1016/j.freeradbiomed.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
The multi-subunit pyruvate dehydrogenase complex (PDC) plays a crucial role in glucose oxidation as it determines whether pyruvate is used for mitochondrial oxidative phosphorylation or is converted to lactate for aerobic glycolysis. PDC contains multiple lipoic acid groups, covalently attached at lysine residues to give lipoyllysine, which are responsible for acyl group transfer and critical to complex activity. We have recently reported that both free lipoic acid, and lipoyllysine in alpha-keto glutarate dehydrogenase, are highly susceptible to singlet oxygen (1O2)-induced oxidation. We therefore hypothesized that PDC activity and structure would be influenced by 1O2 (generated using Rose Bengal and light) via modification of the lipoyllysines and other residues. PDC activity was decreased by photooxidation, with this being dependent on light exposure, O2, the presence of Rose Bengal, and D2O consistent with 1O2-mediated reactions. These changes were modulated by pre-illumination addition of free lipoic acid and lipoamide. Activity loss occurred concurrently with lipoyllysine and sidechain modification (determined by mass spectrometry) and protein aggregation (detected by SDS-PAGE). Peptide mass mapping provided evidence for modification at 42 residues (Met, Trp, His and Tyr; with modification extents of 20-50 %) and each of the lipoyllysine sites (6-20 % modification). Structure modelling indicated the modifications occur across all 4 subunit types, and occur in functional domains or at multimer interfaces, consistent with damage at multiple sites contributing to the overall loss of activity. These data indicate that PDC activity and structure are susceptible to 1O2-induced damage with potential effects on cellular pathways of glucose metabolism.
Collapse
Affiliation(s)
- Qing Gao
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
2
|
Kandemirli SG, Al-Dasuqi K, Aslan B, Goldstein A, Alves CAPF. Overview of neuroimaging in primary mitochondrial disorders. Pediatr Radiol 2025; 55:765-791. [PMID: 39937244 DOI: 10.1007/s00247-025-06172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Advancements in understanding the clinical, biochemical, and genetic aspects of primary mitochondrial disorders, along with the identification of a broad range of phenotypes frequently involving the central nervous system, have opened a new and crucial area in neuroimaging. This expanding knowledge presents significant challenges for radiologists in clinical settings, as the neuroimaging features and their associated metabolic abnormalities become more complex. This review offers a comprehensive overview of the key neuroimaging features associated with the common primary mitochondrial disorders. It highlights both the classical imaging findings and the emerging diagnostic insights related to several previously identified causative genes for these diseases. The review also provides an in-depth description of the clinicoradiologic presentations and potential underlying mitochondrial defects, aiming to enhance diagnostic abilities of radiologists in identifying primary mitochondrial diseases in their clinical practice.
Collapse
Affiliation(s)
- Sedat Giray Kandemirli
- Duke University Hospital, 2301 Erwin Rd, Durham, NC, 27710, USA.
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Khalid Al-Dasuqi
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Sidra Medical and Research Center, Doha, Qatar
| | - Bulent Aslan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amy Goldstein
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
3
|
Ferreres G, Pérez-Rafael S, Guaus E, Palacios Ò, Ivanov I, Torrent-Burgués J, Tzanov T. Antimicrobial and antifouling hyaluronic acid-cobalt nanogel coatings built sonochemically on contact lenses. ULTRASONICS SONOCHEMISTRY 2024; 111:107131. [PMID: 39476555 PMCID: PMC11554631 DOI: 10.1016/j.ultsonch.2024.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
The wearing of contact lenses (CLs) may cause bacterial infections, leading in turn to more serious complications and ultimately vision impairment. In this scenario, the first step is the adhesion of tear proteins, which provide anchoring points for bacterial colonization. A possible solution is the functionalization with an antimicrobial coating, though the latter may also lead to sight obstruction and user discomfort. In this study, adipic acid dihydrazide-modified hyaluronic acid-cobalt (II) (HA-ADH-Co) nanogels (NGs) were synthesized and deposited onto commercial CLs in a single-step sonochemical process. The coating hindered up to 60 % the protein adsorption and endowed the CLs with strong antibacterial activity against major ocular pathogens like Staphylococcus aureus and Pseudomonas aeruginosa, reducing their concentration by around 3 logs. Cytotoxicity assessment with human corneal cells demonstrated viabilities above 95 %. The nanocomposite coating did not affect the optical power and the light transmission of the CLs and provided enhanced wettability, important for the wearer comfort.
Collapse
Affiliation(s)
- Guillem Ferreres
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Sílvia Pérez-Rafael
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Ester Guaus
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Barcelona, Bellaterra, Spain
| | - Ivan Ivanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Juan Torrent-Burgués
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain.
| |
Collapse
|
4
|
Meinhold S, Zdanowicz R, Giese C, Glockshuber R. Dimerization of a 5-kDa domain defines the architecture of the 5-MDa gammaproteobacterial pyruvate dehydrogenase complex. SCIENCE ADVANCES 2024; 10:eadj6358. [PMID: 38324697 PMCID: PMC10849603 DOI: 10.1126/sciadv.adj6358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
The Escherichia coli pyruvate dehydrogenase complex (PDHc) is a ~5 MDa assembly of the catalytic subunits pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). The PDHc core is a cubic complex of eight E2 homotrimers. Homodimers of the peripheral subunits E1 and E3 associate with the core by binding to the peripheral subunit binding domain (PSBD) of E2. Previous reports indicated that 12 E1 dimers and 6 E3 dimers bind to the 24-meric E2 core. Using an assembly arrested E2 homotrimer (E23), we show that two of the three PSBDs in the E23 dimerize, that each PSBD dimer cooperatively binds two E1 dimers, and that E3 dimers only bind to the unpaired PSBD in E23. This mechanism is preserved in wild-type PDHc, with an E1 dimer:E2 monomer:E3 dimer stoichiometry of 16:24:8. The conserved PSBD dimer interface indicates that PSBD dimerization is the previously unrecognized architectural determinant of gammaproteobacterial PDHc megacomplexes.
Collapse
Affiliation(s)
| | | | - Christoph Giese
- ETH Zürich, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | | |
Collapse
|
5
|
Moosavian T, Jamalipour Soufi G, Kamfar S. Dehydrogenase (DLD) Deficiency in an Iranian Patient with Recurrent Intractable Vomiting: Successful Treatment with Thiamine Supplementation. IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:131-138. [PMID: 38375122 PMCID: PMC10874511 DOI: 10.22037/ijcn.v18i1.38971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/21/2023] [Indexed: 02/21/2024]
Abstract
Dihydrolipoamide dehydrogenase (DLD) deficiency is a rare disease of genetic origin due to the malfunctioning of a shared subunit of three mitochondrial multi-enzyme complexes. Phenotypes of this disease are a set of clinical manifestations ranging from neonatal disorders to myopathy or recurrent episodes of liver failures, and vomiting for which no adequate or definitive treatment is currently available. This study described a case involving a 16-year-old boy who had experienced recurrent vomiting of unknown cause from age two. Normal value ranges for the basic metabolic panel were reported in previous years. The patient was admitted with Wernicke's encephalopathy after the last vomiting attack, also indicating metabolites of organic acids compatible with DLD deficiency. Whole exome sequencing identified a known pathogenic mutation in the DLD gene, leading to a diagnosis of DLD deficiency. Our patient was treated with a high dose of thiamine supplementation and continued treatment, has not experienced any vomiting attacks or related problems in the last two years and has adequately responded to the treatment prescribed. Normal urine organic acid levels in patients with recurrent vomiting cannot roll out DLD deficiency. However, although thiamine deficiency typically induces Wernicke's encephalopathy, it can also be implicated in pyruvate dehydrogenase complex (PDHc) deficiency, and high-dose thiamine therapy (with doses up to 30 mg/kg) is recommended for deficient patients.
