1
|
Sasan SP, Martoliya Y, Vashishtha S, Kaur H, Kundu D, Gourinath S, Lynn A, Prasad R, Kundu B, Mondal AK. Structural Insight Into the Conversion of DhNik1, A Hybrid Histidine Kinase From Debaryomyces hansenii to a Cytotoxic Phosphatase Conformation for Novel Antifungal Agent. J Mol Biol 2025; 437:169116. [PMID: 40174667 DOI: 10.1016/j.jmb.2025.169116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Group III hybrid histidine kinase (HHK3) is one of the most interesting signalling molecules and a novel drug target in fungi. HHK3 is converted into a cytotoxic phosphatase form in vivo by the action of a widely used agricultural fungicide indicating that HHK3 also exhibits dual functionality by acting as kinases and phosphatases towards their substrates like many bacterial sensor histidine kinases. However, this cytotoxic form of HHK3 remained elusive for further scientific exploitation. In this study, we have isolated a cytotoxic phosphatase LOCK-IN mutant of DhNik1, a prototype HHK3, and provided structural and functional insight into this form for the first time. The mutant DhNik1CT had an in-frame deletion in the poly-HAMP domain. The fusion of the poly-HAMP domain of DhNik1CT with the histidine kinase and receiver domain of another fungal hybrid histidine kinase also created a hybrid that was cytotoxic to the fungal cell. We generated the structural model of wild-type DhNik1 and DhNik1CT using AlphaFold multimer which highlighted the differences in HAMP domain arrangement and conformation between DhNik1 and DhNik1CT. MD simulation of the modelled structure revealed crucial role of ATP lid opening and closing in regulating the activity of DhNik1 and DhNik1CT. The structure of DhNik1CT was used for virtual screening to identify a small molecule which modulates the activity of DhNik1 towards cytotoxicity. Taken together, present study shows that the conversion of HHK3 to a toxic conformation by a small molecule is a feasible approach for discovering novel antifungal drug.
Collapse
Affiliation(s)
- Soorya Partap Sasan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogita Martoliya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi Hauz Khas, New Delhi 110016, India
| | - Harbinder Kaur
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Debasree Kundu
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Andrew Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University, Haryana 122413, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi Hauz Khas, New Delhi 110016, India
| | - Alok Kumar Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Kundu D, Martoliya Y, Sharma A, Partap Sasan S, Wasi M, Prasad R, Mondal AK. Overexpression of CBK1 or deletion of SSD1 confers fludioxonil resistance in yeast by suppressing Hog1 activation. Gene 2025; 933:148905. [PMID: 39218413 DOI: 10.1016/j.gene.2024.148905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Group III hybrid histidine kinases (HHK3) are known molecular targets of the widely used fungicidal agent fludioxonil which indirectly converts these kinases to a phosphatase form that causes constitutive activation of Hog1 MAPK. To better understand the fungicidal effect of fludioxonil we have screened S. cerevisiae haploid deletion collection for fludioxonil resistant mutant and identified Ssd1 as a critical factor for this. Deletion of SSD1 not only promoted resistance to fludioxonil but also abrogated Hog1 activation and other cellular damages caused by fludioxonil. Our results showed that fludioxonil perturbed the localization of Cbk1 kinase, an essential protein in yeast, at the bud neck triggering the accumulation of Ssd1 in P-bodies. As a result, localized synthesis of Ssd1 bound mRNA encoding cell wall proteins at the polarized growth site was impaired which created a sustained cell wall stress causing constitutive activation of Hog1. Our data, for the first time, clearly indicated the role of Cbk1 upstream of Hog1 and provided a novel paradigm in the mechanism of action of fludioxonil.
