1
|
Wang M, Wang X, Cheng Z. Heterologous overexpression of Sup35 in Escherichia coli leads to both monomer and complex states. Proteins 2022; 90:1468-1473. [PMID: 35194850 DOI: 10.1002/prot.26327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/08/2022]
Abstract
The heterologous overexpression states of prion proteins play a critical role in understanding the mechanisms of prion-related diseases. We report herein the identification of soluble monomer and complex states for a bakers' yeast prion, Sup35, when expressed in Escherichia coli. Two peaks are apparent with the elution of His-tagged Sup35 by imidazole from a Ni2+ affinity column. Peak I contains Sup35 in both monomer and aggregated states. Sup35 aggregate is abbreviated as C-aggregate and includes a non-fibril complex comprising Sup35 aggregate-HSP90-Dna K, ATP synthase β unit (chain D), 30S ribosome subunit, and Omp F. The purified monomer and C-aggregate can remain stable for an extended period of time. Peak II contains Sup35 also in both monomer and aggregated (abbreviated as S-aggregate) states, but the aggregated states are caused by the formation of inter-Sup35 disulfide bonds. This study demonstrates that further assembly of Sup35 non-fibril C-aggregate can be interrupted by the chaperone repertoire system in E. coli.
Collapse
Affiliation(s)
- Mingyang Wang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Xiao Wang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Zhenyun Cheng
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| |
Collapse
|
2
|
Wei C, Zhou J, Liu T, Zhao W, Zhang XE, Men D. Self-Assembled Enzymatic Nanowires with a “Dry and Wet” Interface Improve the Catalytic Performance of Januvia Transaminase in Organic Solvents. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cuihua Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wanqi Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, CAS Center for Biological Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
3
|
High-resolution structure and strain comparison of infectious mammalian prions. Mol Cell 2021; 81:4540-4551.e6. [PMID: 34433091 DOI: 10.1016/j.molcel.2021.08.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/29/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
Within the extensive range of self-propagating pathologic protein aggregates of mammals, prions are the most clearly infectious (e.g., ∼109 lethal doses per milligram). The structures of such lethal assemblies of PrP molecules have been poorly understood. Here we report a near-atomic core structure of a brain-derived, fully infectious prion (263K strain). Cryo-electron microscopy showed amyloid fibrils assembled with parallel in-register intermolecular β sheets. Each monomer provides one rung of the ordered fibril core, with N-linked glycans and glycolipid anchors projecting outward. Thus, single monomers form the templating surface for incoming monomers at fibril ends, where prion growth occurs. Comparison to another prion strain (aRML) revealed major differences in fibril morphology but, like 263K, an asymmetric fibril cross-section without paired protofilaments. These findings provide structural insights into prion propagation, strains, species barriers, and membrane pathogenesis. This structure also helps frame considerations of factors influencing the relative transmissibility of other pathologic amyloids.
Collapse
|
4
|
Callender JA, Sevillano AM, Soldau K, Kurt TD, Schumann T, Pizzo DP, Altmeppen H, Glatzel M, Esko JD, Sigurdson CJ. Prion protein post-translational modifications modulate heparan sulfate binding and limit aggregate size in prion disease. Neurobiol Dis 2020; 142:104955. [PMID: 32454127 DOI: 10.1016/j.nbd.2020.104955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 01/05/2023] Open
Abstract
Many aggregation-prone proteins linked to neurodegenerative disease are post-translationally modified during their biogenesis. In vivo pathogenesis studies have suggested that the presence of post-translational modifications can shift the aggregate assembly pathway and profoundly alter the disease phenotype. In prion disease, the N-linked glycans and GPI-anchor on the prion protein (PrP) impair fibril assembly. However, the relevance of the two glycans to aggregate structure and disease progression remains unclear. Here we show that prion-infected knockin mice expressing an additional PrP glycan (tri-glycosylated PrP) develop new plaque-like deposits on neuronal cell membranes, along the subarachnoid space, and periventricularly, suggestive of high prion mobility and transit through the interstitial fluid. These plaque-like deposits were largely non-congophilic and composed of full length, uncleaved PrP, indicating retention of the glycophosphatidylinositol (GPI) anchor. Prion aggregates sedimented in low density fractions following ultracentrifugation, consistent with oligomers, and bound low levels of heparan sulfate (HS) similar to other predominantly GPI-anchored prions. Collectively, these results suggest that highly glycosylated PrP primarily converts as a GPI-anchored glycoform, with low involvement of HS co-factors, limiting PrP assembly mainly to oligomers. Since PrPC is highly glycosylated, these findings may explain the high frequency of diffuse, synaptic, and plaque-like deposits in the brain as well as the rapid conversion commonly observed in human and animal prion disease.
