1
|
Carrasco B, Torres R, Moreno-del Álamo M, Ramos C, Ayora S, Alonso JC. Processing of stalled replication forks in Bacillus subtilis. FEMS Microbiol Rev 2024; 48:fuad065. [PMID: 38052445 PMCID: PMC10804225 DOI: 10.1093/femsre/fuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| |
Collapse
|
2
|
Torres R, Carrasco B, Alonso JC. Bacillus subtilis RadA/Sms-Mediated Nascent Lagging-Strand Unwinding at Stalled or Reversed Forks Is a Two-Step Process: RadA/Sms Assists RecA Nucleation, and RecA Loads RadA/Sms. Int J Mol Sci 2023; 24:ijms24054536. [PMID: 36901969 PMCID: PMC10003422 DOI: 10.3390/ijms24054536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Replication fork rescue requires Bacillus subtilis RecA, its negative (SsbA) and positive (RecO) mediators, and fork-processing (RadA/Sms). To understand how they work to promote fork remodeling, reconstituted branched replication intermediates were used. We show that RadA/Sms (or its variant, RadA/Sms C13A) binds to the 5'-tail of a reversed fork with longer nascent lagging-strand and unwinds it in the 5'→3' direction, but RecA and its mediators limit unwinding. RadA/Sms cannot unwind a reversed fork with a longer nascent leading-strand, or a gapped stalled fork, but RecA interacts with and activates unwinding. Here, the molecular mechanism by which RadA/Sms, in concert with RecA, in a two-step reaction, unwinds the nascent lagging-strand of reversed or stalled forks is unveiled. First, RadA/Sms, as a mediator, contributes to SsbA displacement from the forks and nucleates RecA onto single-stranded DNA. Then, RecA, as a loader, interacts with and recruits RadA/Sms onto the nascent lagging strand of these DNA substrates to unwind them. Within this process, RecA limits RadA/Sms self-assembly to control fork processing, and RadA/Sms prevents RecA from provoking unnecessary recombination.
Collapse
|
3
|
Gándara C, Torres R, Carrasco B, Ayora S, Alonso JC. DisA Restrains the Processing and Cleavage of Reversed Replication Forks by the RuvAB-RecU Resolvasome. Int J Mol Sci 2021; 22:11323. [PMID: 34768753 PMCID: PMC8583203 DOI: 10.3390/ijms222111323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
DNA lesions that impede fork progression cause replisome stalling and threaten genome stability. Bacillus subtilis RecA, at a lesion-containing gap, interacts with and facilitates DisA pausing at these branched intermediates. Paused DisA suppresses its synthesis of the essential c-di-AMP messenger. The RuvAB-RecU resolvasome branch migrates and resolves formed Holliday junctions (HJ). We show that DisA prevents DNA degradation. DisA, which interacts with RuvB, binds branched structures, and reduces the RuvAB DNA-dependent ATPase activity. DisA pre-bound to HJ DNA limits RuvAB and RecU activities, but such inhibition does not occur if the RuvAB- or RecU-HJ DNA complexes are pre-formed. RuvAB or RecU pre-bound to HJ DNA strongly inhibits DisA-mediated synthesis of c-di-AMP, and indirectly blocks cell proliferation. We propose that DisA limits RuvAB-mediated fork remodeling and RecU-mediated HJ cleavage to provide time for damage removal and replication restart in order to preserve genome integrity.
Collapse
Affiliation(s)
| | | | | | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St, 28049 Madrid, Spain; (C.G.); (R.T.); (B.C.)
| | - Juan C. Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St, 28049 Madrid, Spain; (C.G.); (R.T.); (B.C.)
