1
|
Calogero AM, Basellini MJ, Isilgan HB, Longhena F, Bellucci A, Mazzetti S, Rolando C, Pezzoli G, Cappelletti G. Acetylated α-Tubulin and α-Synuclein: Physiological Interplay and Contribution to α-Synuclein Oligomerization. Int J Mol Sci 2023; 24:12287. [PMID: 37569662 PMCID: PMC10418364 DOI: 10.3390/ijms241512287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Emerging evidence supports that altered α-tubulin acetylation occurs in Parkinson's disease (PD), a neurodegenerative disorder characterized by the deposition of α-synuclein fibrillary aggregates within Lewy bodies and nigrostriatal neuron degeneration. Nevertheless, studies addressing the interplay between α-tubulin acetylation and α-synuclein are lacking. Here, we investigated the relationship between α-synuclein and microtubules in primary midbrain murine neurons and the substantia nigra of post-mortem human brains. Taking advantage of immunofluorescence and Proximity Ligation Assay (PLA), a method allowing us to visualize protein-protein interactions in situ, combined with confocal and super-resolution microscopy, we found that α-synuclein and acetylated α-tubulin colocalized and were in close proximity. Next, we employed an α-synuclein overexpressing cellular model and tested the role of α-tubulin acetylation in α-synuclein oligomer formation. We used the α-tubulin deacetylase HDAC6 inhibitor Tubacin to modulate α-tubulin acetylation, and we evaluated the presence of α-synuclein oligomers by PLA. We found that the increase in acetylated α-tubulin significantly induced α-synuclein oligomerization. In conclusion, we unraveled the link between acetylated α-tubulin and α-synuclein and demonstrated that α-tubulin acetylation could trigger the early step of α-synuclein aggregation. These data suggest that the proper regulation of α-tubulin acetylation might be considered a therapeutic strategy to take on PD.
Collapse
Affiliation(s)
- Alessandra Maria Calogero
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy;
| | - Milo Jarno Basellini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
| | - Huseyin Berkcan Isilgan
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (F.L.); (A.B.)
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (F.L.); (A.B.)
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy;
| | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy;
- Parkinson Institute, ASST-Pini-CTO, 20126 Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
2
|
Mazzetti S, Calogero AM, Pezzoli G, Cappelletti G. Cross-talk between α-synuclein and the microtubule cytoskeleton in neurodegeneration. Exp Neurol 2023; 359:114251. [PMID: 36243059 DOI: 10.1016/j.expneurol.2022.114251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/30/2022]
Abstract
Looking at the puzzle that depicts the molecular determinants in neurodegeneration, many pieces are lacking and multiple interconnections among key proteins and intracellular pathways still remain unclear. Here we focus on the concerted action of α-synuclein and the microtubule cytoskeleton, whose interplay, indeed, is emerging but remains largely unexplored in both its physiology and pathology. α-Synuclein is a key protein involved in neurodegeneration, underlying those diseases termed synucleinopathies. Its propensity to interact with other proteins and structures renders the identification of neuronal death trigger extremely difficult. Conversely, the unbalance of microtubule cytoskeleton in terms of structure, dynamics and function is emerging as a point of convergence in neurodegeneration. Interestingly, α-synuclein and microtubules have been shown to interact and mediate cross-talks with other intracellular structures. This is supported by an increasing amount of evidence ranging from their direct interaction to the engagement of in-common partners and culminating with their respective impact on microtubule-dependent neuronal functions. Last, but not least, it is becoming even more clear that α-synuclein and tubulin work synergically towards pathological aggregation, ultimately resulting in neurodegeneration. In this respect, we supply a novel perspective towards the understanding of α-synuclein biology and, most importantly, of the link between α-synuclein with microtubule cytoskeleton and its impact for neurodegeneration and future development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | | | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
3
|
Insights into the pathogenesis of multiple system atrophy: focus on glial cytoplasmic inclusions. Transl Neurodegener 2020; 9:7. [PMID: 32095235 PMCID: PMC7025408 DOI: 10.1186/s40035-020-0185-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple system atrophy (MSA) is a debilitating and fatal neurodegenerative disorder. The disease severity warrants urgent development of disease-modifying therapy, but the disease pathogenesis is still enigmatic. Neurodegeneration in MSA brains is preceded by the emergence of glial cytoplasmic inclusions (GCIs), which are insoluble α-synuclein accumulations within oligodendrocytes (OLGs). Thus, preventive strategies against GCI formation may suppress disease progression. However, although numerous studies have tried to elucidate the molecular pathogenesis of GCI formation, difficulty remains in understanding the pathological interaction between the two pivotal aspects of GCIs; α-synuclein and OLGs. The difficulty originates from several enigmas: 1) what triggers the initial generation and possible propagation of pathogenic α-synuclein species? 