Collapse
Affiliation(s)
- Debasree Kundu
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogita Martoliya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupam Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Soorya Partap Sasan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohd Wasi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University Gurgaon 122413, India
| | - Alok K Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
New Roles for HAMP Domains: the Tri-HAMP Region of Pseudomonas aeruginosa Aer2 Controls Receptor Signaling and Cellular Localization. J Bacteriol 2022; 204:e0022522. [PMID: 35916529 PMCID: PMC9487508 DOI: 10.1128/jb.00225-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Aer2 chemoreceptor from Pseudomonas aeruginosa is an O2 sensor involved in stress responses, virulence, and tuning the behavior of the chemotaxis (Che) system. Aer2 is the sole receptor of the Che2 system. It is soluble, but membrane associated, and forms complexes at the cell pole during stationary phase. The domain arrangement of Aer2 is unusual, with a PAS sensing domain sandwiched between five HAMP domains, followed by a C-terminal kinase-control output domain. The first three HAMP domains form a poly-HAMP chain N-terminal to the PAS sensing domain. HAMP domains are often located between signal input and output domains, where they transduce signals. Given that HAMP1 to 3 reside N-terminal to the input-output pathway, we undertook a systematic examination of their function in Aer2. We found that HAMP1 to 3 influence PAS signaling over a considerable distance, as the majority of HAMP1, 2 and 3 mutations, and deletions of helical phase stutters, led to nonresponsive signal-off or off-biased receptors. PAS signal-on lesions that mimic activated Aer2 also failed to override N-terminal HAMP signal-off replacements. This indicates that HAMP1 to 3 are critical coupling partners for PAS signaling and likely function as a cohesive unit and moveable scaffold to correctly orient and poise PAS dimers for O2-mediated signaling in Aer2. HAMP1 additionally controlled the clustering and polar localization of Aer2 in P. aeruginosa. Localization was not driven by HAMP1 charge, and HAMP1 signal-off mutants still localized. Employing HAMP as a clustering and localization determinant, as well as a facilitator of PAS signaling, are newly recognized roles for HAMP domains. IMPORTANCE P. aeruginosa is an opportunistic pathogen that interprets environmental stimuli via 26 chemoreceptors that signal through 4 distinct chemosensory systems. The second chemosensory system, Che2, contains a receptor named Aer2 that senses O2 and mediates stress responses and virulence and tunes chemotactic behavior. Aer2 is membrane associated, but soluble, and has three N-terminal HAMP domains (HAMP1 to 3) that reside outside the signal input-output pathway of Aer2. In this study, we determined that HAMP1 to 3 facilitate O2-dependent signaling from the PAS sensing domain and that HAMP1 controls the formation of Aer2-containing polar foci in P. aeruginosa. Both of these are newly recognized roles for HAMP domains that may be applicable to other non-signal-transducing HAMP domains and poly-HAMP chains.
Collapse
|
4
|
Distinct role of HAMP and HAMP-like linker domains in regulating the activity of Hik1p, a hybrid histidine kinase 3 from Magnaporthe oryzae. Mol Genet Genomics 2021; 296:1135-1145. [PMID: 34196769 DOI: 10.1007/s00438-021-01809-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Nik1 orthologs or group III hybrid histidine kinases (HHK3) represent a unique cytoplasmic osmosensor that act upstream of HOG/p38 MAPK pathway in fungi. It is an important molecular target for developing new antifungal agents against human pathogens. HHK3 orthologs contain a linear array of alternative HAMP and HAMP-like linker domains (poly-HAMP) in the N-terminal region. HAMP domains are quite common in prokaryotic histidine kinases where it mostly functions as signal transducer mediating conformational changes in the kinase domains. In contrast, poly-HAMP in HHK3 acts as a sensor and signal transducer to regulate histidine kinase activity. However, the mechanistic detail of this is poorly understood. Interestingly, recent studies indicate that the poly-HAMP-mediated regulation of the kinase activity varies among the orthologs. Hik1 is an important HHK3 ortholog from fungus Magnaporthe oryzae. In this paper, we aimed to decipher the role HAMP and HAMP-like linker domains in regulating the activity of Hik1p. We show that Hik1p acts as a bona fide osmosensor and negatively regulates the downstream HOG/p38 MAPK pathway in Saccharomyces cerevisiae. Our data suggest a differential role of the HAMP domains in the functionality of Hik1p. Most interestingly, the deletion of individual domains in poly-HAMP resulted in distinct active forms of Hik1p and thereby indicating that the poly-HAMP domain, instead of acting as on-off switch, regulates the histidine kinase activity by transition through multiple conformational states.
Collapse
|
5
|
Huang J, Li C, Song J, Velkov T, Wang L, Zhu Y, Li J. Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB. Future Microbiol 2020; 15:445-459. [PMID: 32250173 DOI: 10.2217/fmb-2019-0322] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymyxins (polymyxin B and colistin) are last-line antibiotics against multidrug-resistant Gram-negative pathogens. Polymyxin resistance is increasing worldwide, with resistance most commonly regulated by two-component systems such as PmrAB and PhoPQ. This review discusses the regulatory mechanisms of PhoPQ and PmrAB in mediating polymyxin resistance, from receiving an external stimulus through to activation of genes responsible for lipid A modifications. By analyzing the reported nonsynonymous substitutions in each two-component system, we identified the domains that are critical for polymyxin resistance. Notably, for PmrB 71% of resistance-conferring nonsynonymous mutations occurred in the HAMP (present in histidine kinases, adenylate cyclases, methyl accepting proteins and phosphatase) linker and DHp (dimerization and histidine phosphotransfer) domains. These results enhance our understanding of the regulatory mechanisms underpinning polymyxin resistance and may assist with the development of new strategies to minimize resistance emergence.