Collapse
Affiliation(s)
- Toktam Moosavian
- Pediatric Neurology Department, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Sharareh Kamfar
- Pediatric Congenital Hematologic Disorders Research Center, Research nstitute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L, Ambrus A. Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease. Subcell Biochem 2024; 104:295-381. [PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Balint Nagy
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Andras Czajlik
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Timea Komlodi
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Probing the E1o-E2o and E1a-E2o Interactions in Binary Subcomplexes of the Human 2-Oxoglutarate Dehydrogenase and 2-Oxoadipate Dehydrogenase Complexes by Chemical Cross-Linking Mass Spectrometry and Molecular Dynamics Simulation. Int J Mol Sci 2023; 24:ijms24054555. [PMID: 36901986 PMCID: PMC10003691 DOI: 10.3390/ijms24054555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The human 2-oxoglutarate dehydrogenase complex (hOGDHc) is a key enzyme in the tricarboxylic acid cycle and is one of the main regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. Evidence was obtained for formation of a hybrid complex between the hOGDHc and its homologue the 2-oxoadipate dehydrogenase complex (hOADHc) in the L-lysine metabolic pathway, suggesting a crosstalk between the two distinct pathways. Findings raised fundamental questions about the assembly of hE1a (2-oxoadipate-dependent E1 component) and hE1o (2-oxoglutarate-dependent E1) to the common hE2o core component. Here we report chemical cross-linking mass spectrometry (CL-MS) and molecular dynamics (MD) simulation analyses to understand assembly in binary subcomplexes. The CL-MS studies revealed the most prominent loci for hE1o-hE2o and hE1a-hE2o interactions and suggested different binding modes. The MD simulation studies led to the following conclusions: (i) The N-terminal regions in E1s are shielded by, but do not interact directly with hE2o. (ii) The hE2o linker region exhibits the highest number of H-bonds with the N-terminus and α/β1 helix of hE1o, yet with the interdomain linker and α/β1 helix of hE1a. (iii) The C-termini are involved in dynamic interactions in complexes, suggesting the presence of at least two conformations in solution.
Collapse
|
8
|
Functional Versatility of the Human 2-Oxoadipate Dehydrogenase in the L-Lysine Degradation Pathway toward Its Non-Cognate Substrate 2-Oxopimelic Acid. Int J Mol Sci 2022; 23:ijms23158213. [PMID: 35897808 PMCID: PMC9367764 DOI: 10.3390/ijms23158213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The human 2-oxoadipate dehydrogenase complex (OADHc) in L-lysine catabolism is involved in the oxidative decarboxylation of 2-oxoadipate (OA) to glutaryl-CoA and NADH (+H+). Genetic findings have linked the DHTKD1 encoding 2-oxoadipate dehydrogenase (E1a), the first component of the OADHc, to pathogenesis of AMOXAD, eosinophilic esophagitis (EoE), and several neurodegenerative diseases. A multipronged approach, including circular dichroism spectroscopy, Fourier Transform Mass Spectrometry, and computational approaches, was applied to provide novel insight into the mechanism and functional versatility of the OADHc. The results demonstrate that E1a oxidizes a non-cognate substrate 2-oxopimelate (OP) as well as OA through the decarboxylation step, but the OADHc was 100-times less effective in reactions producing adipoyl-CoA and NADH from the dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3). The results revealed that the E2o is capable of producing succinyl-CoA, glutaryl-CoA, and adipoyl-CoA. The important conclusions are the identification of: (i) the functional promiscuity of E1a and (ii) the ability of the E2o to form acyl-CoA products derived from homologous 2-oxo acids with five, six, and even seven carbon atoms. The findings add to our understanding of both the OADHc function in the L-lysine degradative pathway and of the molecular mechanisms leading to the pathogenesis associated with DHTKD1 variants.
Collapse
|
9
|
Actinobacteria challenge the paradigm: A unique protein architecture for a well-known, central metabolic complex. Proc Natl Acad Sci U S A 2021; 118:2112107118. [PMID: 34819376 DOI: 10.1073/pnas.2112107118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
α-oxoacid dehydrogenase complexes are large, tripartite enzymatic machineries carrying out key reactions in central metabolism. Extremely conserved across the tree of life, they have been, so far, all considered to be structured around a high-molecular weight hollow core, consisting of up to 60 subunits of the acyltransferase component. We provide here evidence that Actinobacteria break the rule by possessing an acetyltranferase component reduced to its minimally active, trimeric unit, characterized by a unique C-terminal helix bearing an actinobacterial specific insertion that precludes larger protein oligomerization. This particular feature, together with the presence of an odhA gene coding for both the decarboxylase and the acyltransferase domains on the same polypetide, is spread over Actinobacteria and reflects the association of PDH and ODH into a single physical complex. Considering the central role of the pyruvate and 2-oxoglutarate nodes in central metabolism, our findings pave the way to both therapeutic and metabolic engineering applications.
Collapse
|
10
|
Alfarsi A, Alfadhel M, Alameer S, Alhashem A, Tabarki B, Ababneh F, Al Fares A, Al Mutairi F. The phenotypic spectrum of dihydrolipoamide dehydrogenase deficiency in Saudi Arabia. Mol Genet Metab Rep 2021; 29:100817. [PMID: 34745891 PMCID: PMC8554626 DOI: 10.1016/j.ymgmr.2021.100817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022] Open
Abstract
Background Dihydrolipoamide dehydrogenase deficiency (DLDD) is a rare metabolic disorder inherited in an autosomal recessive manner. This heterogeneous disease has a variable clinical presentation, onset, and biochemical markers. Materials and methods We retrospectively reviewed the clinical and molecular diagnosis of eight cases with DLDD from four referral centers in Saudi Arabia. Results Remarkably, we found hepatic involvement ranging from acute hepatic failure to chronic hepatitis in five patients. In addition, neurological disorders in the form of seizures, developmental delay, ataxia, hypotonia and psychomotor symptoms were found in five patients, two of them with a combination of hepatic and neurological symptoms. In addition, only one patient had recurrent episodes of hypoglycemia. While most patients had the hepatic form of homozygous variant c.685G > T in the DLD gene, one patient was found to have a novel variant c.623C > T that had neurological and hepatic symptoms. Conclusions We describe the largest reported DLDD cohort in the Saudi population. Clinical, biochemical, radiological, and molecular characterization was reviewed and no clear genotype-phenotype correlation was found in this cohort.