Collapse
Affiliation(s)
| | | | - Katrin Soldau
- Departments of Pathology, UC San Diego, La Jolla, CA 92093, USA
| | - Timothy D Kurt
- Departments of Pathology, UC San Diego, La Jolla, CA 92093, USA
| | - Taylor Schumann
- Departments of Pathology, UC San Diego, La Jolla, CA 92093, USA
| | - Donald P Pizzo
- Departments of Pathology, UC San Diego, La Jolla, CA 92093, USA
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, 20251, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, 20251, Germany
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - Christina J Sigurdson
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, CA 95616, USA; Departments of Medicine, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection. J Virol 2017; 91:JVI.01686-16. [PMID: 27847358 DOI: 10.1128/jvi.01686-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of the prion protein (PrPC) influences PrPC misfolding into the disease-associated isoform, PrPres, as well as prion propagation and infectivity. GPI proteins are found in cholesterol- and sphingolipid-rich membrane regions called rafts. Exchanging the GPI anchor for a nonraft transmembrane sequence redirects PrPC away from rafts. Previous studies showed that nonraft transmembrane PrPC variants resist conversion to PrPres when transfected into scrapie-infected N2a neuroblastoma cells, likely due to segregation of transmembrane PrPC and GPI-anchored PrPres in distinct membrane environments. Thus, it remained unclear whether transmembrane PrPC might convert to PrPres if seeded by an exogenous source of PrPres not associated with host cell rafts and without the potential influence of endogenous expression of GPI-anchored PrPC To further explore these questions, constructs containing either a C-terminal wild-type GPI anchor signal sequence or a nonraft transmembrane sequence containing a flexible linker were expressed in a cell line derived from PrP knockout hippocampal neurons, NpL2. NpL2 cells have physiological similarities to primary neurons, representing a novel and advantageous model for studying transmissible spongiform encephalopathy (TSE) infection. Cells were infected with inocula from multiple prion strains and in different biochemical states (i.e., membrane bound as in brain microsomes from wild-type mice or purified GPI-anchorless amyloid fibrils). Only GPI-anchored PrPC supported persistent PrPres propagation. Our data provide strong evidence that in cell culture GPI anchor-directed membrane association of PrPC is required for persistent PrPres propagation, implicating raft microdomains as a location for conversion. IMPORTANCE Mechanisms of prion propagation, and what makes them transmissible, are poorly understood. Glycosylphosphatidylinositol (GPI) membrane anchoring of the prion protein (PrPC) directs it to specific regions of cell membranes called rafts. In order to test the importance of the raft environment on prion propagation, we developed a novel model for prion infection where cells expressing either GPI-anchored PrPC or transmembrane-anchored PrPC, which partitions it to a different location, were treated with infectious, misfolded forms of the prion protein, PrPres We show that only GPI-anchored PrPC was able to convert to PrPres and able to serially propagate. The results strongly suggest that GPI anchoring and the localization of PrPC to rafts are crucial to the ability of PrPC to propagate as a prion.
