1
|
Barua D, Płecha M, Muszewska A. A minimal Fanconi Anemia complex in early diverging fungi. Sci Rep 2024; 14:9922. [PMID: 38688950 PMCID: PMC11061109 DOI: 10.1038/s41598-024-60318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Fanconi Anemia (FA) pathway resolves DNA interstrand cross links (ICL). The FA pathway was initially recognized in vertebrates, but was later confirmed in other animals and speculated in fungi. FA proteins FANCM, FANCL and FANCJ are present in Saccharomyces cerevisiae but, their mechanism of interaction to resolve ICL is still unclear. Unlike Dikarya, early diverging fungi (EDF) possess more traits shared with animals. We traced the evolutionary history of the FA pathway across Opisthokonta. We scanned complete proteomes for FA-related homologs to establish their taxonomic distribution and analyzed their phylogenetic trees. We checked transcription profiles of FA genes to test if they respond to environmental conditions and their genomic localizations for potential co-localization. We identified fungal homologs of the activation and ID complexes, 5 out of 8 core proteins, all of the endonucleases, and deubiquitination proteins. All fungi lack FANCC, FANCF and FANCG proteins responsible for post-replication repair and chromosome stability in animals. The observed taxonomic distribution can be attributed to a gradual degradation of the FA pathway from EDF to Dikarya. One of the key differences is that EDF have the ID complex recruiting endonucleases to the site of ICL. Moreover, 21 out of 32 identified FA genes are upregulated in response to different growth conditions. Several FA genes are co-localized in fungal genomes which also could facilitate co-expression. Our results indicate that a minimal FA pathway might still be functional in Mucoromycota with a gradual loss of components in Dikarya ancestors.
Collapse
Affiliation(s)
- Drishtee Barua
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Magdalena Płecha
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
2
|
Kupculak M, Bai F, Luo Q, Yoshikawa Y, Lopez-Martinez D, Xu H, Uphoff S, Cohn MA. Phosphorylation by ATR triggers FANCD2 chromatin loading and activates the Fanconi anemia pathway. Cell Rep 2023; 42:112721. [PMID: 37392383 PMCID: PMC10933773 DOI: 10.1016/j.celrep.2023.112721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs) in humans. Activation of the pathway relies on loading of the FANCD2/FANCI complex onto chromosomes, where it is fully activated by subsequent monoubiquitination. However, the mechanism for loading the complex onto chromosomes remains unclear. Here, we identify 10 SQ/TQ phosphorylation sites on FANCD2, which are phosphorylated by ATR in response to ICLs. Using a range of biochemical assays complemented with live-cell imaging including super-resolution single-molecule tracking, we show that these phosphorylation events are critical for loading of the complex onto chromosomes and for its subsequent monoubiquitination. We uncover how the phosphorylation events are tightly regulated in cells and that mimicking their constant phosphorylation leads to an uncontrolled active state of FANCD2, which is loaded onto chromosomes in an unrestrained fashion. Taken together, we describe a mechanism where ATR triggers FANCD2/FANCI loading onto chromosomes.
Collapse
Affiliation(s)
- Marian Kupculak
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Fengxiang Bai
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Qiang Luo
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | | | - Hannan Xu
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
3
|
Ho MW, Ryan MP, Gupta J, Triantafyllou A, Risk JM, Shaw RJ, Wilson JB. Loss of FANCD2 and related proteins may predict malignant transformation in oral epithelial dysplasia. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 133:377-387. [PMID: 34493474 DOI: 10.1016/j.oooo.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/07/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Predicting malignant transformation (MT) in oral epithelial dysplasia (OED) is challenging. The higher rate of MT reported in nonsmokers suggests an endogenous etiology in oncogenesis. We hypothesize that loss of FANCD2 and associated proteins could influence genomic instability and MT in the absence of environmental carcinogens. STUDY DESIGN Longitudinal archival samples were obtained from 40 individuals with OED: from diagnosis to the most recent review in 23 patients with stable OED or until excision of the squamous cell carcinoma in 17 patients with unstable OED undergoing MT. Histopathological reassessment, immunohistochemistry for FANCD2, and Western blotting for phosphorylation/monoubiquitylation status of ATR, CHK1, FANCD2, and FANCG were undertaken on each tissue sample. RESULTS Decreased expression of FANCD2 was observed in the diagnostic biopsies of OED lesions that later underwent MT. Combining the FANCD2 expression scores with histologic grading more accurately predicted MT (P = .005) than histology alone, and it correctly predicted MT in 10 of 17 initial biopsies. Significantly reduced expression of total FANCD2, pFANCD2, pATR, pCHK-1, and pFANCG was observed in unstable OED. CONCLUSIONS There is preliminary evidence that defects in the DNA damage sensing/signaling/repair cascade are associated with MT in OED. Loss of expression of FANCD2 protein in association with a higher histologic grade of dysplasia offered better prediction of MT than clinicopathologic parameters alone.