Collapse
Key Words
- BCAAs, Branched Chain Amino Acids
- BCKDH, Branched-chain a-keto acid dehydrogenase
- DCA, Dichloroacetate
- DLDD, Dihydrolipoamide Dehydrogenase Deficiency
- Dihydrolipoamide dehydrogenase deficiency
- Flavoprotein and E3
- Hypoglycemia
- IRB, Institutional Review Board
- KAIMRC, King Abdullah International Medical Research Centre
- Lactic acidosis
- MRI, Magnetic resonance imaging
- PDH, Pyruvate dehydrogenase
- Pyruvate dehydrogenase complex
- WES, Whole Exome Sequencing
- αKGDH, alpha-ketoglutarate dehydrogenase
Collapse
Affiliation(s)
- Anar Alfarsi
- Genetics & Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Genetics & Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Seham Alameer
- King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Jeddah, Saudi Arabia
| | - Amal Alhashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.,Department of Anatomy and Cell biology, college of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Faroug Ababneh
- Genetics & Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Ahmed Al Fares
- King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Division of Translational Pathology, Department of Pathology, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Pediatrics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Fuad Al Mutairi
- Genetics & Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Škerlová J, Berndtsson J, Nolte H, Ott M, Stenmark P. Structure of the native pyruvate dehydrogenase complex reveals the mechanism of substrate insertion. Nat Commun 2021; 12:5277. [PMID: 34489474 PMCID: PMC8421416 DOI: 10.1038/s41467-021-25570-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle by converting pyruvate into acetyl-coenzyme A. PDHc encompasses three enzymatically active subunits, namely pyruvate dehydrogenase, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase. Dihydrolipoyl transacetylase is a multidomain protein comprising a varying number of lipoyl domains, a peripheral subunit-binding domain, and a catalytic domain. It forms the structural core of the complex, provides binding sites for the other enzymes, and shuffles reaction intermediates between the active sites through covalently bound lipoyl domains. The molecular mechanism by which this shuttling occurs has remained elusive. Here, we report a cryo-EM reconstruction of the native E. coli dihydrolipoyl transacetylase core in a resting state. This structure provides molecular details of the assembly of the core and reveals how the lipoyl domains interact with the core at the active site.
Collapse
Affiliation(s)
- Jana Škerlová
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jens Berndtsson
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hendrik Nolte
- grid.419502.b0000 0004 0373 6590Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Martin Ott
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden ,grid.8761.80000 0000 9919 9582Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Pål Stenmark
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden ,grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Nemeria NS, Zhang X, Leandro J, Zhou J, Yang L, Houten SM, Jordan F. Toward an Understanding of the Structural and Mechanistic Aspects of Protein-Protein Interactions in 2-Oxoacid Dehydrogenase Complexes. Life (Basel) 2021; 11:407. [PMID: 33946784 PMCID: PMC8146983 DOI: 10.3390/life11050407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The 2-oxoglutarate dehydrogenase complex (OGDHc) is a key enzyme in the tricarboxylic acid (TCA) cycle and represents one of the major regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. The OGDHc impacts cell metabolic and cell signaling pathways through the coupling of 2-oxoglutarate metabolism to gene transcription related to tumor cell proliferation and aging. DHTKD1 is a gene encoding 2-oxoadipate dehydrogenase (E1a), which functions in the L-lysine degradation pathway. The potentially damaging variants in DHTKD1 have been associated to the (neuro) pathogenesis of several diseases. Evidence was obtained for the formation of a hybrid complex between the OGDHc and E1a, suggesting a potential cross talk between the two metabolic pathways and raising fundamental questions about their assembly. Here we reviewed the recent findings and advances in understanding of protein-protein interactions in OGDHc and 2-oxoadipate dehydrogenase complex (OADHc), an understanding that will create a scaffold to help design approaches to mitigate the effects of diseases associated with dysfunction of the TCA cycle or lysine degradation. A combination of biochemical, biophysical and structural approaches such as chemical cross-linking MS and cryo-EM appears particularly promising to provide vital information for the assembly of 2-oxoacid dehydrogenase complexes, their function and regulation.
Collapse
Affiliation(s)
- Natalia S. Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Joao Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Jieyu Zhou
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Luying Yang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| |
Collapse
|
13
|
Kinugawa H, Kondo N, Komine-Abe A, Tomita T, Nishiyama M, Kosono S. In vitro reconstitution and characterization of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase hybrid complex from Corynebacterium glutamicum. Microbiologyopen 2020; 9:e1113. [PMID: 32864855 PMCID: PMC7568260 DOI: 10.1002/mbo3.1113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) and 2‐oxoglutarate dehydrogenase (ODH) are critical enzymes in central carbon metabolism. In Corynebacterium glutamicum, an unusual hybrid complex consisting of CgE1p (thiamine diphosphate‐dependent pyruvate dehydrogenase, AceE), CgE2 (dihydrolipoamide acetyltransferase, AceF), CgE3 (dihydrolipoamide dehydrogenase, Lpd), and CgE1o (thiamine diphosphate‐dependent 2‐oxoglutarate dehydrogenase, OdhA) has been suggested. Here, we elucidated that the PDH‐ODH hybrid complex in C. glutamicum probably consists of six copies of CgE2 in its core, which is rather compact compared with PDH and ODH in other microorganisms that have twenty‐four copies of E2. We found that CgE2 formed a stable complex with CgE3 (CgE2‐E3 subcomplex) in vitro, hypothetically comprised of two CgE2 trimers and four CgE3 dimers. We also found that CgE1o exists mainly as a hexamer in solution and is ready to form an active ODH complex when mixed with the CgE2‐E3 subcomplex. Our in vitro reconstituted system showed CgE1p‐ and CgE1o‐dependent inhibition of ODH and PDH, respectively, actively supporting the formation of the hybrid complex, in which both CgE1p and CgE1o associate with a single CgE2‐E3. In gel filtration chromatography, all the subunits of CgODH were eluted in the same fraction, whereas CgE1p was eluted separately from CgE2‐E3, suggesting a weak association of CgE1p with CgE2 compared with that of CgE1o. This study revealed the unique molecular architecture of the hybrid complex from C. glutamicum and the compact‐sized complex would provide an advantage to determine the whole structure of the unusual hybrid complex.