Collapse
Affiliation(s)
- Jiayuan Huang
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Jiangning Song
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne 3010, Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Zhu
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| |
Collapse
|
6
|
Phenylpyrrole fungicides act on triosephosphate isomerase to induce methylglyoxal stress and alter hybrid histidine kinase activity. Sci Rep 2019; 9:5047. [PMID: 30911085 PMCID: PMC6433957 DOI: 10.1038/s41598-019-41564-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/06/2019] [Indexed: 01/03/2023] Open
Abstract
Fludioxonil, a natural product of pyrrolnitrin, is a potent fungicide used on crops worldwide. Drug action requires the presence of a group III hybrid histidine kinase (HHK) and the high osmolarity glycerol (HOG) pathway. We have reported that the drug does not act directly on HHK, but triggers the conversion of the kinase to a phosphatase, which dephosphorylates Ypd1 to constitutively activate HOG signaling. Still, the direct drug target remains unknown and mode of action ill defined. Here, we heterologously expressed a group III HHK, dimorphism-regulating kinase 1 (Drk1) in Saccharomyces cerevisae to delineate fludioxonil’s target and action. We show that the drug interferes with triosephosphate isomerase (TPI) causing release of methylglyoxal (MG). MG activates the group III HHK and thus the HOG pathway. Drug action involved Drk1 cysteine 392, as a C392S substitution increased drug resistance in vivo. Drug sensitivity was reversed by dimedone treatment, indicating Drk1 responds in vivo to an aldehydic stress. Fludioxonil treatment triggered elevated cytosolic methylglyoxal. Likewise, methylglyoxal treatment of Drk1-expressing yeast phenocopied treatment with fludioxonil. Fludioxonil directly inhibited TPI and also caused it to release methylglyoxal in vitro. Thus, TPI is a drug target of the phenylpyrrole class of fungicides, inducing elevated MG which alters HHK activity, likely converting the kinase to a phosphatase that acts on Ypd1 to trigger HOG pathway activation and fungal cell death.
Collapse
|
7
|
Randhawa A, Kundu D, Sharma A, Prasad R, Mondal AK. Overexpression of the CORVET complex alleviates the fungicidal effects of fludioxonil on the yeast Saccharomyces cerevisiae expressing hybrid histidine kinase 3. J Biol Chem 2018; 294:461-475. [PMID: 30446623 DOI: 10.1074/jbc.ra118.004736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/25/2018] [Indexed: 11/06/2022] Open
Abstract
The hybrid histidine kinase 3 (HHK3) is a highly conserved sensor kinase in fungi that regulates the downstream HOG/p38 mitogen-activated protein kinase (MAPK). In addition to its role in osmoadaptation, HHK3 is involved in hyphal morphogenesis, conidiation, virulence, and cellular adaptation to oxidative stress. However, the molecular mechanisms by which it controls these processes remain obscure. Moreover, HHK3 is a molecular target for antifungal agents such as fludioxonil, which thereby interferes with the HOG/p38 pathway, leading to the abnormal accumulation of glycerol and subsequent cell lysis. Here, we used a chemical genomics approach with the yeast Saccharomyces cerevisiae to better understand the fungicidal action of fludioxonil and the role of HHK3 in fungal growth and physiology. Our results indicated that the abnormal accumulation of glycerol is not the primary cause of fludioxonil toxicity. Fludioxonil appears to impair endosomal trafficking in the fungal cells. We found that the components of class C core vacuole/endosome tethering (CORVET) complex are essential for yeast viability in the presence of a subthreshold dose of fludioxonil and that their overexpression alleviates fludioxonil toxicity. We also noted that by impeding secretory vesicle trafficking, fludioxonil inhibits hyphal growth in the opportunistic fungal pathogen Candida albicans Our results suggest that HHK3 regulates fungal hyphal growth by affecting vesicle trafficking. Together, our results reveal an important role of CORVET complex in the fungicidal action of fludioxonil downstream of HHK3.