Collapse
Affiliation(s)
- Michael W Ho
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Oral and Maxillofacial Surgery, Leeds Teaching Hospitals NHS Trust, Leeds Dental Institute, Leeds, United Kingdom.
| | - Mark P Ryan
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Juhi Gupta
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Asterios Triantafyllou
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Janet M Risk
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard J Shaw
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Regional Maxillofacial Unit, Aintree University Hospital, Liverpool, United Kingdom
| | - James B Wilson
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Martín-Morales L, Garre P, Lorca V, Cazorla M, Llovet P, Bando I, García-Barberan V, González-Morales ML, Esteban-Jurado C, de la Hoya M, Castellví-Bel S, Caldés T. BRIP1, a Gene Potentially Implicated in Familial Colorectal Cancer Type X. Cancer Prev Res (Phila) 2020; 14:185-194. [PMID: 33115781 DOI: 10.1158/1940-6207.capr-20-0316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
Familial colorectal cancer Type X (FCCTX) comprises a heterogeneous group of families with an increased risk of developing colorectal cancer and other related tumors, but with mismatch repair-proficient, microsatellite-stable (MSS) tumors. Unfortunately, the genetic basis underlying their cancer predisposition remains unknown. Although pathogenic germline variants in BRIP1 increase the risk of developing hereditary ovarian cancer, the involvement of BRIP1 in hereditary colorectal cancer is still not well known. In order to identify new BRIP1 variants associated with inherited colorectal cancer, affected and nonaffected individuals from 18 FCCTX or high-risk MSS colorectal cancer families were evaluated by whole-exome sequencing, and another 62 colorectal cancer patients from FCCTX or high-risk MSS colorectal cancer families were screened by a next-generation sequencing (NGS) multigene panel. The families were recruited at the Genetic Counseling Unit of Hospital Clínico San Carlos of Madrid. A total of three different BRIP1 mutations in three unrelated families were identified. Among them, there were two frameshift variants [c.1702_1703del, p.(Asn568TrpfsTer9) and c.903del, p.(Leu301PhefsTer2)] that result in the truncation of the protein and are thus classified as pathogenic (class 5). The remaining was a missense variant [c.2220G>T, p.(Gln740His)] considered a variant of uncertain significance (class 3). The segregation and loss-of-heterozygosity studies provide evidence linking the two BRIP1 frameshift variants to colorectal cancer risk, with suggestive but not definitive evidence that the third variant may be benign. The results here presented suggest that germline BRIP1 pathogenic variants could be associated with hereditary colorectal cancer predisposition.Prevention Relevance: We suggest that BRIP1 pathogenic germline variants may have a causal role in CRC as moderate cancer susceptibility alleles and be associated with hereditary CRC predisposition. A better understanding of hereditary CRC may provide important clues to disease predisposition and could contribute to molecular diagnostics, improved risk stratification, and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lorena Martín-Morales
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Pilar Garre
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Víctor Lorca
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Marta Cazorla
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Patricia Llovet
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Inmaculada Bando
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Vanesa García-Barberan
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | | | - Clara Esteban-Jurado
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Trinidad Caldés
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain.