Collapse
Affiliation(s)
- Hirokazu Kinugawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | - Naoko Kondo
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | - Ayano Komine-Abe
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| | - Saori Kosono
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Japan
| |
Collapse
|
14
|
Zhang X, Nemeria NS, Leandro J, Houten S, Lazarus M, Gerfen G, Ozohanics O, Ambrus A, Nagy B, Brukh R, Jordan F. Structure-function analyses of the G729R 2-oxoadipate dehydrogenase genetic variant associated with a disorder of l-lysine metabolism. J Biol Chem 2020; 295:8078-8095. [PMID: 32303640 PMCID: PMC7278340 DOI: 10.1074/jbc.ra120.012761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
2-Oxoadipate dehydrogenase (E1a, also known as DHTKD1, dehydrogenase E1, and transketolase domain-containing protein 1) is a thiamin diphosphate-dependent enzyme and part of the 2-oxoadipate dehydrogenase complex (OADHc) in l-lysine catabolism. Genetic findings have linked mutations in the DHTKD1 gene to several metabolic disorders. These include α-aminoadipic and α-ketoadipic aciduria (AMOXAD), a rare disorder of l-lysine, l-hydroxylysine, and l-tryptophan catabolism, associated with clinical presentations such as developmental delay, mild-to-severe intellectual disability, ataxia, epilepsy, and behavioral disorders that cannot currently be managed by available treatments. A heterozygous missense mutation, c.2185G→A (p.G729R), in DHTKD1 has been identified in most AMOXAD cases. Here, we report that the G729R E1a variant when assembled into OADHc in vitro displays a 50-fold decrease in catalytic efficiency for NADH production and a significantly reduced rate of glutaryl-CoA production by dihydrolipoamide succinyl-transferase (E2o). However, the G729R E1a substitution did not affect any of the three side-reactions associated solely with G729R E1a, prompting us to determine the structure-function effects of this mutation. A multipronged systematic analysis of the reaction rates in the OADHc pathway, supplemented with results from chemical cross-linking and hydrogen-deuterium exchange MS, revealed that the c.2185G→A DHTKD1 mutation affects E1a-E2o assembly, leading to impaired channeling of OADHc intermediates. Cross-linking between the C-terminal region of both E1a and G729R E1a with the E2o lipoyl and core domains suggested that correct positioning of the C-terminal E1a region is essential for the intermediate channeling. These findings may inform the development of interventions to counter the effects of pathogenic DHTKD1 mutations.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Natalia S Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Sander Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael Lazarus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10641-2304
| | - Oliver Ozohanics
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - Balint Nagy
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - Roman Brukh
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| |
Collapse
|
15
|
Lipoic acid. CHEMTEXTS 2019. [DOI: 10.1007/s40828-019-0091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Prajapati S, Haselbach D, Wittig S, Patel MS, Chari A, Schmidt C, Stark H, Tittmann K. Structural and Functional Analyses of the Human PDH Complex Suggest a "Division-of-Labor" Mechanism by Local E1 and E3 Clusters. Structure 2019; 27:1124-1136.e4. [PMID: 31130485 DOI: 10.1016/j.str.2019.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 01/17/2019] [Accepted: 04/11/2019] [Indexed: 11/27/2022]
Abstract
The pseudo-atomic structural model of human pyruvate dehydrogenase complex (PDHc) core composed of full-length E2 and E3BP components, calculated from our cryoelectron microscopy-derived density maps at 6-Å resolution, is similar to those of prokaryotic E2 structures. The spatial organization of human PDHc components as evidenced by negative-staining electron microscopy and native mass spectrometry is not homogeneous, and entails the unanticipated formation of local clusters of E1:E2 and E3BP:E3 complexes. Such uneven, clustered organization translates into specific duties for E1-E2 clusters (oxidative decarboxylation and acetyl transfer) and E3BP-E3 clusters (regeneration of reduced lipoamide) corresponding to half-reactions of the PDHc catalytic cycle. The addition of substrate coenzyme A modulates the conformational landscape of PDHc, in particular of the lipoyl domains, extending the postulated multiple random coupling mechanism. The conformational and associated chemical landscapes of PDHc are thus not determined entirely stochastically, but are restrained and channeled through an asymmetric architecture and further modulated by substrate binding.
Collapse
Affiliation(s)
- Sabin Prajapati
- Department of Molecular Enzymology, Göttingen Centre for Molecular Biosciences and Albrecht-von-Haller Institute, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany; Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry Göttingen, Am Fassberg 11, 37077 Göttingen, Germany
| | - David Haselbach
- Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry Göttingen, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sabine Wittig
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle/Saale, Germany
| | - Mulchand S Patel
- Jacobs School of Medicine and Biomedical Sciences, Department of Biochemistry, University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA
| | - Ashwin Chari
- Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry Göttingen, Am Fassberg 11, 37077 Göttingen, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle/Saale, Germany.
| | - Holger Stark
- Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry Göttingen, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Kai Tittmann
- Department of Molecular Enzymology, Göttingen Centre for Molecular Biosciences and Albrecht-von-Haller Institute, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany; Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry Göttingen, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
17
|
Remacha L, Pirman D, Mahoney CE, Coloma J, Calsina B, Currás-Freixes M, Letón R, Torres-Pérez R, Richter S, Pita G, Herráez B, Cianchetta G, Honrado E, Maestre L, Urioste M, Aller J, García-Uriarte Ó, Gálvez MÁ, Luque RM, Lahera M, Moreno-Rengel C, Eisenhofer G, Montero-Conde C, Rodríguez-Antona C, Llorca Ó, Smolen GA, Robledo M, Cascón A. Recurrent Germline DLST Mutations in Individuals with Multiple Pheochromocytomas and Paragangliomas. Am J Hum Genet 2019; 104:651-664. [PMID: 30929736 PMCID: PMC6451733 DOI: 10.1016/j.ajhg.2019.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) provide some of the clearest genetic evidence for the critical role of metabolism in the tumorigenesis process. Approximately 40% of PPGLs are caused by driver germline mutations in 16 known susceptibility genes, and approximately half of these genes encode members of the tricarboxylic acid (TCA) cycle. Taking as a starting point the involvement of the TCA cycle in PPGL development, we aimed to identify unreported mutations that occurred in genes involved in this key metabolic pathway and that could explain the phenotypes of additional individuals who lack mutations in known susceptibility genes. To accomplish this, we applied a targeted sequencing of 37 TCA-cycle-related genes to DNA from 104 PPGL-affected individuals with no mutations in the major known predisposing genes. We also performed omics-based analyses, TCA-related metabolite determination, and 13C5-glutamate labeling assays. We identified five germline variants affecting DLST in eight unrelated individuals (∼7%); all except one were diagnosed with multiple PPGLs. A recurrent variant, c.1121G>A (p.Gly374Glu), found in four of the eight individuals triggered accumulation of 2-hydroxyglutarate, both in tumors and in a heterologous cell-based assay designed to functionally evaluate DLST variants. p.Gly374Glu-DLST tumors exhibited loss of heterozygosity, and their methylation and expression profiles are similar to those of EPAS1-mutated PPGLs; this similarity suggests a link between DLST disruption and pseudohypoxia. Moreover, we found positive DLST immunostaining exclusively in tumors carrying TCA-cycle or EPAS1 mutations. In summary, this study reveals DLST as a PPGL-susceptibility gene and further strengthens the relevance of the TCA cycle in PPGL development.
Collapse
Affiliation(s)
- Laura Remacha
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - David Pirman
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA 02139, USA
| | | | - Javier Coloma
- Structural Biology Programme, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Maria Currás-Freixes
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Rocío Letón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Rafael Torres-Pérez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Freistaat Sachsen 01069, Germany
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Belén Herráez
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | | | - Emiliano Honrado
- Anatomical Pathology Service, Hospital of León, León, Castilla y León 24071, Spain
| | - Lorena Maestre
- Monoclonal Antibodies Unit, Biotechnology Programme, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Javier Aller
- Department of Endocrinology, University Hospital Puerta de Hierro, Majadahonda, Madrid 28222, Spain
| | - Óscar García-Uriarte
- Nephrology Department, University Hospital of Araba, Vitoria, País Vasco 01009, Spain
| | - María Ángeles Gálvez
- Service of Endocrinology and Nutrition, University Hospital Reina Sofía, Córdoba, Andalucía 14004, Spain; Maimónides Institute of Biomedical Research of Cordoba, Córdoba, Andalucía 14004, Spain
| | - Raúl M Luque
- Hormones and Cancer Group, Maimónides Institute of Biomedical Research of Córdoba, Córdoba, Andalucía 14004, Spain
| | - Marcos Lahera
- Endocrinology and Nutrition Department, La Princesa University Hospital, Madrid, Madrid 28006, Spain
| | - Cristina Moreno-Rengel
- Department of Endocrinology and Nutrition, University Hospital of Basurto, Bilbao 48013, Spain
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Freistaat Sachsen 01069, Germany
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Madrid 28029, Spain
| | - Óscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain
| | | | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Madrid 28029, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Madrid 28029, Spain.