| |
Collapse
|
4
|
DisA Limits RecG Activities at Stalled or Reversed Replication Forks. Cells 2021; 10:cells10061357. [PMID: 34073022 PMCID: PMC8227628 DOI: 10.3390/cells10061357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
The DNA damage checkpoint protein DisA and the branch migration translocase RecG are implicated in the preservation of genome integrity in reviving haploid Bacillus subtilis spores. DisA synthesizes the essential cyclic 3′, 5′-diadenosine monophosphate (c-di-AMP) second messenger and such synthesis is suppressed upon replication perturbation. In vitro, c-di-AMP synthesis is suppressed when DisA binds DNA structures that mimic stalled or reversed forks (gapped forks or Holliday junctions [HJ]). RecG, which does not form a stable complex with DisA, unwinds branched intermediates, and in the presence of a limiting ATP concentration and HJ DNA, it blocks DisA-mediated c-di-AMP synthesis. DisA pre-bound to a stalled or reversed fork limits RecG-mediated ATP hydrolysis and DNA unwinding, but not if RecG is pre-bound to stalled or reversed forks. We propose that RecG-mediated fork remodeling is a genuine in vivo activity, and that DisA, as a molecular switch, limits RecG-mediated fork reversal and fork restoration. DisA and RecG might provide more time to process perturbed forks, avoiding genome breakage.
Collapse
|
5
|
Serrano E, Ramos C, Alonso JC, Ayora S. Recombination proteins differently control the acquisition of homeologous DNA during Bacillus subtilis natural chromosomal transformation. Environ Microbiol 2020; 23:512-524. [PMID: 33264457 DOI: 10.1111/1462-2920.15342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Abstract
Natural chromosomal transformation (CT) plays a major role in prokaryote evolution, yet factors that govern the integration of DNA from related species remain poorly understood. We show that in naturally competent Bacillus subtilis cells the acquisition of homeologous sequences is governed by sequence divergence (SD). Integration initiates in a minimal efficient processing segment via homology-directed CT, and its frequency decreases log-linearly with increased SD up to 15%. Beyond this and up to 23% SD the interspecies boundaries prevail, the CT frequency marginally decreases, and short (<10-nucleotides) segments are integrated via homology-facilitated micro-homologous integration. Both mechanisms are RecA dependent. We identify the other recombination proteins required for the acquisition of homeologous DNA. The absence of AddAB, RecF, RecO, RuvAB or RecU, crucial for repair-by-recombination, did not affect CT. However, dprA, radA, recJ, recX or recD2 inactivation strongly decreased intraspecies and interspecies CT. Interspecies CT was not detected beyond ~8% SD in ΔdprA, ~10% in ΔrecJ, ΔradA, ΔrecX and ~14% in ΔrecD2 cells. We propose that DprA, RecX, RadA/Sms, RecJ and RecD2 accessory proteins are important for the generation of genetic diversity. Together with RecA, they facilitate gene acquisition from bacteria of related species.
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| |
Collapse
|
6
|
Moreno-Del Alamo M, Torres R, Manfredi C, Ruiz-Masó JA, Del Solar G, Alonso JC. Bacillus subtilis PcrA Couples DNA Replication, Transcription, Recombination and Segregation. Front Mol Biosci 2020; 7:140. [PMID: 32793628 PMCID: PMC7385302 DOI: 10.3389/fmolb.2020.00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.
Collapse
Affiliation(s)
- María Moreno-Del Alamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Candela Manfredi
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - José A Ruiz-Masó
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Gloria Del Solar
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Juan Carlos Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| |
Collapse
|
7
|
Romero H, Serrano E, Hernández-Tamayo R, Carrasco B, Cárdenas PP, Ayora S, Graumann PL, Alonso JC. Bacillus subtilis RarA Acts as a Positive RecA Accessory Protein. Front Microbiol 2020; 11:92. [PMID: 32117122 PMCID: PMC7031210 DOI: 10.3389/fmicb.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/16/2020] [Indexed: 01/15/2023] Open
Abstract
Ubiquitous RarA AAA+ ATPases play crucial roles in the cellular response to blocked replication forks in pro- and eukaryotes. Here, we provide evidence that absence of RarA reduced the viability of ΔrecA, ΔrecO, and recF15 cells during unperturbed growth. The rarA gene was epistatic to recO and recF genes in response to H2O2- or MMS-induced DNA damage. Conversely, the inactivation of rarA partially suppressed the HR defect of mutants lacking end-resection (ΔaddAB, ΔrecJ, ΔrecQ, ΔrecS) or branch migration (ΔruvAB, ΔrecG, ΔradA) activity. RarA contributes to RecA thread formation, that are thought to be the active forms of RecA during homology search. The absence of RarA reduced RecA accumulation, and the formation of visible RecA threads in vivo upon DNA damage. When ΔrarA was combined with mutations in genuine RecA accessory genes, RecA accumulation was further reduced in ΔrarA ΔrecU and ΔrarA ΔrecX double mutant cells, and was blocked in ΔrarA recF15 cells. These results suggest that RarA contributes to the assembly of RecA nucleoprotein filaments onto single-stranded DNA, and possibly antagonizes RecA filament disassembly.