| |
Collapse
|
5
|
Liang Z, Liang F, Teng Y, Chen X, Liu J, Longerich S, Rao T, Green AM, Collins NB, Xiong Y, Lan L, Sung P, Kupfer GM. Binding of FANCI-FANCD2 Complex to RNA and R-Loops Stimulates Robust FANCD2 Monoubiquitination. Cell Rep 2020; 26:564-572.e5. [PMID: 30650351 PMCID: PMC6350941 DOI: 10.1016/j.celrep.2018.12.084] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/15/2018] [Accepted: 12/18/2018] [Indexed: 11/04/2022] Open
Abstract
Fanconi anemia (FA) is characterized by developmental abnormalities, bone marrow failure, and cancer predisposition. FA cells are hypersensitive to DNA replicative stress and accumulate co-transcriptional R-loops. Here, we use the Damage At RNA Transcription assay to reveal colocalization of FANCD2 with R-loops in a highly transcribed genomic locus upon DNA damage. We further demonstrate that highly purified human FANCI-FANCD2 (ID2) complex binds synthetic single-stranded RNA (ssRNA) and R-loop substrates with high affinity, preferring guanine-rich sequences. Importantly, we elucidate that human ID2 binds an R-loop structure via recognition of the displaced ssDNA and ssRNA but not the RNA:DNA hybrids. Finally, a series of RNA and R-loop substrates are found to strongly stimulate ID2 monoubiquitination, with activity corresponding to their binding affinity. In summary, our results support a mechanism whereby the ID2 complex suppresses the formation of pathogenic R-loops by binding ssRNA and ssDNA species, thereby activating the FA pathway. Fanconi anemia pathway has a well-known role in the repair of DNA crosslinks, but its recently identified role in suppression of co-transcriptional R-loops remains elusive. Here, Liang et al. show that FANCI-FANCD2 has intrinsic RNA and R-loop binding activity and provide mechanistic insights into FA pathway activation upon transcription stress.
Collapse
Affiliation(s)
- Zhuobin Liang
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA; Department of Molecular Biology and Biophysics, Yale Medical School, New Haven, CT 06520, USA
| | - Fengshan Liang
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA; Department of Molecular Biology and Biophysics, Yale Medical School, New Haven, CT 06520, USA
| | - Yaqun Teng
- School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing 100084, China; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Xiaoyong Chen
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - Jingchun Liu
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - Simonne Longerich
- Department of Molecular Biology and Biophysics, Yale Medical School, New Haven, CT 06520, USA
| | - Timsi Rao
- Department of Molecular Biology and Biophysics, Yale Medical School, New Haven, CT 06520, USA
| | - Allison M Green
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA; Department of Pathology, Yale Medical School, New Haven, CT 06520, USA
| | - Natalie B Collins
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yong Xiong
- Department of Molecular Biology and Biophysics, Yale Medical School, New Haven, CT 06520, USA
| | - Li Lan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Patrick Sung
- Department of Molecular Biology and Biophysics, Yale Medical School, New Haven, CT 06520, USA; Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Gary M Kupfer
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA; Department of Pathology, Yale Medical School, New Haven, CT 06520, USA.
| |
Collapse
|
6
|
Datta A, Brosh RM. Holding All the Cards-How Fanconi Anemia Proteins Deal with Replication Stress and Preserve Genomic Stability. Genes (Basel) 2019; 10:genes10020170. [PMID: 30813363 PMCID: PMC6409899 DOI: 10.3390/genes10020170] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Fanconi anemia (FA) is a hereditary chromosomal instability disorder often displaying congenital abnormalities and characterized by a predisposition to progressive bone marrow failure (BMF) and cancer. Over the last 25 years since the discovery of the first linkage of genetic mutations to FA, its molecular genetic landscape has expanded tremendously as it became apparent that FA is a disease characterized by a defect in a specific DNA repair pathway responsible for the correction of covalent cross-links between the two complementary strands of the DNA double helix. This pathway has become increasingly complex, with the discovery of now over 20 FA-linked genes implicated in interstrand cross-link (ICL) repair. Moreover, gene products known to be involved in double-strand break (DSB) repair, mismatch repair (MMR), and nucleotide excision repair (NER) play roles in the ICL response and repair of associated DNA damage. While ICL repair is predominantly coupled with DNA replication, it also can occur in non-replicating cells. DNA damage accumulation and hematopoietic stem cell failure are thought to contribute to the increased inflammation and oxidative stress prevalent in FA. Adding to its confounding nature, certain FA gene products are also engaged in the response to replication stress, caused endogenously or by agents other than ICL-inducing drugs. In this review, we discuss the mechanistic aspects of the FA pathway and the molecular defects leading to elevated replication stress believed to underlie the cellular phenotypes and clinical features of FA.
Collapse
Affiliation(s)
- Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA.