Collapse
Affiliation(s)
- Anmoldeep Randhawa
- From the Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Debasree Kundu
- From the Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.,School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India, and
| | - Anupam Sharma
- From the Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University, Gurgaon 122413, India
| | - Alok K Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India, and
| |
Collapse
|
8
|
Spadinger A, Ebel F. Molecular characterization of Aspergillus fumigatus TcsC, a characteristic type III hybrid histidine kinase of filamentous fungi harboring six HAMP domains. Int J Med Microbiol 2017; 307:200-208. [PMID: 28527583 DOI: 10.1016/j.ijmm.2017.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022] Open
Abstract
The type III hybrid histidine kinase (HHK) TcsC enables the pathogenic mold Aspergillus fumigatus to thrive under hyperosmotic conditions. It is, moreover, of particular interest, since it is the target of certain antifungal agents, such as fludioxonil. This study was aimed at a functional characterization of the domains that constitute the sensing and the kinase module of TcsC. The sensing module consists of six HAMP domains, an architecture that is commonly found in type III HHKs of filamentous fungi. To dissect the functional role of the individual domains, we have analyzed a set of truncated derivatives of TcsC with respect to their impact on fungal growth and their ability to respond to hyperosmotic stress and fludioxonil. Our data demonstrate that the TcsC kinase module per se is constitutively active and under the control of the sensing module. We furthermore found that the sixth HAMP domain alone is sufficient to arrest the kinase module in an inactive state. This effect can be partially lifted by the presence of the fifth HAMP domain. Constructs harboring more than these two HAMP domains are per se inactive and all six HAMP domains are required to enable a response to fludioxonil or hyperosmotic stress. When expressed in an A. fumigatus wild type strain, the construct harboring only the sixth HAMP domain exerts a strong dominant negative effect on the native TcsC. This effect is successively reduced in other constructs harboring increasing numbers of HAMP domains. To our knowledge, this is the first molecular characterization of a type III HHK containing six HAMP domains. Our data strongly suggest that TcsC is a positive regulator of its MAPK SakA and thereby differs fundamentally from the prototypic yeast type III HHK DhNik1 of Debaryomyces hansenii, which harbors only five HAMP domains and acts as a negative regulator of its MAPK.
Collapse
Affiliation(s)
- Anja Spadinger
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
9
|
Fludioxonil Induces Drk1, a Fungal Group III Hybrid Histidine Kinase, To Dephosphorylate Its Downstream Target, Ypd1. Antimicrob Agents Chemother 2017; 61:AAC.01414-16. [PMID: 27872062 DOI: 10.1128/aac.01414-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/05/2016] [Indexed: 12/16/2022] Open
Abstract
Novel antifungal drugs and targets are urgently needed. Group III hybrid histidine kinases (HHKs) represent an appealing new therapeutic drug target because they are widely expressed in fungi but absent from humans. We investigated the mode of action of the widely utilized, effective fungicide fludioxonil. The drug acts in an HHK-dependent manner by constitutive activation of the HOG (high-osmolarity glycerol) pathway, but its mechanism of action is poorly understood. Here, we report a new mode of drug action that entails conversion of the HHK from a kinase into a phosphatase. We expressed Drk1 (dimorphism-regulating kinase), which is an intracellular group III HHK from the fungal pathogen Blastomyces dermatitidis, in Saccharomyces cerevisiae Drk1 engendered drug sensitivity in B. dermatitidis and conferred sensitivity upon S. cerevisiae In response to fludioxonil, Drk1 behaved as a phosphatase rather than as a kinase, leading to dephosphorylation of its downstream target, Ypd1, constitutive activation of the HOG pathway, and yeast cell death. Aspartic acid residue 1140 in the Drk1 receiver domain was required for in vivo phosphatase activity on Ypd1, and Hog1 was required for drug effect, indicating fidelity in HHK-dependent drug action. In in vitro assays with purified protein, intact Drk1 demonstrated intrinsic kinase activity, and the Drk1 receiver domain exhibited intrinsic phosphatase activity. However, fludioxonil failed to induce intact Drk1 to dephosphorylate Ypd1. We conclude that fludioxonil treatment in vivo likely acts on an upstream target that triggers HHK to become a phosphatase, which dephosphorylates its downstream target, Ypd1.