| |
Collapse
|
18
|
Ozbakir HF, Garcia KE, Banta S. Creation of a formate: malate oxidoreductase by fusion of dehydrogenase enzymes with PEGylated cofactor swing arms. Protein Eng Des Sel 2018; 31:103-108. [PMID: 29660073 DOI: 10.1093/protein/gzy005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
Enzymatic biocatalysis can be limited by the necessity of soluble cofactors. Here, we introduced PEGylated nicotinamide adenine dinucleotide (NAD(H)) swing arms to two covalently fused dehydrogenase enzymes to eliminate their nicotinamide cofactor requirements. A formate dehydrogenase and cytosolic malate dehydrogenase were connected via SpyCatcher-SpyTag fusions. Bifunctionalized polyethylene glycol chains tethered NAD(H) to the fusion protein. This produced a formate:malate oxidoreductase that exhibited cofactor-independent ping-pong kinetics with predictable Michaelis constants. Kinetic modeling was used to explore the effective cofactor concentrations available for electron transfer in the complexes. This approach could be used to create additional cofactor-independent transhydrogenase biocatalysts by swapping fused dehydrogenases.
Collapse
Affiliation(s)
- Harun F Ozbakir
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Kristen E Garcia
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
19
|
Zhou J, Yang L, Ozohanics O, Zhang X, Wang J, Ambrus A, Arjunan P, Brukh R, Nemeria NS, Furey W, Jordan F. A multipronged approach unravels unprecedented protein-protein interactions in the human 2-oxoglutarate dehydrogenase multienzyme complex. J Biol Chem 2018; 293:19213-19227. [PMID: 30323066 DOI: 10.1074/jbc.ra118.005432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Indexed: 10/28/2022] Open
Abstract
The human 2-oxoglutaric acid dehydrogenase complex (hOGDHc) plays a pivotal role in the tricarboxylic acid (TCA) cycle, and its diminished activity is associated with neurodegenerative diseases. The hOGDHc comprises three components, hE1o, hE2o, and hE3, and we recently reported functionally active E1o and E2o components, enabling studies on their assembly. No atomic-resolution structure for the hE2o component is currently available, so here we first studied the interactions in the binary subcomplexes (hE1o-hE2o, hE1o-hE3, and hE2o-hE3) to gain insight into the strength of their interactions and to identify the interaction loci in them. We carried out multiple physico-chemical studies, including fluorescence, hydrogen-deuterium exchange MS (HDX-MS), and chemical cross-linking MS (CL-MS). Our fluorescence studies suggested a strong interaction for the hE1o-hE2o subcomplex, but a much weaker interaction in the hE1o-hE3 subcomplex, and failed to identify any interaction in the hE2o-hE3 subcomplex. The HDX-MS studies gave evidence for interactions in the hE1o-hE2o and hE1o-hE3 subcomplexes comprising full-length components, identifying: (i) the N-terminal region of hE1o, in particular the two peptides 18YVEEM22 and 27ENPKSVHKSWDIF39 as constituting the binding region responsible for the assembly of the hE1o with both the hE2o and hE3 components into hOGDHc, an hE1 region absent in available X-ray structures; and (ii) a novel hE2o region comprising residues from both a linker region and from the catalytic domain as being a critical region interacting with hE1o. The CL-MS identified the loci in the hE1o and hE2o components interacting with each other.
Collapse
Affiliation(s)
- Jieyu Zhou
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Luying Yang
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Oliver Ozohanics
- the Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 27-29 Tuzolto Utca, Budapest H-1094, Hungary
| | - Xu Zhang
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Junjie Wang
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Attila Ambrus
- the Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 27-29 Tuzolto Utca, Budapest H-1094, Hungary
| | - Palaniappa Arjunan
- the Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240.,the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and
| | - Roman Brukh
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Natalia S Nemeria
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102,
| | - William Furey
- the Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240.,the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and
| | - Frank Jordan
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102,
| |
Collapse
|
20
|
Chakraborty J, Nemeria NS, Farinas E, Jordan F. Catalysis of transthiolacylation in the active centers of dihydrolipoamide acyltransacetylase components of 2-oxo acid dehydrogenase complexes. FEBS Open Bio 2018; 8:880-896. [PMID: 29928569 PMCID: PMC5986005 DOI: 10.1002/2211-5463.12431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli 2‐oxoglutarate dehydrogenase complex (OGDHc) comprises multiple copies of three enzymes—E1o, E2o, and E3—and transthioesterification takes place within the catalytic domain of E2o. The succinyl group from the thiol ester of S8‐succinyldihydrolipoyl‐E2o is transferred to the thiol group of coenzyme A (CoA), forming the all‐important succinyl‐CoA. Here, we report mechanistic studies of enzymatic transthioesterification on OGDHc. Evidence is provided for the importance of His375 and Asp374 in E2o for the succinyl transfer reaction. The magnitude of the rate acceleration provided by these residues (54‐fold from each with alanine substitution) suggests a role in stabilization of the symmetrical tetrahedral oxyanionic intermediate by formation of two hydrogen bonds, rather than in acid–base catalysis. Further evidence ruling out a role in acid–base catalysis is provided by site‐saturation mutagenesis studies at His375 (His375Trp substitution with little penalty) and substitutions to other potential hydrogen bond participants at Asp374. Taking into account that the rate constant for reductive succinylation of the E2o lipoyl domain (LDo) by E1o and 2‐oxoglutarate (99 s−1) was approximately twofold larger than the rate constant for kcat of 48 s−1 for the overall reaction (NADH production), it could be concluded that succinyl transfer to CoA and release of succinyl‐CoA, rather than reductive succinylation, is the rate‐limiting step. The results suggest a revised mechanism of catalysis for acyl transfer in the superfamily of 2‐oxo acid dehydrogenase complexes, thus provide fundamental information regarding acyl‐CoA formation, so important for several biological processes including post‐translational succinylation of protein lysines. Enzymes 2‐oxoglutarate dehydrogenase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/2/4/2.html); dihydrolipoamide succinyltransferase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/3/1/61.html); dihydrolipoamide dehydrogenase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/8/1/4.html); pyruvate dehydrogenase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/2/4/1.html); dihydrolipoamide acetyltransferase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/3/1/12.html).