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA.
| |
Collapse
|
7
|
RecQ and Fe-S helicases have unique roles in DNA metabolism dictated by their unwinding directionality, substrate specificity, and protein interactions. Biochem Soc Trans 2017; 46:77-95. [PMID: 29273621 DOI: 10.1042/bst20170044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
Abstract
Helicases are molecular motors that play central roles in nucleic acid metabolism. Mutations in genes encoding DNA helicases of the RecQ and iron-sulfur (Fe-S) helicase families are linked to hereditary disorders characterized by chromosomal instabilities, highlighting the importance of these enzymes. Moreover, mono-allelic RecQ and Fe-S helicase mutations are associated with a broad spectrum of cancers. This review will discuss and contrast the specialized molecular functions and biological roles of RecQ and Fe-S helicases in DNA repair, the replication stress response, and the regulation of gene expression, laying a foundation for continued research in these important areas of study.
Collapse
|
8
|
Jiang J, Bellani M, Li L, Wang P, Seidman MM, Wang Y. Arsenite Binds to the RING Finger Domain of FANCL E3 Ubiquitin Ligase and Inhibits DNA Interstrand Crosslink Repair. ACS Chem Biol 2017; 12:1858-1866. [PMID: 28535027 DOI: 10.1021/acschembio.6b01135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human exposure to arsenic in drinking water is known to be associated with the development of bladder, lung, kidney, and skin cancers. The molecular mechanisms underlying the carcinogenic effects of arsenic species remain incompletely understood. DNA interstrand cross-links (ICLs) are among the most cytotoxic type of DNA lesions that block DNA replication and transcription, and these lesions can be induced by endogenous metabolism and by exposure to exogenous agents. Fanconi anemia (FA) is a congenital disorder manifested with elevated sensitivity toward DNA interstrand cross-linking agents, and monoubiquitination of FANCD2 by FANCL is a crucial step in FA-mediated DNA repair. Here, we demonstrated that As3+ could bind to the PHD/RING finger domain of FANCL in vitro and in cells. This binding led to compromised ubiquitination of FANCD2 in cells and diminished recruitment of FANCD2 to chromatin and DNA damage sites induced by 4,5',8-trimethylpsoralen plus UVA irradiation. Furthermore, clonogenic survival assay results showed that arsenite coexposure rendered cells more sensitive toward DNA interstrand cross-linking agents. Together, our study suggested that arsenite may compromise genomic stability via perturbation of the Fanconi anemia pathway, thereby conferring its carcinogenic effect.
Collapse
Affiliation(s)
| | - Marina Bellani
- Laboratory
of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | | | | | - Michael M. Seidman
- Laboratory
of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | | |
Collapse
|
9
|
Cukras S, Lee E, Palumbo E, Benavidez P, Moldovan GL, Kee Y. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair. Cell Cycle 2016; 15:2636-2646. [PMID: 27463890 DOI: 10.1080/15384101.2016.1209613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.
Collapse
Affiliation(s)
- Scott Cukras
- a Department of Cell Biology , Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida , Tampa , FL , USA
| | - Euiho Lee
- a Department of Cell Biology , Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida , Tampa , FL , USA
| | - Emily Palumbo
- a Department of Cell Biology , Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida , Tampa , FL , USA
| | - Pamela Benavidez
- a Department of Cell Biology , Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida , Tampa , FL , USA
| | - George-Lucian Moldovan
- b Department of Biochemistry and Molecular Biology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Younghoon Kee
- a Department of Cell Biology , Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida , Tampa , FL , USA
| |
Collapse
|
10
|
Ceccaldi R, Sarangi P, D'Andrea AD. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 2016; 17:337-49. [PMID: 27145721 DOI: 10.1038/nrm.2016.48] [Citation(s) in RCA: 529] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Fanconi anaemia pathway repairs DNA interstrand crosslinks (ICLs) in the genome. Our understanding of this complex pathway is still evolving, as new components continue to be identified and new biochemical systems are used to elucidate the molecular steps of repair. The Fanconi anaemia pathway uses components of other known DNA repair processes to achieve proper repair of ICLs. Moreover, Fanconi anaemia proteins have functions in genome maintenance beyond their canonical roles of repairing ICLs. Such functions include the stabilization of replication forks and the regulation of cytokinesis. Thus, Fanconi anaemia proteins are emerging as master regulators of genomic integrity that coordinate several repair processes. Here, we summarize our current understanding of the functions of the Fanconi anaemia pathway in ICL repair, together with an overview of its connections with other repair pathways and its emerging roles in genome maintenance.