Collapse
Affiliation(s)
- Hector Romero
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Rogelio Hernández-Tamayo
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Paula P. Cárdenas
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Peter L. Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Juan C. Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
8
|
Serrano E, Ramos C, Ayora S, Alonso JC. Viral SPP1 DNA is infectious in naturally competent Bacillus subtilis cells: inter- and intramolecular recombination pathways. Environ Microbiol 2020; 22:714-725. [PMID: 31876108 DOI: 10.1111/1462-2920.14908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 01/09/2023]
Abstract
A proteolyzed bacteriophage (phage) might release its DNA into the environment. Here, we define the recombination functions required to resurrect an infective lytic phage from inactive environmental viral DNA in naturally competent Bacillus subtilis cells. Using phage SPP1 DNA, a model that accounts for the obtained data is proposed (i) the DNA uptake apparatus takes up environmental SPP1 DNA, fragments it, and incorporates into the cytosol different linear single-stranded (ss) DNA molecules shorter than genome-length; (ii) the SsbA-DprA mediator loads RecA onto any fragmented linear SPP1 ssDNA, but negative modulators (RecX and RecU) promote a net RecA disassembly from these ssDNAs not homologous to the host genome; (iii) single strand annealing (SSA) proteins, DprA and RecO, anneal the SsbA- or SsbB-coated complementary strands, yielding tailed SPP1 duplex intermediates; (iv) RecA polymerized on these tailed intermediates invades a homologous region in another incomplete molecule, and in concert with RecD2 helicase, reconstitutes a complete linear phage genome with redundant regions at the ends of the molecule; and (v) DprA, RecO or viral G35P SSA, may catalyze the annealing of these terminally redundant regions, alone or with the help of an exonuclease, to produce a circular unit-length duplex viral genome ready to initiate replication.
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| |
Collapse
|
9
|
Torres R, Serrano E, Alonso JC. Bacillus subtilis RecA interacts with and loads RadA/Sms to unwind recombination intermediates during natural chromosomal transformation. Nucleic Acids Res 2019; 47:9198-9215. [PMID: 31350886 PMCID: PMC6755099 DOI: 10.1093/nar/gkz647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 02/01/2023] Open
Abstract
During natural transformation Bacillus subtilis RecA, polymerized onto the incoming single-stranded (ss) DNA, catalyses DNA strand invasion resulting in a displacement loop (D-loop) intermediate. A null radA mutation impairs chromosomal transformation, and RadA/Sms unwinds forked DNA in the 5′→3′ direction. We show that in the absence of RadA/Sms competent cells require the RecG translocase for natural chromosomal transformation. RadA/Sms tetracysteine motif (C13A and C13R) variants, which fail to interact with RecA, are also deficient in plasmid transformation, but this defect is suppressed by inactivating recA. The RadA/Sms C13A and C13R variants bind ssDNA, and this interaction stimulates their ATPase activity. Wild-type (wt) RadA/Sms interacts with and inhibits the ATPase activity of RecA, but RadA/Sms C13A fails to do it. RadA/Sms and its variants, C13A and C13R, bound to the 5′-tail of a DNA substrate, unwind DNA in the 5′→3′ direction. RecA interacts with and loads wt RadA/Sms to promote unwinding of a non-cognate 3′-tailed or 5′-fork DNA substrate, but RadA/Sms C13A or C13R fail to do it. We propose that wt RadA/Sms interaction with RecA is crucial to recruit the former onto D-loop DNA, and both proteins in concert catalyse D-loop extension to favour integration of ssDNA during chromosomal transformation.