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark NJ USA
| | | | - Edgardo Farinas
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark NJ USA
| | - Frank Jordan
- Department of Chemistry Rutgers University Newark NJ USA
| |
Collapse
|
21
|
Nemeria NS, Gerfen G, Yang L, Zhang X, Jordan F. Evidence for functional and regulatory cross-talk between the tricarboxylic acid cycle 2-oxoglutarate dehydrogenase complex and 2-oxoadipate dehydrogenase on the l-lysine, l-hydroxylysine and l-tryptophan degradation pathways from studies in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:932-939. [PMID: 29752936 DOI: 10.1016/j.bbabio.2018.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/22/2022]
Abstract
Herein are reported findings in vitro suggesting both functional and regulatory cross-talk between the human 2-oxoglutarate dehydrogenase complex (hOGDHc), a key regulatory enzyme within the tricarboxylic acid cycle (TCA cycle), and a novel 2-oxoadipate dehydrogenase complex (hOADHc) from the final degradation pathway of l-lysine, l-hydroxylysine and l-tryptophan. The following could be concluded from our studies by using hOGDHc and hOADHc assembled from their individually expressed components in vitro: (i) Different substrate preferences (kcat/Km) were displayed by the two complexes even though they share the same dihydrolipoyl succinyltransferase (hE2o) and dihydrolipoyl dehydrogenase (hE3) components; (ii) Different binding modes were in evidence for the binary hE1o-hE2o and hE1a-hE2o subcomplexes according to fluorescence titrations using site-specifically labeled hE2o-derived proteins; (iii) Similarly to hE1o, the hE1a also forms the ThDP-enamine radical from 2-oxoadipate (electron paramagnetic resonance detection) in the oxidative half reaction; (iv) Both complexes produced superoxide/H2O2 from O2 in the reductive half reaction suggesting that hE1o, and hE1a (within their complexes) could both be sources of reactive oxygen species generation in mitochondria from 2-oxoglutarate and 2-oxoadipate, respectively; (v) Based on our findings, we speculate that hE2o can serve as a trans-glutarylase, in addition to being a trans-succinylase, a role suggested by others; (vi) The glutaryl-CoA produced by hOADHc inhibits hE1o, as does succinyl-CoA, suggesting a regulatory cross-talk between the two complexes on the different metabolic pathways.
Collapse
Affiliation(s)
- Natalia S Nemeria
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10641-2304, USA
| | - Luying Yang
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Xu Zhang
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| |
Collapse
|
22
|
Nemeria NS, Gerfen G, Nareddy PR, Yang L, Zhang X, Szostak M, Jordan F. The mitochondrial 2-oxoadipate and 2-oxoglutarate dehydrogenase complexes share their E2 and E3 components for their function and both generate reactive oxygen species. Free Radic Biol Med 2018; 115:136-145. [PMID: 29191460 DOI: 10.1016/j.freeradbiomed.2017.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
Abstract
Herein are reported unique properties of the novel human thiamin diphosphate (ThDP)-dependent enzyme 2-oxoadipate dehydrogenase (hE1a), known as dehydrogenase E1 and transketolase domain-containing protein 1 that is encoded by the DHTKD1 gene. It is involved in the oxidative decarboxylation of 2-oxoadipate (OA) to glutaryl-CoA on the final degradative pathway of L-lysine and is critical for mitochondrial metabolism. Functionally active recombinant hE1a has been produced according to both kinetic and spectroscopic criteria in our toolbox leading to the following conclusions: (i) The hE1a has recruited the dihydrolipoyl succinyltransferase (hE2o) and the dihydrolipoyl dehydrogenase (hE3) components of the tricarboxylic acid cycle 2-oxoglutarate dehydrogenase complex (OGDHc) for its activity. (ii) 2-Oxoglutarate (OG) and 2-oxoadipate (OA) could be oxidized by hE1a, however, hE1a displays an approximately 49-fold preference in catalytic efficiency for OA over OG, indicating that hE1a is specific to the 2-oxoadipate dehydrogenase complex. (iii) The hE1a forms the ThDP-enamine radical from OA according to electron paramagnetic resonance detection in the oxidative half reaction, and could produce superoxide and H2O2 from decarboxylation of OA in the forward physiological direction, as also seen with the 2-oxoglutarate dehydrogenase hE1o component. (iv) Once assembled to complex with the same hE2o and hE3 components, the hE1o and hE1a display strikingly different regulation: both succinyl-CoA and glutaryl-CoA significantly reduced the hE1o activity, but not the activity of hE1a.
Collapse
Affiliation(s)
- Natalia S Nemeria
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461-2304, USA
| | | | - Luying Yang
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Xu Zhang
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| |
Collapse
|
23
|
Epitope determination of immunogenic proteins of Neisseria gonorrhoeae. PLoS One 2017; 12:e0180962. [PMID: 28723967 PMCID: PMC5516995 DOI: 10.1371/journal.pone.0180962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022] Open
Abstract
Neisseria gonorrhoeae is the causative organism of gonorrhoea, a sexually transmitted disease that globally accounts for an estimated 80 to 100 million new infections per year. Increasing resistances to all common antibiotics used for N. gonorrhoeae treatment pose the risk of an untreatable disease. Further knowledge of ways of infection and host immune response are needed to understand the pathogen-host interaction and to discover new treatment alternatives against this disease. Therefore, detailed information about immunogenic proteins and their properties like epitope sites could advance further research in this area. In this work, we investigated immunogenic proteins of N. gonorrhoeae for linear epitopes by microarrays. Dominant linear epitopes were identified for eleven of the nineteen investigated proteins with three polyclonal rabbit antibodies from different immunisations. Identified linear epitopes were further examined for non-specific binding with antibodies to Escherichia coli and the closely related pathogen Neisseria meningitidis. On top of that, amino acids crucial for the antibody epitope binding were detected by microarray based alanine scans.
Collapse
|
24
|
Nemeria NS, Gerfen G, Guevara E, Nareddy PR, Szostak M, Jordan F. The human Krebs cycle 2-oxoglutarate dehydrogenase complex creates an additional source of superoxide/hydrogen peroxide from 2-oxoadipate as alternative substrate. Free Radic Biol Med 2017; 108:644-654. [PMID: 28435050 DOI: 10.1016/j.freeradbiomed.2017.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/19/2022]
Abstract
Recently, we reported that the human 2-oxoglutarate dehydrogenase (hE1o) component of the 2-oxoglutarate dehydrogenase complex (OGDHc) could produce the reactive oxygen species superoxide and hydrogen peroxide (detected by chemical means) from its substrate 2-oxoglutarate (OG), most likely concurrently with one-electron oxidation by dioxygen of the thiamin diphosphate (ThDP)-derived enamine intermediate to a C2α-centered radical (detected by Electron Paramagnetic Resonance) [Nemeria et al., 2014 [17]; Ambrus et al. 2015 [18]]. We here report that hE1o can also utilize the next higher homologue of OG, 2-oxoadipate (OA) as a substrate according to multiple criteria in our toolbox: (i) Both E1o-specific and overall complex activities (NADH production) were detected using OA as a substrate; (ii) Two post-decarboxylation intermediates were formed by hE1o from OA, the ThDP-enamine and the C2α-hydroxyalkyl-ThDP, with nearly identical rates for OG and OA; (iii) Both OG and OA could reductively acylate lipoyl domain created from dihydrolipoyl succinyltransferase (E2o); (iv) Both OG and OA gave α-ketol carboligaton products with glyoxylate, but with opposite chirality; a finding that could be of utility in chiral synthesis; (v) Dioxygen could oxidize the ThDP-derived enamine from both OG and OA, leading to ThDP-enamine radical and generation of superoxide and H2O2. While the observed oxidation-reduction with dioxygen is only a side reaction of the predominant physiological product glutaryl-CoA, the efficiency of superoxide/ H2O2 production was 7-times larger from OA than from OG, making the reaction of OGDHc with OA one of the important superoxide/ H2O2 producers among 2-oxo acid dehydrogenase complexes in mitochondria.