Collapse
Affiliation(s)
- Raphael Ceccaldi
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Prabha Sarangi
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
11
|
Michl J, Zimmer J, Tarsounas M. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J 2016; 35:909-23. [PMID: 27037238 PMCID: PMC4865030 DOI: 10.15252/embj.201693860] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
The Fanconi anemia (FA) pathway plays a central role in the repair of DNA interstrand crosslinks (ICLs) and regulates cellular responses to replication stress. Homologous recombination (HR), the error-free pathway for double-strand break (DSB) repair, is required during physiological cell cycle progression for the repair of replication-associated DNA damage and protection of stalled replication forks. Substantial crosstalk between the two pathways has recently been unravelled, in that key HR proteins such as the RAD51 recombinase and the tumour suppressors BRCA1 and BRCA2 also play important roles in ICL repair. Consistent with this, rare patient mutations in these HR genes cause FA pathologies and have been assigned FA complementation groups. Here, we focus on the clinical and mechanistic implications of the connection between these two cancer susceptibility syndromes and on how these two molecular pathways of DNA replication and repair interact functionally to prevent genomic instability.
Collapse
Affiliation(s)
- Johanna Michl
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| | - Jutta Zimmer
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Cantor SB, Nayak S. FANCJ at the FORK. Mutat Res 2016; 788:7-11. [PMID: 26926912 DOI: 10.1016/j.mrfmmm.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA.
| | - Sumeet Nayak
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA
| |
Collapse
|
13
|
Raghunandan M, Chaudhury I, Kelich SL, Hanenberg H, Sobeck A. FANCD2, FANCJ and BRCA2 cooperate to promote replication fork recovery independently of the Fanconi Anemia core complex. Cell Cycle 2015; 14:342-53. [PMID: 25659033 DOI: 10.4161/15384101.2014.987614] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fanconi Anemia (FA) is an inherited multi-gene cancer predisposition syndrome that is characterized on the cellular level by a hypersensitivity to DNA interstrand crosslinks (ICLs). To repair these lesions, the FA pathway proteins are thought to act in a linear hierarchy: Following ICL detection, an upstream FA core complex monoubiquitinates the central FA pathway members FANCD2 and FANCI, followed by their recruitment to chromatin. Chromatin-bound monoubiquitinated FANCD2 and FANCI subsequently coordinate DNA repair factors including the downstream FA pathway members FANCJ and FANCD1/BRCA2 to repair the DNA ICL. Importantly, we recently showed that FANCD2 has additional independent roles: it binds chromatin and acts in concert with the BLM helicase complex to promote the restart of aphidicolin (APH)-stalled replication forks, while suppressing the firing of new replication origins. Here, we show that FANCD2 fulfills these roles independently of the FA core complex-mediated monoubiquitination step. Following APH treatment, nonubiquitinated FANCD2 accumulates on chromatin, recruits the BLM complex, and promotes robust replication fork recovery regardless of the absence or presence of a functional FA core complex. In contrast, the downstream FA pathway members FANCJ and BRCA2 share FANCD2's role in replication fork restart and the suppression of new origin firing. Our results support a non-linear FA pathway model at stalled replication forks, where the nonubiquitinated FANCD2 isoform - in concert with FANCJ and BRCA2 - fulfills a specific function in promoting efficient replication fork recovery independently of the FA core complex.