2) what contributes to OLG-specific accumulation of α-synuclein, which is abundantly expressed in neurons but not in OLGs? and 3) how are OLGs and other glial cells affected and contribute to neurodegeneration? The primary pathogenesis of GCIs may involve myelin dysfunction and dyshomeostasis of the oligodendroglial cellular environment such as autophagy and iron metabolism. We have previously reported that oligodendrocyte precursor cells are more prone to develop intracellular inclusions in the presence of extracellular fibrillary α-synuclein. This finding implies a possibility that the propagation of GCI pathology in MSA brains is mediated through the internalization of pathological α-synuclein into oligodendrocyte precursor cells. In this review, in order to discuss the pathogenesis of GCIs, we will focus on the composition of neuronal and oligodendroglial inclusions in synucleinopathies. Furthermore, we will introduce some hypotheses on how α-synuclein pathology spreads among OLGs in MSA brains, in the light of our data from the experiments with primary oligodendrocyte lineage cell culture. While various reports have focused on the mysterious source of α-synuclein in GCIs, insights into the mechanism which regulates the uptake of pathological α-synuclein into oligodendroglial cells may yield the development of the disease-modifying therapy for MSA. The interaction between glial cells and α-synuclein is also highlighted with previous studies of post-mortem human brains, cultured cells, and animal models, which provide comprehensive insight into GCIs and the MSA pathomechanisms.
Collapse
|
4
|
Early defects in translation elongation factor 1α levels at excitatory synapses in α-synucleinopathy. Acta Neuropathol 2019; 138:971-986. [PMID: 31451907 DOI: 10.1007/s00401-019-02063-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
Abstract
Cognitive decline and dementia in neurodegenerative diseases are associated with synapse dysfunction and loss, which may precede neuron loss by several years. While misfolded and aggregated α-synuclein is recognized in the disease progression of synucleinopathies, the nature of glutamatergic synapse dysfunction and loss remains incompletely understood. Using fluorescence-activated synaptosome sorting (FASS), we enriched excitatory glutamatergic synaptosomes from mice overexpressing human alpha-synuclein (h-αS) and wild-type littermates to unprecedented purity. Subsequent label-free proteomic quantification revealed a set of proteins differentially expressed upon human alpha-synuclein overexpression. These include overrepresented proteins involved in the synaptic vesicle cycle, ER-Golgi trafficking, metabolism and cytoskeleton. Unexpectedly, we found and validated a steep reduction of eukaryotic translation elongation factor 1 alpha (eEF1A1) levels in excitatory synapses at early stages of h-αS mouse model pathology. While eEF1A1 reduction correlated with the loss of postsynapses, its immunoreactivity was found on both sides of excitatory synapses. Moreover, we observed a reduction in eEF1A1 immunoreactivity in the cingulate gyrus neuropil of patients with Lewy body disease along with a reduction in PSD95 levels. Altogether, our results suggest a link between structural impairments underlying cognitive decline in neurodegenerative disorders and local synaptic defects. eEF1A1 may therefore represent a limiting factor to synapse maintenance.
Collapse
|
5
|
Sekaran H, Gan CY, A Latiff A, Harvey TM, Mohd Nazri L, Hanapi NA, Azizi J, Yusof SR. Changes in blood-brain barrier permeability and ultrastructure, and protein expression in a rat model of cerebral hypoperfusion. Brain Res Bull 2019; 152:63-73. [PMID: 31301381 DOI: 10.1016/j.brainresbull.2019.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/16/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
Cerebral hypoperfusion involved a reduction in cerebral blood flow, leading to neuronal dysfunction, microglial activation and white matter degeneration. The effects on the blood-brain barrier (BBB) however, have not been well-documented. Here, two-vessel occlusion model was adopted to mimic the condition of cerebral hypoperfusion in Sprague-Dawley rats. The BBB permeability to high and low molecular weight exogenous tracers i.e. Evans blue dye and sodium fluorescein respectively, showed marked extravasation of the Evans blue dye in the frontal cortex, posterior cortex and thalamus-midbrain at day 1 following induction of cerebral hypoperfusion. Transmission electron microscopy revealed brain endothelial cell and astrocyte damages including increased pinocytotic vesicles and formation of membrane invaginations in the endothelial cells, and swelling of the astrocytes' end-feet. Investigation on brain microvessel protein expressions using two-dimensional (2D) gel electrophoresis coupled with LC-MS/MS showed that proteins involved in mitochondrial energy metabolism, transcription regulation, cytoskeleton maintenance and signaling pathways were differently expressed. The expression of aconitate hydratase, heterogeneous nuclear ribonucleoprotein, enoyl Co-A hydratase and beta-synuclein were downregulated, while the opposite observed for calreticulin and enhancer of rudimentary homolog. These findings provide insights into the BBB molecular responses to cerebral hypoperfusion, which may assist development of future therapeutic strategies.