Collapse
Affiliation(s)
- Natalia S Nemeria
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461-2304, USA.
| | - Elena Guevara
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | | | - Michal Szostak
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| |
Collapse
|
25
|
Ambrus A, Adam-Vizi V. Human dihydrolipoamide dehydrogenase (E3) deficiency: Novel insights into the structural basis and molecular pathomechanism. Neurochem Int 2017; 117:5-14. [PMID: 28579060 DOI: 10.1016/j.neuint.2017.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022]
Abstract
This review summarizes our present view on the molecular pathogenesis of human (h) E3-deficiency caused by a variety of genetic alterations with a special emphasis on the moonlighting biochemical phenomena related to the affected (dihydro)lipoamide dehydrogenase (LADH, E3, gene: dld), in particular the generation of reactive oxygen species (ROS). E3-deficiency is a rare autosomal recessive genetic disorder frequently presenting with a neonatal onset and premature death; the highest carrier rate of a single pathogenic dld mutation (1:94-1:110) was found among Ashkenazi Jews. Patients usually die during acute episodes that generally involve severe metabolic decompensation and lactic acidosis leading to neurological, cardiological, and/or hepatological manifestations. The disease owes its severity to the fact that LADH is the common E3 subunit of the alpha-ketoglutarate (KGDHc), pyruvate (PDHc), and branched-chain α-keto acid dehydrogenase complexes and is also part of the glycine cleavage system, hence the malfunctioning of LADH simultaneously incapacitates several central metabolic pathways. Nevertheless, the clinical pictures are usually not unequivocally portrayed through the loss of LADH activities and imply auxiliary mechanisms that exacerbate the symptoms and outcomes of this disorder. Enhanced ROS generation by disease-causing hE3 variants as well as by the E1-E2 subcomplex of the hKGDHc likely contributes to selected pathogeneses of E3-deficiency, which could be targeted by specific drugs or antioxidants; lipoic acid was demonstrated to be a potent inhibitor of ROS generation by hE3 in vitro. Flavin supplementation might prove to be beneficial for those mutations triggering FAD loss in the hE3 component. Selected pathogenic hE3 variants lose their affinity for the E2 component of the hPDHc, a mechanism which warrants scrutiny also for other E3-haboring complexes.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary.
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
26
|
Reengineering of the human pyruvate dehydrogenase complex: from disintegration to highly active agglomerates. Biochem J 2017; 474:865-875. [PMID: 27986918 DOI: 10.1042/bcj20160916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022]
Abstract
The pyruvate dehydrogenase complex (PDC) plays a central role in cellular metabolism and regulation. As a metabolite-channeling multi-enzyme complex it acts as a complete nanomachine due to its unique geometry and by coupling a cascade of catalytic reactions using 'swinging arms'. Mammalian and specifically human PDC (hPDC) is assembled from multiple copies of E1 and E3 bound to a large E2/E3BP 60-meric core. A less restrictive and smaller catalytic core, which is still active, is highly desired for both fundamental research on channeling mechanisms and also to create a basis for further modification and engineering of new enzyme cascades. Here, we present the first experimental results of the successful disintegration of the E2/E3BP core while retaining its activity. This was achieved by C-terminal α-helixes double truncations (eight residues from E2 and seven residues from E3BP). Disintegration of the hPDC core via double truncations led to the formation of highly active (approximately 70% of wildtype) apparently unordered clusters or agglomerates and inactive non-agglomerated species (hexamer/trimer). After additional deletion of N-terminal 'swinging arms', the aforementioned C-terminal truncations also caused the formation of agglomerates of minimized E2/E3BP complexes. It is likely that these 'swinging arm' regions are not solely responsible for the formation of the large agglomerates.
Collapse
|
27
|
Artiukhov AV, Graf AV, Bunik VI. Directed regulation of multienzyme complexes of 2-oxo acid dehydrogenases using phosphonate and phosphinate analogs of 2-oxo acids. BIOCHEMISTRY (MOSCOW) 2016; 81:1498-1521. [DOI: 10.1134/s0006297916120129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Ambrus A, Wang J, Mizsei R, Zambo Z, Torocsik B, Jordan F, Adam-Vizi V. Structural alterations induced by ten disease-causing mutations of human dihydrolipoamide dehydrogenase analyzed by hydrogen/deuterium-exchange mass spectrometry: Implications for the structural basis of E3 deficiency. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2098-2109. [PMID: 27544700 DOI: 10.1016/j.bbadis.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023]
Abstract
Pathogenic amino acid substitutions of the common E3 component (hE3) of the human alpha-ketoglutarate dehydrogenase and the pyruvate dehydrogenase complexes lead to severe metabolic diseases (E3 deficiency), which usually manifest themselves in cardiological and/or neurological symptoms and often cause premature death. To date, 14 disease-causing amino acid substitutions of the hE3 component have been reported in the clinical literature. None of the pathogenic protein variants has lent itself to high-resolution structure elucidation by X-ray or NMR. Hence, the structural alterations of the hE3 protein caused by the disease-causing mutations and leading to dysfunction, including the enhanced generation of reactive oxygen species by selected disease-causing variants, could only be speculated. Here we report results of an examination of the effects on the protein structure of ten pathogenic mutations of hE3 using hydrogen/deuterium-exchange mass spectrometry (HDX-MS), a new and state-of-the-art approach of solution structure elucidation. On the basis of the results, putative structural and mechanistic conclusions were drawn regarding the molecular pathogenesis of each disease-causing hE3 mutation addressed in this study.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary.
| | - Junjie Wang
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | - Reka Mizsei
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsofia Zambo
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary
| | - Beata Torocsik
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ, USA.
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
29
|
Hezaveh S, Zeng AP, Jandt U. Human Pyruvate Dehydrogenase Complex E2 and E3BP Core Subunits: New Models and Insights from Molecular Dynamics Simulations. J Phys Chem B 2016; 120:4399-409. [DOI: 10.1021/acs.jpcb.6b02698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Samira Hezaveh
- Institute of Bioprocess and
Biosystem Engineering, Hamburg University of Technology, Denickestrasse
15, 21071 Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and
Biosystem Engineering, Hamburg University of Technology, Denickestrasse
15, 21071 Hamburg, Germany
| | - Uwe Jandt
- Institute of Bioprocess and
Biosystem Engineering, Hamburg University of Technology, Denickestrasse
15, 21071 Hamburg, Germany
| |
Collapse
|
30
|
Wheeldon I, Minteer SD, Banta S, Barton SC, Atanassov P, Sigman M. Substrate channelling as an approach to cascade reactions. Nat Chem 2016; 8:299-309. [DOI: 10.1038/nchem.2459] [Citation(s) in RCA: 422] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/15/2016] [Indexed: 12/22/2022]
|
31
|
Affiliation(s)
- Gregory
F. Pirrone
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - Roxana E. Iacob
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - John R. Engen
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| |
Collapse
|
32
|
Ortegon P, Poot-Hernández AC, Perez-Rueda E, Rodriguez-Vazquez K. Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms. Comput Struct Biotechnol J 2015; 13:277-85. [PMID: 25973143 PMCID: PMC4423528 DOI: 10.1016/j.csbj.2015.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/21/2022] Open
Abstract
In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case.