Collapse
|
6
|
Abstract
Within the mammalian prion field, the existence of recombinant prion protein (PrP) conformers with self-replicating (ie. autocatalytic) activity in vitro but little to no infectious activity in vivo challenges a key prediction of the protein-only hypothesis of prion replication--that autocatalytic PrP conformers should be infectious. To understand this dissociation of autocatalysis from infectivity, we recently performed a structural and functional comparison between a highly infectious and non-infectious pair of autocatalytic recombinant PrP conformers derived from the same initial prion strain. (1) We identified restricted, C-terminal structural differences between these 2 conformers and provided evidence that these relatively subtle differences prevent the non-infectious conformer from templating the conversion of native PrP(C) substrates containing a glycosylphosphatidylinositol (GPI) anchor. (1) In this article we discuss a model, consistent with these findings, in which recombinant PrP, lacking post-translational modifications and associated folding constraints, is capable of adopting a wide variety of autocatalytic conformations. Only a subset of these recombinant conformers can be adopted by post-translationally modified native PrP(C), and this subset represents the recombinant conformers with high specific infectivity. We examine this model's implications for the generation of highly infectious recombinant prions and the protein-only hypothesis of prion replication.
Collapse
Affiliation(s)
- Geoffrey P Noble
- a Departments of Biochemistry and Medicine ; Geisel School of Medicine at Dartmouth College ; Hanover , NH USA
| | - Surachai Supattapone
- a Departments of Biochemistry and Medicine ; Geisel School of Medicine at Dartmouth College ; Hanover , NH USA
| |
Collapse
|
7
|
Noble GP, Wang DW, Walsh DJ, Barone JR, Miller MB, Nishina KA, Li S, Supattapone S. A Structural and Functional Comparison Between Infectious and Non-Infectious Autocatalytic Recombinant PrP Conformers. PLoS Pathog 2015; 11:e1005017. [PMID: 26125623 PMCID: PMC4488359 DOI: 10.1371/journal.ppat.1005017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/09/2015] [Indexed: 11/30/2022] Open
Abstract
Infectious prions contain a self-propagating, misfolded conformer of the prion protein termed PrPSc. A critical prediction of the protein-only hypothesis is that autocatalytic PrPSc molecules should be infectious. However, some autocatalytic recombinant PrPSc molecules have low or undetectable levels of specific infectivity in bioassays, and the essential determinants of recombinant prion infectivity remain obscure. To identify structural and functional features specifically associated with infectivity, we compared the properties of two autocatalytic recombinant PrP conformers derived from the same original template, which differ by >105-fold in specific infectivity for wild-type mice. Structurally, hydrogen/deuterium exchange mass spectrometry (DXMS) studies revealed that solvent accessibility profiles of infectious and non-infectious autocatalytic recombinant PrP conformers are remarkably similar throughout their protease-resistant cores, except for two domains encompassing residues 91-115 and 144-163. Raman spectroscopy and immunoprecipitation studies confirm that these domains adopt distinct conformations within infectious versus non-infectious autocatalytic recombinant PrP conformers. Functionally, in vitro prion propagation experiments show that the non-infectious conformer is unable to seed mouse PrPC substrates containing a glycosylphosphatidylinositol (GPI) anchor, including native PrPC. Taken together, these results indicate that having a conformation that can be specifically adopted by post-translationally modified PrPC molecules is an essential determinant of biological infectivity for recombinant prions, and suggest that this ability is associated with discrete features of PrPSc structure. A key prediction of the prion hypothesis is that autocatalytic, misfolded PrPSc molecules should be highly infectious. Various recombinant PrPSc conformers are able to self-propagate in vitro, yet paradoxically only some of these conformers possess significant levels of specific infectivity in bioassays. Here we use two closely-matched autocatalytic recombinant PrP conformers that share the same origin but differ by >105-fold in specific infectivity to study the molecular basis of prion infectivity. We show that infectious and non-infectious autocatalytic recombinant PrP conformers have subtle structural differences, and that GPI-anchored PrP substrate molecules can only adopt the infectious PrPSc conformation. We conclude that post-translational modifications of host PrPC molecules play a critical role in restricting the range of recombinant PrPSc conformers that are biologically infectious.
Collapse
Affiliation(s)
- Geoffrey P. Noble
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Daphne W. Wang
- Medicine and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Justin R. Barone
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael B. Miller
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Koren A. Nishina
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Sheng Li
- Medicine and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, United States of America
| | - Surachai Supattapone
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|