Collapse
|
10
|
The serine/threonine phosphatase DhSIT4 modulates cell cycle, salt tolerance and cell wall integrity in halo tolerant yeast Debaryomyces hansenii. Gene 2016; 606:1-9. [PMID: 28027965 DOI: 10.1016/j.gene.2016.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 11/23/2022]
Abstract
The highly conserved family of Phosphoprotein phosphatases (PPP) regulates several major physiological processes in yeast. However, very little is known about the PPP orthologs from the yeast species inhabiting extreme environmental niches. In the present study we have identified DhSIT4, a member of PPP6 class of serine threonine phosphatases from the halotolerant yeast Debaryomyces hansenii. Deletion of DhSIT4 in D. hansenii was not lethal but the mutant exhibited reduced growth due to its effect on the cell cycle. The knock out mutant Dhsit4Δ showed sensitivity towards Li+, Na+ and cell wall damaging agents. The expression of DhSit4p rescued salt, caffeine and calcofluor white sensitivity of Dhmpk1Δ strain and thereby indicating a genetic interaction of this phosphatase with the cell wall integrity pathway in this species. Our study also demonstrated the antagonistic roles of DhSit4p and DhPpz1p in maintaining the cell cycle and ion homeostasis in D. hansenii.
Collapse
|
11
|
Konte T, Terpitz U, Plemenitaš A. Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae. Front Microbiol 2016; 7:901. [PMID: 27379041 PMCID: PMC4904012 DOI: 10.3389/fmicb.2016.00901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/26/2016] [Indexed: 11/13/2022] Open
Abstract
The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.
Collapse
Affiliation(s)
- Tilen Konte
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg Würzburg, Germany
| | - Ana Plemenitaš
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|
12
|
Randhawa A, Chawla S, Mondal AK. Functional dissection of HAMP domains in NIK1 ortholog from pathogenic yeast Candida lusitaniae. Gene 2016; 577:251-7. [DOI: 10.1016/j.gene.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/04/2015] [Accepted: 12/01/2015] [Indexed: 11/26/2022]
|
13
|
Furukawa K, Hohmann S. A fungicide-responsive kinase as a tool for synthetic cell fate regulation. Nucleic Acids Res 2015; 43:7162-70. [PMID: 26138483 PMCID: PMC4538845 DOI: 10.1093/nar/gkv678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/19/2015] [Indexed: 01/22/2023] Open
Abstract
Engineered biological systems that precisely execute defined tasks have major potential for medicine and biotechnology. For instance, gene- or cell-based therapies targeting pathogenic cells may replace time- and resource-intensive drug development. Engineering signal transduction systems is a promising, yet presently underexplored approach. Here, we exploit a fungicide-responsive heterologous histidine kinase for pathway engineering and synthetic cell fate regulation in the budding yeast Saccharomyces cerevisiae. Rewiring the osmoregulatory Hog1 MAPK signalling system generates yeast cells programmed to execute three different tasks. First, a synthetic negative feedback loop implemented by employing the fungicide-responsive kinase and a fungicide-resistant derivative reshapes the Hog1 activation profile, demonstrating how signalling dynamics can be engineered. Second, combinatorial integration of different genetic parts including the histidine kinases, a pathway activator and chemically regulated promoters enables control of yeast growth and/or gene expression in a two-input Boolean logic manner. Finally, we implemented a genetic ‘suicide attack’ system, in which engineered cells eliminate target cells and themselves in a specific and controllable manner. Taken together, fungicide-responsive kinases can be applied in different constellations to engineer signalling behaviour. Sensitizing engineered cells to existing chemicals may be generally useful for future medical and biotechnological applications.
Collapse
Affiliation(s)
- Kentaro Furukawa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
14
|
Defosse TA, Sharma A, Mondal AK, Dugé de Bernonville T, Latgé JP, Calderone R, Giglioli-Guivarc'h N, Courdavault V, Clastre M, Papon N. Hybrid histidine kinases in pathogenic fungi. Mol Microbiol 2015; 95:914-24. [DOI: 10.1111/mmi.12911] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Tatiana A. Defosse
- Biomolécules et Biotechnologies Végétales; EA 2106; Université François-Rabelais de Tours; Tours France
| | | | - Alok K. Mondal
- Institute of Microbial Technology; Chandigarh India
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | | | | | - Richard Calderone
- Georgetown University Medical Center; Department of Microbiology & Immunology; Washington DC USA
| | | | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales; EA 2106; Université François-Rabelais de Tours; Tours France
| | - Marc Clastre
- Biomolécules et Biotechnologies Végétales; EA 2106; Université François-Rabelais de Tours; Tours France
| | - Nicolas Papon
- Biomolécules et Biotechnologies Végétales; EA 2106; Université François-Rabelais de Tours; Tours France
| |
Collapse
|