Collapse
Affiliation(s)
- Patricia Ortegon
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, IIMAS, Universidad Nacional Autónoma de México, Mexico
| | - Augusto C. Poot-Hernández
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, IIMAS, Universidad Nacional Autónoma de México, Mexico
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ernesto Perez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Unidad Multidisciplinaria de Docencia e Investigación, Sisal Facultad de Ciencias, Sisal, Yucatán, UNAM, Mexico
- Correspondence to: E. Perez-Rueda, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Katya Rodriguez-Vazquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, IIMAS, Universidad Nacional Autónoma de México, Mexico
- Correspondence to: K. Rodriguez-Vazquez, Departamento de Ingeniería de Sistemas Computacionales y Automatización, IIMAS, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
33
|
Elucidation of the interaction loci of the human pyruvate dehydrogenase complex E2·E3BP core with pyruvate dehydrogenase kinase 1 and kinase 2 by H/D exchange mass spectrometry and nuclear magnetic resonance. Biochemistry 2014; 54:69-82. [PMID: 25436986 PMCID: PMC4295793 DOI: 10.1021/bi5013113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The human pyruvate dehydrogenase
complex (PDC) comprises three
principal catalytic components for its mission: E1, E2, and E3. The
core of the complex is a strong subcomplex between E2 and an E3-binding
protein (E3BP). The PDC is subject to regulation at E1 by serine phosphorylation
by four kinases (PDK1–4), an inactivation reversed by the action
of two phosphatases (PDP1 and -2). We report H/D exchange mass spectrometric
(HDX-MS) and nuclear magnetic resonance (NMR) studies in the first
attempt to define the interaction loci between PDK1 and PDK2 with
the intact E2·E3BP core and their C-terminally truncated proteins.
While the three lipoyl domains (L1 and L2 on E2 and L3 on E3BP) lend
themselves to NMR studies and determination of interaction maps with
PDK1 and PDK2 at the individual residue level, HDX-MS allowed studies
of interaction loci on both partners in the complexes, PDKs, and other
regions of the E2·E3BP core, as well, at the peptide level. HDX-MS
suggested that the intact E2·E3BP core enhances the binding specificity
of L2 for PDK2 over PDK1, while NMR studies detected lipoyl domain
residues unique to interaction with PDK1 and PDK2. The E2·E3BP
core induced more changes on PDKs than any C-terminally truncated
protein, with clear evidence of greater plasticity of PDK1 than of
PDK2. The effect of L1L2S paralleled HDX-MS results obtained with
the intact E2·E3BP core; hence, L1L2S is an excellent candidate
with which to define interaction loci with these two PDKs. Surprisingly,
L3S′ induced moderate interaction with both PDKs according
to both methods.
Collapse
|
34
|
Arjunan P, Wang J, Nemeria NS, Reynolds S, Brown I, Chandrasekhar K, Calero G, Jordan F, Furey W. Novel binding motif and new flexibility revealed by structural analyses of a pyruvate dehydrogenase-dihydrolipoyl acetyltransferase subcomplex from the Escherichia coli pyruvate dehydrogenase multienzyme complex. J Biol Chem 2014; 289:30161-76. [PMID: 25210042 DOI: 10.1074/jbc.m114.592915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly.
Collapse
Affiliation(s)
| | - Junjie Wang
- the Department of Chemistry, Rutgers University, Newark, New Jersey 07102, and
| | - Natalia S Nemeria
- the Department of Chemistry, Rutgers University, Newark, New Jersey 07102, and
| | - Shelley Reynolds
- Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Ian Brown
- Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | | - Guillermo Calero
- Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Frank Jordan
- the Department of Chemistry, Rutgers University, Newark, New Jersey 07102, and
| | - William Furey
- From the Departments of Pharmacology and Chemical Biology and the Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| |
Collapse
|
35
|
Jordan F, Nemeria NS. Progress in the experimental observation of thiamin diphosphate-bound intermediates on enzymes and mechanistic information derived from these observations. Bioorg Chem 2014; 57:251-262. [PMID: 25228115 DOI: 10.1016/j.bioorg.2014.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/11/2014] [Indexed: 11/26/2022]
Abstract
Thiamin diphosphate (ThDP), the vitamin B1 coenzyme is an excellent representative of coenzymes, which carry out electrophilic catalysis by forming a covalent complex with their substrates. The function of ThDP is to greatly increase the acidity of two carbon acids by stabilizing their conjugate bases, the ylide/carbene/C2-carbanion of the thiazolium ring and the C2α-carbanion/enamine, once the substrate binds to ThDP. In recent years, several ThDP-bound intermediates on such pathways have been characterized by both solution and solid-state methods. Prominent among these advances are X-ray crystallographic results identifying both oxidative and non-oxidative intermediates, rapid chemical quench followed by NMR detection of several intermediates which are stable under acidic conditions, solid-state NMR and circular dichroism detection of the states of ionization and tautomerization of the 4'-aminopyrimidine moiety of ThDP in some of the intermediates. These methods also enabled in some cases determination of the rate-limiting step in the complex series of steps. This review is an update of a review with the same title published by the authors in 2005 in this Journal. Much progress has been made in the intervening decade in the identification of the intermediates and their application to gain additional mechanistic insight.
Collapse
Affiliation(s)
- Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | | |
Collapse
|
36
|
Patel MS, Nemeria NS, Furey W, Jordan F. The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 2014; 289:16615-23. [PMID: 24798336 DOI: 10.1074/jbc.r114.563148] [Citation(s) in RCA: 445] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pyruvate dehydrogenase complexes (PDCs) from all known living organisms comprise three principal catalytic components for their mission: E1 and E2 generate acetyl-coenzyme A, whereas the FAD/NAD(+)-dependent E3 performs redox recycling. Here we compare bacterial (Escherichia coli) and human PDCs, as they represent the two major classes of the superfamily of 2-oxo acid dehydrogenase complexes with different assembly of, and interactions among components. The human PDC is subject to inactivation at E1 by serine phosphorylation by four kinases, an inactivation reversed by the action of two phosphatases. Progress in our understanding of these complexes important in metabolism is reviewed.
Collapse
Affiliation(s)
- Mulchand S Patel
- From the Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, Buffalo, New York 14214,
| | - Natalia S Nemeria
- the Department of Chemistry, Rutgers, the State University of New Jersey, Newark, New Jersey 07102
| | - William Furey
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and the Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| | - Frank Jordan
- the Department of Chemistry, Rutgers, the State University of New Jersey, Newark, New Jersey 07102,
| |
Collapse
|
37
|
Jordan F, Nemeria NS. Experimental observation of thiamin diphosphate-bound intermediates on enzymes and mechanistic information derived from these observations. Bioorg Chem 2005; 33:190-215. [PMID: 15888311 PMCID: PMC4189838 DOI: 10.1016/j.bioorg.2005.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 02/08/2005] [Accepted: 02/10/2005] [Indexed: 11/27/2022]
Abstract
Thiamin diphosphate (ThDP), the vitamin B1 coenzyme, is an excellent representative of coenzymes, which carry out electrophilic catalysis by forming a covalent complex with their substrates. The function of ThDP is to greatly increase the acidity of two carbon acids by stabilizing their conjugate bases, the ylide/C2-carbanion of the thiazolium ring and the C2alpha-carbanion (or enamine) once the substrate binds to ThDP. In recent years, several ThDP-bound intermediates on such pathways have been characterized by both solution and solid-state (X-ray) methods. Prominent among these advances are X-ray crystallographic results identifying both oxidative and non-oxidative intermediates, rapid chemical quench followed by NMR detection of a several intermediates which are stable under acidic conditions, and circular dichroism detection of the 1',4'-imino tautomer of ThDP in some of the intermediates. Some of these methods also enable the investigator to determine the rate-limiting step in the complex series of steps.
Collapse
Affiliation(s)
- Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
| | | |
Collapse
|