Collapse
Affiliation(s)
- Hema Sekaran
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Aishah A Latiff
- Toxicology and Multipurpose Lab, Anti-Doping Lab Qatar, Sports City St, 27775, Doha, Qatar
| | - Thomas Michael Harvey
- Toxicology and Multipurpose Lab, Anti-Doping Lab Qatar, Sports City St, 27775, Doha, Qatar
| | - Liyana Mohd Nazri
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Nur Aziah Hanapi
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Juzaili Azizi
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Siti R Yusof
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
6
|
Kang W, Ishida E, Yamatoya K, Nakamura A, Miyado M, Miyamoto Y, Iwai M, Tatsumi K, Saito T, Saito K, Kawano N, Hamatani T, Umezawa A, Miyado K, Saito H. Autophagy-disrupted LC3 abundance leads to death of supporting cells of human oocytes. Biochem Biophys Rep 2018; 15:107-114. [PMID: 30140750 PMCID: PMC6104557 DOI: 10.1016/j.bbrep.2018.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/27/2018] [Accepted: 08/06/2018] [Indexed: 02/03/2023] Open
Abstract
Autophagic recycling of cell parts is generally termed as the opposite of cell death. Here, we explored the relation between cell death and autophagy by examining granulosa cell layers that control oocyte quality, which is important for the success of fertilization. Granulosa cell layers were collected from infertile women and morphologically divided into four types, viz., mature (MCCs), immature (ICCs), and dysmature cumulus cells (DCCs), and mural granulosa cells (MGCs). Microtubule-associated protein light chain 3 (LC3), which is involved in autophagosome formation, was expressed excessively in DCCs and MGCs, and their chromosomal DNA was highly fragmented. However, autophagy initiation was limited to MGCs, as indicated by the expression of membrane-bound LC3-II and autophagy-related protein 7 (ATG7), an enzyme that converts LC3-I to LC3-II. Although pro-LC3 was accumulated, autophagy was disabled in DCCs, resulting in cell death. Our results suggest the possibility that autophagy-independent accumulation of pro-LC3 proteins leads to the death of human granulosa cells surrounding the oocytes and presumably reduces oocyte quality and female fertility.
Collapse
Affiliation(s)
- Woojin Kang
- Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Eri Ishida
- Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Kenji Yamatoya
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akihiro Nakamura
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Yoshitaka Miyamoto
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Maki Iwai
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kuniko Tatsumi
- Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Takakazu Saito
- Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Kazuki Saito
- Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Natsuko Kawano
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki, Kanagawa 214-8571, Japan
| | - Toshio Hamatani
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
- Corresponding authors.
| | - Hidekazu Saito
- Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
- Corresponding authors.
| |
Collapse
|
7
|
Jin C, Washimi Y, Yoshida K, Hashizume Y, Yazawa I. Characterization of spheroids in hereditary diffuse leukoencephalopathy with axonal spheroids. J Neurol Sci 2015; 352:74-8. [PMID: 25843289 DOI: 10.1016/j.jns.2015.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/16/2015] [Accepted: 03/18/2015] [Indexed: 11/28/2022]
Abstract
Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) is a neurodegenerative disease clinically characterized by slowly progressive cognitive decline and motor dysfunction. Neuropathology shows diffuse degeneration in the white matter, with prominent presence of widespread axonal spheroids. To investigate the mechanism underlying HDLS neurodegeneration, we characterized spheroids and examined their development in the degenerated white matter. Analysis revealed that the spheroids are an early neuropathological manifestation in the white matter degeneration and involve axonal component proteins and α-synuclein. The development of spheroids facilitates in initiating neurodegeneration in HDLS.
Collapse
Affiliation(s)
- Chenghua Jin
- Laboratory of Research Resources, Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Yukihiko Washimi
- Department of Neurology, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Kunihiro Yoshida
- Division of Neurogenetics, Department of Brain Disease Research, Shinshu University School of Medicine, Nagano 390-8621, Japan
| | - Yoshio Hashizume
- Laboratory of Neuropathology, Fukushimura Hospital, Aichi 441-8124, Japan
| | - Ikuru Yazawa
- Laboratory of Research Resources, Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan.
| |
Collapse
|