Collapse
Affiliation(s)
- Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91585 4546; Fax: +34 91585 4506;
| |
Collapse
|
10
|
Raguse M, Torres R, Seco EM, Gándara C, Ayora S, Moeller R, Alonso JC. Bacillus subtilis DisA helps to circumvent replicative stress during spore revival. DNA Repair (Amst) 2017; 59:57-68. [PMID: 28961460 DOI: 10.1016/j.dnarep.2017.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/24/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
The mechanisms that allow to circumvent replicative stress, and to resume DNA synthesis are poorly understood in Bacillus subtilis. To study the role of the diadenylate cyclase DisA and branch migration translocase (BMT) RadA/Sms in restarting a stalled replication fork, we nicked and broke the circular chromosome of an inert mature haploid spore, damaged the bases, and measured survival of reviving spores. During undisturbed ripening, nicks and breaks should be repaired by pathways that do not invoke long-range end resection or genetic exchange by homologous recombination, after which DNA replication might be initiated. We found that DNA damage reduced the viability of spores that lacked DisA, BMT (RadA/Sms, RuvAB or RecG), the Holliday junction resolvase RecU, or the translesion synthesis DNA polymerases (PolY1 or PolY2). DisA and RadA/Sms, in concert with RuvAB, RecG, RecU, PolY1 or PolY2, are needed to bypass replication-blocking lesions. DisA, which binds to stalled or reversed forks, did not apparently affect initiation of PriA-dependent DNA replication in vitro. We propose that DisA is necessary to coordinate responses to replicative stress; it could help to circumvent damaged template bases that otherwise impede fork progression.
Collapse
Affiliation(s)
- Marina Raguse
- German Aerospace Center (DLReV), Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, Linder Hoehe, D-51147 Cologne (Köln), Germany
| | - Rubén Torres
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Elena M Seco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Carolina Gándara
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Silvia Ayora
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Ralf Moeller
- German Aerospace Center (DLReV), Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, Linder Hoehe, D-51147 Cologne (Köln), Germany.
| | - Juan C Alonso
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Torres R, Romero H, Rodríguez-Cerrato V, Alonso JC. Interplay between Bacillus subtilis RecD2 and the RecG or RuvAB helicase in recombinational repair. DNA Repair (Amst) 2017; 55:40-46. [DOI: 10.1016/j.dnarep.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 10/24/2022]
|
12
|
Ottoni JR, Cabral L, de Sousa STP, Júnior GVL, Domingos DF, Soares Junior FL, da Silva MCP, Marcon J, Dias ACF, de Melo IS, de Souza AP, Andreote FD, de Oliveira VM. Functional metagenomics of oil-impacted mangrove sediments reveals high abundance of hydrolases of biotechnological interest. World J Microbiol Biotechnol 2017; 33:141. [DOI: 10.1007/s11274-017-2307-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/31/2017] [Indexed: 11/25/2022]
|
13
|
Activity and in vivo dynamics of Bacillus subtilis DisA are affected by RadA/Sms and by Holliday junction-processing proteins. DNA Repair (Amst) 2017; 55:17-30. [PMID: 28511132 DOI: 10.1016/j.dnarep.2017.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
Bacillus subtilis c-di-AMP synthase DisA and RecA-related RadA/Sms are involved in the repair of DNA damage in exponentially growing cells. We provide genetic evidence that DisA or RadA/Sms is epistatic to the branch migration translocase (BMT) RecG and the Holliday junction (HJ) resolvase RecU in response to DNA damage. We provide genetic evidence damage. Functional DisA-YFP formed dynamic foci in exponentially growing cells, which moved through the nucleoids at a speed compatible with a DNA-scanning mode. DisA formed more static structures in the absence of RecU or RecG than in wild type cells, while dynamic foci were still observed in cells lacking the BMT RuvAB. Purified DisA synthesizes c-di-AMP, but interaction with RadA/Sms or with HJ DNA decreases DisA-mediated c-di-AMP synthesis. RadA/Sms-YFP also formed dynamic foci in growing cells, but the foci moved throughout the cells rather than just on the nucleoids, and co-localized rarely with DisA-YFP foci, suggesting that RadA/Sms and DisA interact only transiently in unperturbed conditions. Our data suggest a model in which DisA moving along dsDNA indicates absence of DNA damage/replication stress via normal c-di-AMP levels, while interaction with HJ DNA/halted forks leads to reduced c-di-AMP levels and an ensuing block in cell proliferation. RadA/Sms may be involved in modulating DisA activities.
Collapse
|