Collapse
Affiliation(s)
- Maya Raghunandan
- a Department of Biochemistry; Molecular Biology and Biophysics ; University of Minnesota ; Minneapolis , MN USA
| | | | | | | | | |
Collapse
|
14
|
Clark DW, Tripathi K, Dorsman JC, Palle K. FANCJ protein is important for the stability of FANCD2/FANCI proteins and protects them from proteasome and caspase-3 dependent degradation. Oncotarget 2015; 6:28816-32. [PMID: 26336824 PMCID: PMC4745694 DOI: 10.18632/oncotarget.5006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/11/2015] [Indexed: 01/31/2023] Open
Abstract
Fanconi anemia (FA) is a rare genome instability syndrome with progressive bone marrow failure and cancer susceptibility. FANCJ is one of 17 genes mutated in FA-patients, comprises a DNA helicase that is vital for properly maintaining genomic stability and is known to function in the FA-BRCA DNA repair pathway. While exact role(s) of FANCJ in this repair process is yet to be determined, it is known to interact with primary effector FANCD2. However, FANCJ is not required for FANCD2 activation but is important for its ability to fully respond to DNA damage. In this report, we determined that transient depletion of FANCJ adversely affects stability of FANCD2 and its co-regulator FANCI in multiple cell lines. Loss of FANCJ does not significantly alter cell cycle progression or FANCD2 transcription. However, in the absence of FANCJ, the majority of FANCD2 is degraded by both the proteasome and Caspase-3 dependent mechanism. FANCJ is capable of complexing with and stabilizing FANCD2 even in the absence of a functional helicase domain. Furthermore, our data demonstrate that FANCJ is important for FANCD2 stability and proper activation of DNA damage responses to replication blocks induced by hydroxyurea.
Collapse
Affiliation(s)
- David W. Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Josephine C. Dorsman
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Komaraiah Palle
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
15
|
Liu GB, Chen J, Wu ZH, Zhao KN. Association of human papillomavirus with Fanconi anemia promotes carcinogenesis in Fanconi anemia patients. Rev Med Virol 2015; 25:345-53. [PMID: 25776992 DOI: 10.1002/rmv.1834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/22/2022]
Abstract
Fanconi anemia (FA) is a rare recessive disorder associated with chromosomal fragility. FA patients are at very high risk of cancers, especially head and neck squamous cell carcinomas and squamous cell carcinomas caused by infection of human papillomaviruses (HPVs). By integrating into the host genome, HPV oncogenes E6 and E7 drive the genomic instability to promote DNA damage and gene mutations necessary for carcinogenesis in FA patients. Furthermore, E6 and E7 oncoproteins not only inhibit p53 and retinoblastoma but also impair the FANC/BRCA signaling pathway to prevent DNA damage repair and alter multiple signals including cell-cycle checkpoints, telomere function, cell proliferation, and interference of the host immune system leading to cancer development in FA patients. In this review, we summarize recent advances in unraveling the molecular mechanisms of FA susceptibility to HPV-induced cancers, which facilitate rational preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Guang Bin Liu
- School of Health and Wellbeing, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, Toowoomba, Australia
| | - Jiezhong Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.,Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Zhan He Wu
- Western Sydney Genomic Diagnosis, The Children's Hospital at Westmead, Sydney, Australia
| | - Kong-Nan Zhao
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Centre for Kidney Disease Research-Venomics Research, The University of Queensland School of Medicine, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
16
|
Brosh RM, Cantor SB. Molecular and cellular functions of the FANCJ DNA helicase defective in cancer and in Fanconi anemia. Front Genet 2014; 5:372. [PMID: 25374583 PMCID: PMC4204437 DOI: 10.3389/fgene.2014.00372] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/05/2014] [Indexed: 01/11/2023] Open
Abstract
The FANCJ DNA helicase is mutated in hereditary breast and ovarian cancer as well as the progressive bone marrow failure disorder Fanconi anemia (FA). FANCJ is linked to cancer suppression and DNA double strand break repair through its direct interaction with the hereditary breast cancer associated gene product, BRCA1. FANCJ also operates in the FA pathway of interstrand cross-link repair and contributes to homologous recombination. FANCJ collaborates with a number of DNA metabolizing proteins implicated in DNA damage detection and repair, and plays an important role in cell cycle checkpoint control. In addition to its role in the classical FA pathway, FANCJ is believed to have other functions that are centered on alleviating replication stress. FANCJ resolves G-quadruplex (G4) DNA structures that are known to affect cellular replication and transcription, and potentially play a role in the preservation and functionality of chromosomal structures such as telomeres. Recent studies suggest that FANCJ helps to maintain chromatin structure and preserve epigenetic stability by facilitating smooth progression of the replication fork when it encounters DNA damage or an alternate DNA structure such as a G4. Ongoing studies suggest a prominent but still not well-understood role of FANCJ in transcriptional regulation, chromosomal structure and function, and DNA damage repair to maintain genomic stability. This review will synthesize our current understanding of the molecular and cellular functions of FANCJ that are critical for chromosomal integrity.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Sharon B Cantor
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center Worcester, MA, USA
| |
Collapse
|